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ABSTRACT
The identification of similar patient pathways is a crucial task in healthcare analytics. A flexible tool to address this issue are
parametric competing risks models, where transition intensities may be specified by a variety of parametric distributions, thus in
particular being possibly time-dependent. We assess the similarity between two such models by examining the transitions between
different health states. This research introduces a method to measure the maximum differences in transition intensities over time,
leading to the development of a test procedure for assessing similarity. We propose a parametric bootstrap approach for this purpose
and provide a proof to confirm the validity of this procedure. The performance of our proposed method is evaluated through a
simulation study, considering a range of sample sizes, differing amounts of censoring, and various thresholds for similarity. Finally,
we demonstrate the practical application of our approach with a case study from urological clinical routine practice, which inspired
this research.

1 | Introduction

Identifying similar healthcare pathways is crucial to increasing
the efficiency and quality of healthcare and improving patient
outcomes. A healthcare pathway is generally defined as the jour-
ney a patient undertakes from their initial contact with a health
professional, such as a general practitioner, through referrals to
specialists or hospitals, until the completion of treatment for a
specific condition. This pathway serves as a timeline that records
all healthcare-related events, including diagnoses, treatments,
and any subsequent consultations or hospital readmissions. The
recent accessibility of routine medical data, particularly in a uni-
versity clinical setting, specifically allows to uncover common
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clinical care pathways, that is, typical sequences of clinical inter-
ventions or hospital readmissions. In doing so, it should be rec-
ognized that the risks of events occurring in the pathway may
vary over time. This paper focusses on an important statistical
aspect in this regard: the utilization of flexible parametric com-
peting risks models to test for similar treatment pathways across
different patient populations.

Competing risks models, a special case of multistate models [1, 2],
offer a sophisticated means to dissect and understand the intrica-
cies of patient healthcare journeys. These models not only track
transitions between different health states but also allow for a
nuanced analysis of whether different treatment steps still lead
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to similar subsequent transitions. This research seeks to leverage
these models to test for similarities in healthcare pathways, with
the overarching goal of enhancing clinical decision-making. In
this regard, we are particularly interested in deciding whether
two competing risks models can be assumed to be similar, or,
in other words, equivalent. Once similarity has been established,
clinical decision making can profit a lot of this knowledge. Specif-
ically, our work is motivated by the clinical question of pathway
similarity between two groups of prostate cancer patients who
either received a prior in-house diagnostic test before surgery
or not, and for which we consider their risk of hospital read-
mission due to several causes. Our primary objective is to assess
from routine clinical data whether these risks are similar such
that the respective pathways could be combined. From a clini-
cal point of view, the risks for hospital readmission after surgery
should not be contingent upon the precise nature of the preced-
ing diagnostic procedure. So, a clinician might assert that, from
a clinical perspective, such distinctions should be inconsequen-
tial. To rigorously address such scenarios, we aim to develop a
sophisticated methodological approach based on competing risks
multistate models to statistically validate the similarity of patient
pathways.

The theory of competing risks and broader multistate mod-
els has a long and rich history, characterized by advancements
in mathematical theory and biostatistics. These developments,
primarily driven by clinical applications, are extensively sum
marized in various textbooks and educational articles [2–6].
Specifically with regard to competing risks analyses, some clas-
sical hypothesis testing approaches have been proposed to deter-
mine whether there is sufficient evidence to decide in favor of an
alternative hypothesis that significant differences exist between
groups [7–10]. However, the opposite, that is, the assessment of
the similarity of two groups in a framework of competing risks,
has hardly been addressed in the literature to date. For the sim-
plest case, the classical two-state survival model, several meth-
ods are available. The traditional approach of an equivalence
test in this scenario is based on an extension of a log-rank test
and assumes a constant hazard ratio between the two groups
[11]. However, this assumption, which is rarely assessed and
often violated in practice as indicated by crossing survival curves
[12, 13], has been generally criticized [14, 15]. As an alterna-
tive, Com-Nougue et al. [16] introduce a nonparametric method,
based on the difference of the survival functions and without
assuming proportional hazards. In addition, a parametric alter-
native has recently been proposed by Möllenhoff and Tresch [17],
who consider a similar test statistic, but assume parametric dis-
tributions for the survival and the censoring times, respectively.
However, while their approach does not require an assumption
of proportionality, unlike the procedures above, it considers only
one particular event and does not take into account competing
risks.

Recently, Binder et al. [18] extend the considerations on similar-
ity testing to competing risks models by introducing a paramet-
ric approach based on a bootstrap technique introduced earlier
[19]. They propose performing individual tests for each transition
and conclude equivalence for the whole competing risks model if
all individual null hypotheses can be rejected, according to the
intersection union principle (IUP) [20]. Their approach, while

effective, has some areas for improvement. First, with an increas-
ing number of states the power decreases substantially, as the
IUP is rather conservative [21]. Second, their approach builds on
the assumption of constant transition intensities, that is, expo-
nentially distributed transition times, which can sometimes be
to simplistic (as discussed in, e.g., works by Hill, Lambert, and
Crowther [22] and von Cube, Schumacher, and Wolkewitz [23])
Therefore, exploring more flexible methods will typically offer a
more fitting model for the underlying data.

The method presented in this paper improves both of these
aspects. First, it allows for any parametric model, meaning in
particular time-dependent transition intensities, and these para-
metric distributions can vary across transitions, resulting in a
very flexible modeling framework. Second, we propose another
test statistic, which results in one global test instead of com-
bining individual tests for each state and thus results in higher
power. The paper is structured as follows. In Section 2, we
define the modeling setting, outline the algorithmic procedure
for testing the global hypotheses, and provide a correspond-
ing proof of the new test procedure. In Section 3, we demon-
strate the validity of the new approach and compare its per-
formance to the previous method [18]. Finally, in Section 4,
we explain the application example that inspired this research.
Thereby, we particularly highlight the need to consider flexi-
ble parametric models whose specific estimators motivate fur-
ther evaluations of the new method. Finally, we close with a
discussion.

2 | Methods

2.1 | Competing Risk Models and Parameter
Estimation

Following Andersen et al. [3], we consider two independent
Markov processes

(
𝑋
(𝓁)
(𝑡)

)
𝑡≥0 (𝓁 = 1, 2) (1)

with state spaces {0, 1, . . . , 𝑘} to model the event histories as com-
peting risks for samples of two different populations 𝓁 = 1, 2.
The processes have possible transitions from state 0 to state 𝑗 ∈
{1, . . . , 𝑘} with transition probabilities

ℙ(𝓁)
0𝑗 (0, 𝑡) = ℙ

(
𝑋
(𝓁)
(𝑡) = 𝑗|𝑋(𝓁)

(0) = 0
)

(2)

Every individual starts in state 0 at time 0, that is, 𝑃(𝑋(0) = 0) =
1. The time-to-first-event is defined as stopping time 𝑇 = inf{𝑡 >
0|𝑋(𝑡) ≠ 0} and the type of the first event is 𝑋(𝑇) ∈ 1, . . . , 𝑘. The
event times can possibly be right-censored, so that only the cen-
soring time is known, but no transition to another state could be
observed. In general, we assume that censoring times 𝐶 are inde-
pendent of the event times 𝑇. Let

𝛼
(𝓁)
0𝑗 (𝑡) = lim

Δ𝑡→0

ℙ(𝓁)
0𝑗 (𝑡, 𝑡 + Δ𝑡)

Δ𝑡
(3)

denote the cause-specific transition intensity from state 0
to state 𝑗 for the 𝓁𝑡ℎ model. The transition intensities, also
known as cause-specific hazards, completely determine the
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stochastic behavior of the process. Specifically, ℙ(𝓁)
00 (0, 𝑡) =

exp
(
−
∑𝑘

𝑗=1∫
𝑡

0 𝛼
(𝓁)
0𝑗 (𝑢)du

)
= ℙ

(
𝑇
(𝓁) ≥ 𝑡

)
= 𝑆

(𝓁)
(𝑡) denotes the

marginal survival probability, that is the probability of not
experiencing any of the 𝑘 events prior to time point 𝑡.

We here consider parametric models for the intensities, that is
𝛼
(𝓁)
0𝑗 (𝑡) = 𝛼

(𝓁)
0𝑗

(
𝑡, 𝜃

(𝓁)
0𝑗

)
, where

𝜃
(𝓁)
0𝑗 =

(
𝜃
(𝓁)
0𝑗1, . . . , 𝜃

(𝓁)
0jp

𝑗

)⊤
(4)

denotes a 𝑝
𝑗
-dimensional parameter vector specifying the under-

lying distribution. Typical examples of parametric event-time
models are given by the exponential, the Weibull, the Gom-
pertz or the log-normal distribution, just to mention a few (see
e.g., Kalbfleisch and Prentice [24]). Except for the exponen-
tial distribution, the intensities vary over time, which makes
the estimation procedure more complex compared to the situa-
tion of constant intensities.For deriving the likelihood function
to obtain estimates 𝜃

(𝓁)
0𝑗 of the parameters in (4), we consider

possibly right-censored event times of individuals and assume
that two independent samples 𝑋

(1)
1 , . . . , 𝑋

(1)
𝑛1

and 𝑋
(2)
1 , . . . , 𝑋

(2)
𝑛2

from Markov processes (1) are observed over the interval
 = [0, 𝜏], each containing the state and transition time (or
the censoring time, respectively) of an individual 𝑖 in group
𝓁. Thus, we observe 𝑋

(𝓁)
𝑖

=

(
𝑇̃
(𝓁)
𝑖
, 𝑋

(𝓁)
(
𝑇̃
(𝓁)
𝑖

))
, where 𝑇̃

(𝓁)
𝑖

=

min
(
𝑇
(𝓁)
𝑖
, 𝐶

(𝓁)
𝑖

)
, 𝑖 = 1, . . . , 𝑛𝓁 . The total number of individuals is

given by 𝑛 ≔ 𝑛1 + 𝑛2.

Following Andersen, Abildstrom, and Rosthøj [1], in case of Type
I censoring, that is, a fixed end of the study given by 𝜏, each indi-
vidual 𝑖 contributes a factor to the likelihood function given by
𝑆(𝐶𝑖), whereas if there was a transition to state 𝑗 at time 𝑇

𝑖
the

factor would be 𝑆(𝑇𝑖)𝛼0𝑗
(
𝑇
𝑖
, 𝜃0𝑗

)
(group index 𝓁 omitted here).

Consequently the corresponding likelihood function in the 𝓁𝑡ℎ
group, based on 𝑛𝓁 independent observations, is given by the
product

𝓁

(
𝜃
(𝓁)
)
=

𝑛𝓁∏

𝑖=1
𝑆
(𝓁)
(
𝑇̃
(𝓁)
𝑖

) 𝑘∏

𝑗=1
𝛼
(𝓁)
0𝑗

(
𝑇̃
(𝓁)
𝑖
, 𝜃

(𝓁)
0𝑗

)𝐼
{
𝑋
(𝓁)
(
𝑇̃
(𝓁)
𝑖

)
=𝑗

}

(5)

where

𝜃
(𝓁)

=

((
𝜃
(𝓁)
01

)⊤
, . . . ,

(
𝜃
(𝓁)
0𝑘

)⊤)⊤

(6)

is the 𝑝 ≔
∑𝑘

𝑗=1𝑝𝑗-dimensional parameter vector specifying the
underlying distributions and hence the transition intensities
𝛼
(𝓁)
0𝑗 (𝑡). As 𝑇̃(𝓁)

𝑖
= 𝑇

(𝓁)
𝑖

, if individual 𝑖 had a transition to any of
the 𝑘 states, we get, taking the logarithm of (5),

log𝓁
(
𝜃
(𝓁)
)
=

𝑛𝓁∑

𝑖=1
log

(
𝑆
(𝓁)
(
𝑇̃
(𝓁)
𝑖

))

+

𝑛𝓁∑

𝑖=1

𝑘∑

𝑗=1
𝐼

{
𝑋
(𝓁)
(
𝑇
(𝓁)
𝑖

)
= 𝑗

}
log

(
𝛼
(𝓁)
0𝑗

(
𝑇
(𝓁)
𝑖
, 𝜃

(𝓁)
0𝑗

))

(7)
By maximizing the functions log1 and log2 in (7) we obtain
ML estimates 𝜃(1) and 𝜃(2), respectively.

In case of random right-censoring, we assume that the censor-
ing times 𝐶 follow a particular distribution with density 𝑔 =

𝑔(𝑡, 𝜓) and distribution function 𝐺 = 𝐺(𝑡, 𝜓), where 𝜓 denotes
the parameter specifying the censoring distribution. Technically,
assuming random right-censoring is incorporated in the like-
lihood as adding an additional state to the model. Precisely,
if an individual 𝑖 is censored at censoring time 𝐶

𝑖
, the con-

tribution to the likelihood is given by ℙ(𝑇̃𝑖 = 𝐶
𝑖
, 𝑋(𝑇̃𝑖) = 0) =

ℙ(𝑇̃𝑖 = 𝐶
𝑖
, 𝑇

𝑖
> 𝐶

𝑖) = 𝑆(𝐶𝑖) ⋅ 𝑔(𝐶𝑖) and thus the likelihood in (5)
is extended by an additional factor and, in group 𝓁, becomes

𝓁

(
𝜃
(𝓁)
, 𝜓

(𝓁)
)
=

𝑛𝓁∏

𝑖=1
𝑆
(𝓁)
(
𝑇̃
(𝓁)
𝑖

)
𝑔
(𝓁)
(
𝑇̃
(𝓁)
𝑖
, 𝜓

(𝓁)
)𝐼

{
𝑋
(𝓁)
(
𝑇̃
(𝓁)
𝑖

)
=0

}

𝑘∏

𝑗=1
𝛼
(𝓁)
0𝑗

(
𝑇̃
(𝓁)
𝑖
, 𝜃

(𝓁)
0𝑗

)𝐼
{
𝑋
(𝓁)
(
𝑇̃
(𝓁)
𝑖

)
=𝑗

} (8)

and, accordingly, the log-likelihood in (7) becomes

log𝓁
(
𝜃
(𝓁)
, 𝜓

(𝓁)
)
=

𝑛𝓁∑

𝑖=1
log

(
𝑆
(𝓁)
(
𝑇̃
(𝓁)
𝑖

))

+

𝑛𝓁∑

𝑖=1
𝐼

{
𝑋
(𝓁)
(
𝑇̃
(𝓁)
𝑖

)
= 0

}
log 𝑔(𝓁)

(
𝑇̃
(𝓁)
𝑖
, 𝜓

(𝓁)
)

+

𝑛𝓁∑

𝑖=1

𝑘∑

𝑗=1
𝐼

{
𝑋
(𝓁)
(
𝑇
(𝓁)
𝑖

)
= 𝑗

}
log

(
𝛼
(𝓁)
0𝑗

(
𝑇
(𝓁)
𝑖
, 𝜃

(𝓁)
0𝑗

))

(9)

2.2 | Similarity of Competing Risk Models

An intuitive way to define similar competing risk models is by
measuring the maximum distance between transition intensities
and decide for similarity if this distance is small. Note that, due
to an easier readability, we omit the dependency of the intensities
𝛼
(𝓁)
0𝑗 on the parameters 𝜃(𝓁)0𝑗 , 𝑗 = 1, . . . 𝑘, throughout the following

discussion. Therefore the hypotheses are given by

𝐻0 ∶ there exists an index 𝑗 ∈ {1, . . . , 𝑘}
such that ∥ 𝛼

(1)
0𝑗 − 𝛼

(2)
0𝑗 ∥

∞
≥ Δ

(10)

versus

𝐻1 ∶ for all 𝑗 ∈ {1, . . . , 𝑘} ∥ 𝛼
(1)
0𝑗 − 𝛼

(2)
0𝑗 ∥

∞
< Δ (11)

where Δ is a prespecified threshold and ∥ 𝑓 − 𝑔 ∥
∞
= sup

𝑡∈
∣

𝑓(𝑡) − 𝑔(𝑡) ∣ denotes the maximal deviation between the func-
tions 𝑓 and 𝑔.

Note that the formulation of the hypotheses differs from the “clas-
sical” hypotheses 𝐻0 ∶ max𝑘

𝑗=1 ∥ 𝛼
(1)
0𝑗 − 𝛼

(2)
0𝑗 ∥

∞
= 0 versus 𝐻1 ∶

max𝑘
𝑗=1 ∥ 𝛼

(1)
0𝑗 − 𝛼

(2)
0𝑗 ∥

∞ �= 0 and has two advantages. First, it is
very unlikely that all transition intensity functions 𝛼(1)0𝑗 and 𝛼

(2)
0𝑗

do exactly coincide. As they correspond to different groups the
difference may be very small but probably never exactly equal to
0. This point of view is in line with Tukey, who argued in his paper
[25] (in the context of multiple comparisons of means) that . . .
“All we know about the world teaches us that the effects of A and
B are always different—in some decimal place—for any A and B.
Thus asking “Are the effects different?” is foolish” . . . . Taking this
point of view it might be more reasonable, to ask if the transition
intensity functions do not deviate substantially. Second, defining
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the null hypothesis and alternative as in (10) and (11), respec-
tively, and not in the opposite way, allows to decide for similarity,
that is max𝑘

𝑗=1 ∥ 𝛼
(1)
0𝑗 − 𝛼

(2)
0𝑗 ∥

∞
< Δ, at a controlled Type I error.

This test problem can be addressed by two different types of test
procedures. If one is interested in comparing each pair of tran-
sition intensities 𝛼(1)0𝑗 (𝑡) and 𝛼

(2)
0𝑗 (𝑡), 𝑗 = 1, . . . , 𝑘, over the entire

interval [0,  ] individually, we propose to do a separate test for
each of these 𝑘 comparisons and to combine them via IUP [20]
as described in Binder et al. [18] This method has the advantage
that one can make inference about particular differences between
transitions and the threshold in (11) can be replaced by individ-
ually chosen thresholds Δ

𝑗
, 𝑗 = 1, . . . , 𝑘, for each single compar-

ison. However, if the threshold Δ is globally chosen, as stated in
(10) and (11), applying the same principle means that the sim-
ilarity of the jth transition intensities is assessed by testing the
individual hypothesis

𝐻
𝑗

0 ∶∥ 𝛼
(1)
0𝑗 − 𝛼

(2)
0𝑗 ∥

∞
≥ Δ (12)

versus
𝐻

𝑗

1 ∶∥ 𝛼
(1)
0𝑗 − 𝛼

(2)
0𝑗 ∥

∞
< Δ (13)

However, combining these individual tests to obtain a global test
decision results in a noticeable loss of power, which is a well
known consequence of tests based on the IUP [21]. Therefore,
if one is interested in claiming similarity of the whole competing
risks models rather than comparing particular transition intensi-
ties, another test procedure should be considered. This procedure
is based on re-formulating 𝐻1 in (11) to

𝐻1 ∶ max𝑘
𝑗=1 ∥ 𝛼

(1)
0𝑗 − 𝛼

(2)
0𝑗 ∥

∞
< Δ (14)

which gives rise to another test statistic. Based on this, the follow-
ing algorithm describes a much more powerful procedure for test-
ing the hypotheses (10) against (14). It is based on a constrained
parametric bootstrap generating data under the null hypothesis.
However, in contrast to testing a classical null hypothesis of
the form𝐻0 ∶ max𝑘

𝑗=1 ∥ 𝛼
(1)
0𝑗 − 𝛼

(2)
0𝑗 ∥

∞
= 0, which defines a single

point in the corresponding parameter space, the situation is more
complicated, as the hypothesis in (12) defines a manifold in the
parameter space. Therefore, there are several possibilities to gen-
erate data under the null hypothesis. In Algorithm 1, we generate
the data such that the bootstrap data satisfies (asymptotically) the
condition max𝑘

𝑗=1 ∥ 𝛼
(1)
0𝑗 − 𝛼

(2)
0𝑗 ∥

∞
= Δ, to increase the power.

ALGORITHM 1

1. For both samples, calculate the MLE 𝜃
(𝓁) and 𝜓(𝓁), 𝓁 = 1, 2,

by maximizing the log-likelihood given in (9), in order to
obtain the transition intensities 𝛼̂(1) and 𝛼̂

(2) with 𝛼̂
(𝓁)

=(
𝛼̂
(𝓁)
01 , . . . , 𝛼̂

(𝓁)
0𝑘

)
and the parameters 𝜓

(𝓁), 𝓁 = 1, 2, of the
underlying censoring distributions. Note that, in case of no
random censoring, it suffices to maximize the log-likelihood
in (7). From the estimates, calculate the corresponding test
statistic

𝑑 ≔ max𝑘
𝑗=1 ∥ 𝛼̂

(1)
0𝑗 − 𝛼̂

(2)
0𝑗 ∥

∞

2. In a second estimation step, we define constrained esti-
mates 𝜃

(1)
and 𝜃

(2)
of 𝜃(1) and 𝜃

(2), maximizing the sum
log1

(
𝜃
(1))

+ log2
(
𝜃
(2)) of the log-likelihood functions

defined in (7) under the additional constraint

max𝑘
𝑗=1 ∥ 𝛼

(1)
0𝑗 − 𝛼

(2)
0𝑗 ∥

∞
= Δ (15)

Further define

̂̂
𝜃

(𝓁)
=

{
𝜃
(𝓁) if 𝑑 ≥ Δ

𝜃
(𝓁)

if 𝑑 < Δ

, 𝓁 = 1, 2 (16)

where ̂̂
𝜃

(𝓁)
=

(
̂̂
𝜃

(𝓁)

01 , . . . ,
̂̂
𝜃

(𝓁)

0𝑘

)⊤

. From this, we obtain con-

strained estimates of the transition intensities ̂̂𝛼
(𝓁)

0𝑗 (𝑡) =

𝛼
(𝓁)
0𝑗

(
𝑡,
̂̂
𝜃

(𝓁)

0𝑗

)
, 𝑗 = 1, . . . , 𝑘, 𝓁 = 1, 2. Finally, note that this

constraint optimization does not affect the estimation of the
censoring distribution.

3. By using the constrained estimates ̂̂𝛼
(𝓁)

= ̂̂𝛼
(𝓁)
(𝑡) =(

̂̂𝛼
(𝓁)

01 (𝑡), . . . ,
̂̂𝛼
(𝓁)

0𝑘 (𝑡)
)

, simulate bootstrap event times

𝑇
∗(1)
1 , . . . , 𝑇

∗(1)
𝑛1

and 𝑇
∗(2)
1 , . . . , 𝑇

∗(2)
𝑛2

. Specifically we use the
simulation approach as described in Beyersmann et al.
[26], where at first for all individuals survival times are
simulated with all-cause hazard

∑𝑘

𝑗=1
̂̂𝛼
(𝓁)

0𝑗 (𝑡) as a function
of time and then a multinomial experiment is run for each
survival time 𝑇 which decides on state 𝑗 with probability
̂̂𝛼
(𝓁)

0𝑗 (𝑇)∕
∑𝑘

𝑗=1
̂̂𝛼
(𝓁)

0𝑗 (𝑇). In order to represent the censoring
adequately, we now use the parameters 𝜓(𝓁), 𝓁 = 1, 2 from
step (i) to additionally generate bootstrap censoring times
𝐶
∗(1)
1 , . . . , 𝐶

∗(1)
𝑛1

and 𝐶
∗(2)
1 , . . . , 𝐶

∗(2)
𝑛2

, according to a distribu-
tion with distribution function𝐺(1)(

𝑡, 𝜓
(1)) and𝐺(2)(

𝑡, 𝜓
(2)),

respectively. Finally, the bootstrap samples are obtained by
taking the minimum of these times in each case, that is
𝑇̃
∗(𝓁)
𝑖

= min
(
𝑇
∗(𝓁)
𝑖

, 𝐶
∗(𝓁)
𝑖

)
. Note that, in case of no random

but administrative censoring with a fixed end of the study
𝜏, we take 𝑇̃∗(𝓁)

𝑖
= min

(
𝑇
∗(𝓁)
𝑗

, 𝜏

)
, 𝑖 = 1, . . . , 𝑛𝓁 , 𝓁 = 1, 2.

For the datasets 𝑋
∗(1)
1 , . . . , 𝑋

∗(1)
𝑛1

and 𝑋
∗(2)
1 , . . . , 𝑋

∗(2)
𝑛2

, con-
sisting of the potentially censored event time and the sim-
ulated state of an individual, calculate the MLE 𝛼̂

∗(1) and
𝛼̂
∗(2) by maximizing (7) and the test statistic as in Step (i),

that is

𝑑
∗
≔ max𝑘

𝑗=1 ∥ 𝛼̂
∗(1)
0𝑗 − 𝛼̂

∗(2)
0𝑗 ∥

∞
(17)

4. Repeat Step (3) 𝐵 times to generate 𝐵 replicates of the
test statistic 𝑑

∗(1)
, . . . , 𝑑

∗(𝐵), yielding an estimate of the
𝛼-quantile of the distribution of the statistic 𝑑

∗, which is
denoted by 𝑞∗

𝛼
. Finally reject the null hypothesis in (10) if

𝑑 ≤ 𝑞
∗

𝛼
(18)

Alternatively, a test decision can be made based on the 𝑝

value

𝐹
𝐵
(𝑑) =

1
𝐵

𝐵∑

𝑖=1
𝐼

{
𝑑
∗(𝑖)
≤ 𝑑

}
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where 𝐹
𝐵

denotes the empirical distribution function of the
bootstrap sample. Finally, we reject the null hypothesis (10)
if 𝐹

𝐵
(𝑑) < 𝛼 for a prespecified significance level 𝛼.

Depending on the research question one could also want to con-
sider not the entire time range starting at 0 but at a particular
𝑡
∗
> 0, that is, replacing  = [0, 𝜏] by  = [𝑡

∗
, 𝜏] in all steps of

the test procedure of Algorithm 1. Further, the end of the obser-
vational period 𝜏 could also be replaced by an earlier time point
if the interest is more on earlier phases of the trial. These are
very small modifications which do not change any properties of
the test. The following result shows that Algorithm 1 defines a
valid statistical test for the hypotheses (10) and (14). The proof is
deferred to the Appendix.

Theorem 2.1. Assume that lim
𝑛1 ,𝑛2→∞

𝑛1𝑛2 = 𝑐 > 0 and that
Assumption A-D in Borgan [27] are satisfied. Further let

||𝑓||
∞,∞

≔ max
𝑗∈{1, . . . ,𝑘}

||𝑓
𝑗
(𝑡)||

∞
= max

𝑗∈{1, . . . ,𝑘}×
|𝑓

𝑗
(𝑡)|

denote the 𝓁∞-norm on the set of functions (𝑗, 𝑡) → 𝑓
𝑗
(𝑡) defined

on {1, . . . , 𝑘} × . Then the test defined by (18) is consistent and has
asymptotic level 𝛼 for the hypotheses (10) and (14). More precisely,

1. if the null hypothesis in (10) is satisfied, then we have for any
𝛼 ∈ (0,0.5)

lim sup
𝑛→∞

ℙ
(
𝑑 ≤ 𝑞

∗

𝛼

)
≤ 𝛼 (19)

2. if the null hypothesis in (10) is satisfied and the set

 =

{
(𝑗, 𝑡) ∈ {1, . . . , 𝑘} ×  ∶∣ 𝛼̂

(1)
0𝑗 (𝑡) − 𝛼̂

(2)
0𝑗 (𝑡) ∣=∥ 𝛼̂

(1)
− 𝛼̂

(2)
∥
∞,∞

}

(20)

consists of one point, then we have for any 𝛼 ∈ (0,0.5)

lim
𝑛→∞

ℙ
(
𝑑 ≤ 𝑞

∗

𝛼

)
=

{
0 if max𝑘

𝑗=1 ∥ 𝛼̂
(1)
0𝑗 − 𝛼̂

(2)
0𝑗 ∥

∞
> Δ

𝛼 if max𝑘
𝑗=1 ∥ 𝛼̂

(1)
0𝑗 − 𝛼̂

(2)
0𝑗 ∥

∞
= Δ

(21)

3. if the alternative in (14) is satisfied, then we have for any 𝛼 ∈

(0,0.5)

lim
𝑛→∞

ℙ
(
𝑑 ≤ 𝑞

∗

𝛼

)
= 1 (22)

Remark 1. An essential ingredient in our approach is the
threshold Δ, which defines similarity. Its choice has to be care-
fully discussed in each application. We can also determine a
threshold from the data which can serve as measure of evidence
for similarity with a controlled Type I error 𝛼.

To be precise, note that the bootstrap statistic in (17) depends onΔ
(because the data is generated under the constraint (15)). There-
fore we denote in this remark the statistic and corresponding
𝛼-quantile in (18) by 𝑑∗

Δ
and 𝑞∗

𝛼,Δ
, respectively. Note also that the

hypotheses in (10) and (11) are nested, in the sense that rejection
of the null for a particular threshold Δ1 > 0 implies also rejec-
tion for all Δ2 ≥ Δ1. It is now easy to see that this monotonicity
transfers to the bootstrap statistic in (17), that is 𝑑∗

Δ1
≤ 𝑑

∗

Δ2
. Con-

sequently, we obtain for the corresponding quantiles in (18) the
inequality 𝑞∗

𝛼,Δ1
≤ 𝑞

∗

𝛼,Δ2
, and rejecting the null hypothesis in (10)

by the test in Algorithm 1 for Δ = Δ0 also yields rejection of the
null for all Δ > Δ0.

Therefore, by the sequential rejection principle, we may simulta-
neously test the hypotheses in (10) for different Δ ≥ 0 starting at
Δ = 0 and increasing Δ to find the minimum value Δ̂

𝛼
for which

𝐻0 is rejected for the first time. This value could be interpreted
as a measure of evidence for similarity with a controlled Type I
error 𝛼.

3 | Simulation Study

The goals of the simulations are to validate the Type I error and
the power of the hypothesis test proposed in Algorithm 1, and
to compare its performance to the previously proposed individ-
ual method of Binder et al. [18] First, we present the simulation
design, including four different scenarios considered, each deter-
mined by the underlying data generating distributions of transi-
tion intensities. Second, we present the results, including simu-
lated Type I errors and power, for all four scenarios, assuming
different sample sizes and levels of censoring.

3.1 | Design

We assume two different settings for the distributions of the tran-
sition intensities, resulting in four different scenarios in total. All
scenarios are driven by the application example given in Section 4
and visualized in Figure 5. In Scenario 1 and Scenario 2, we
assume the event times to follow an exponential distribution,
that is, all transition intensities are assumed to be constant. This
setting is the same as already considered for the simulations in
Binder et al. [18] We denote the approach mentioned therein
by “Individual Method” throughout the rest of this paper, as it
is based on combining three individual tests, one for each state.
Consequently, in this setting all results from the two methods are
directly comparable. The parameters of the constant transition
intensities are given in Table 4 in Section 4, these are used for
Scenario 1, yielding

𝑑 = max3
𝑗=1 ∥ 𝛼

(1)
0𝑗 − 𝛼

(2)
0𝑗 ∥

∞
= max{0.0002,0.0006,0.0005} = 0.0006

for Scenario 1. For Scenario 2, we choose identical models,
that is 𝛼(1)01 = 𝛼

(2)
01 = 0.001, 𝛼

(1)
02 = 𝛼

(2)
02 = 0.0011 and 𝛼(1)03 = 𝛼

(2)
03 =

0.0004, respectively, resulting in a difference of 0 for all transi-
tion intensities and thus providing the possibility to simulate the
maximum power of the procedure.

For the second setting, that is, Scenario 3 and Scenario 4, respec-
tively, we assume a Gompertz distribution for the first two states
and a Weibull distribution for the third state, that is, the intensi-
ties of the first two states are given by

𝛼
(𝓁)
0𝑗

(
𝑡, 𝜃

(𝓁)
0𝑗

)
= 𝜃

(𝓁)
0𝑗1 ⋅ exp

(
𝜃
(𝓁)
0𝑗2 ⋅ 𝑡

)
, 𝑗 = 1, 2, 𝓁 = 1, 2 (23)

where 𝜃(𝓁)0𝑗1 denotes the scale and 𝜃(𝓁)0𝑗2 the shape parameter, respec-
tively, and the transition intensity for the third state is given by

𝛼
(𝓁)
03

(
𝑡, 𝜃

(𝓁)
03

)
=

𝜃
(𝓁)
032

𝜃
(𝓁)
031

⋅

(
𝑡

𝜃
(𝓁)
031

)𝜃
(𝓁)
032−1

, 𝓁 = 1, 2 (24)
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where 𝜃(𝓁)031 denotes the scale and 𝜃(𝓁)032 the shape parameter, respec-
tively. By assuming these two distributions, this scenario yields
a very accurate approximation to the actual data, see Figure 5
in Section 4. More precisely, modeling the transition intensities
by the Gompertz and the Weibull distribution, instead of assum-
ing constant intensities, provides a much better initial model fit,
resulting in a simulation setup with very realistic conditions with
regard to the real data example.

We choose the parameters given by the corresponding transition
intensities of the application example (see Table 4 in Section 4),
resulting in

𝑑 = max3
𝑗=1 ∥ 𝛼

(1)
0𝑗 − 𝛼

(2)
0𝑗 ∥

∞
= max{0.0003,0.0028,0.0004} = 0.0028

for Scenario 3. Similar to Scenario 2, we obtain Scenario 4 in this
setting by considering two identical models, such that 𝜃(2) = 𝜃

(1)

and consequently we have 𝑑 = 0 in this case. Of note, Scenario 2
and Scenario 4 can only be used to simulate the power of the test.

In order to simulate the Type I error and the power of the pro-
cedure described in Algorithm 1, we consider different similarity
thresholds Δ. When simulating Type I errors, we assume Δ = 𝑑

in both scenarios considered, which reflects the situation at the
margin of the null hypothesis. Therefore, we simulate the maxi-
mum Type I error. The other values of Δ are chosen so that the
differences in simulated power are as clear as possible. Table 1
gives an overview of the simulation scenarios.

Based on the application example, where 𝑛1 = 213 and
𝑛2 = 482 patients are observed in the first and second group,
we consider a range of different sample sizes, that is, 𝑛 =

(𝑛1, 𝑛2) = (200,200), (250,300), (300,300), (250,450), (300,500),
and (500,500). Also driven by the application example, we
assume administrative censoring with a given follow-up period
of 90 days. Consequently, we consider two competing risk mod-
els, each with 𝑗 = 3 states over the time range  = [0, 90]. If
there is no transition to one of the three states, an individual is
administratively censored at these 90 days.

To additionally investigate the effect of different types of cen-
soring we consider a second setting replacing the administra-
tive censoring by random right-censoring, where censoring times
are generated according to an exponential distribution. Here, the
observed time for an individual is given by the minimum of the
simulated censoring time and the event time, respectively. By
varying the rate parameter of the exponential distribution, we are

able to investigate the effect of different amounts of censoring.
Precisely, we consider different rate parameters between 0.0002
and 0.01, resulting in approximately 16% up to 85% of the indi-
viduals being censored (details for the particular scenarios are
given when discussing the results in Section 3.2). For the sake
of brevity, when investigating the effect of random censoring,
we restrict ourselves to Scenarios 1 and 3 respectively, and three
different sample sizes, that is 𝑛 = (𝑛1, 𝑛2) = (200,200), (300,300),
and (500,500).

The data in all simulations is generated according to the
algorithm described in Beyersmann et al. [26] All simulations
have been run using R Version 4.3.0. The total number of sim-
ulation runs is 𝑁 = 1000 for each configuration and due to com-
putational reasons the test is performed using 𝐵 = 250 bootstrap
repetitions. The computation time using an Intel Core i7 CPU
with 32 GB RAM for one particular dataset with 𝐵 = 250 boot-
strap repetitions is approximately 10 s for Scenarios 1 and 2 and
varies between 3 min and 11 min for Scenarios 3 and 4, depending
on the sample size under consideration.

3.2 | Results

3.2.1 | Scenario 1

When simulating Type I errors, we assume Δ = 𝑑 in both
scenarios under consideration, reflecting the situation on the
margin of the null hypothesis. Thus, in Scenario 1, we set
Δ = 0.0006.

First, we consider administrative censoring as described above,
that is, a fixed end point of the study at 𝜏 = 90 days. The first row
of Figure 1 displays the Type I error rates of the procedure pro-
posed in Algorithm 1 in dependence of the sample size, directly
compared to the ones derived by the “Individual method” pre-
sented in Binder et al. [18] (see also Section 2.2). We observe
that Type I errors are much closer to the desired level of 𝛼 =

0.05, whereas they are practically 0 for the individual method,
where the latter is a direct consequence of the construction
based on the IUP, see Section 2.2. The still rather conservative
behavior of the test can be explained theoretically: according to
Theorem 2.1, we expect Type I errors to be smaller than𝛼, as tran-
sition intensities are constant and consequently their differences
are constant functions as well, meaning that the set of points
maximizing these functions each consists of the entire time
range  .

TABLE 1 | Chosen distributions of the simulation scenarios, the resulting maximum distance between transition intensities 𝑑 and the similarity
thresholds Δ under consideration.

Distribution

State 1 State 2 State 3 d Thresholds 𝚫

Scen. 1 Exp. Exp. Exp. 0.0006 0.0006, 0.001, 0.0015
Scen. 2 Exp. Exp. Exp. 0 0.001, 0.0015
Scen. 3 Gompertz Gompertz Weibull 0.0028 0.002, 0.0028, 0.004, 0.005, 0.007, 0.01
Scen. 4 Gompertz Gompertz Weibull 0 0.004, 0.005, 0.007, 0.01

Note: Numbers in bold correspond to simulations of Type I errors. As 𝑑 = 0 in Scenario 2 and Scenario 4, respectively, we only simulate the power there
(Exp.=Exponential).
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FIGURE 1 | Scenario 1: Proportion of rejections in dependence of the sample size for the new method and the individual method [18]. The three
rows display different choices of Δ, that is Δ = 0.0006 corresponding to the null hypothesis in the top row, Δ = 0.001 in the middle and Δ = 0.0015 in
the bottom row, where the latter two correspond to the situation under alternative. The dashed line in the first row indicates the nominal level chosen
as 𝛼 = 0.05.

For the power simulations, we chose two different thresholds in
order to also show the relationship between power and the choice
of the threshold. As in Binder et al. [18], we chose Δ = 0.001 and
Δ = 0.0015, respectively, but in general all choices of Δ larger
than 𝑑 = 0.0006 would reflect a scenario under the alternative
(14). The second and third row of Figure 1 visualize the power for
both procedures, for Δ = 0.001 and Δ = 0.0015, respectively. For
the latter the difference between the two methods is rather small
and only visible for small sample sizes. However, forΔ = 0.001 we
clearly observe that the power of the new method is higher than
the power of the individual method, for all sample sizes under
consideration, but in particular for smaller sample sizes.

Regarding the effect of random right censoring, Table 2 dis-
plays the results for the simulated Type I error and the power

considering different amounts of censoring. Precisely, we con-
sider censoring rates between 0.001 and 0.1, resulting in approx-
imately 22% − 80% of the individuals being censored. The first
column corresponds to the null hypothesis (10), whereas the last
two columns present the power of the procedures for the two
different thresholds Δ = 0.001 and Δ = 0.0015, respectively. The
numbers in brackets correspond to the results from the individ-
ual procedure [18] for an easier comparability. It turns out that,
in contrast to administrative censoring, the new method suffers
from some Type I error inflation for low sample sizes if censoring
rates become large. For example, for 𝑛1 = 𝑛2 = 200 and a censor-
ing rate of 77%, we observe a Type I error of 0.220, but this sce-
nario means that on average there are only 46 patients per group
where a transition to one of the three states is observed, which
explains the overly liberal behavior of the test. The opposite holds
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TABLE 2 | Scenario 1: Simulated level (Column 4) and power (Columns 5–6) of the new method, that is, the test described in Algorithm 1, consid-
ering different sample sizes, censoring rates and thresholds Δ.

(𝒏1, 𝒏2) Censoring rate Censored (%) 𝚫 = 0.0006 𝚫 = 0.001 𝚫 = 0.0015

(200200) 0.001 25 0.037 (0.000) 0.534 (0.476) 0.964 (0.852)
0.002 40 0.042 (0.000) 0.410 (0.363) 0.916 (0.752)
0.003 50 0.053 (0.000) 0.373 (0.313) 0.807 (0.656)
0.005 63 0.107 (0.000) 0.326 (0.226) 0.772 (0.480)
0.01 77 0.220 (0.000) 0.290 (0.076) 0.535 (0.209)

(300300) 0.001 25 0.045 (0.001) 0.694 (0.618) 0.990 (0.966)
0.002 40 0.060 (0.000) 0.587 (0.553) 0.965 (0.932)
0.003 50 0.056 (0.000) 0.504 (0.470) 0.902 (0.853)
0.005 63 0.083 (0.001) 0.359 (0.356) 0.772 (0.758)
0.01 77 0.161 (0.000) 0.307 (0.183) 0.562 (0.452)

(500500) 0.001 25 0.050 (0.001) 0.847 (0.831) 1.000 (1.000)
0.002 40 0.057 (0.000) 0.791 (0.751) 0.987 (0.985)
0.003 50 0.052 (0.000) 0.685 (0.682) 0.967 (0.976)
0.005 63 0.060 (0.000) 0.545 (0.583) 0.887 (0.922)
0.01 77 0.119 (0.000) 0.371 (0.333) 0.664 (0.772)

Note: The numbers in brackets correspond to the results from the individual procedure. The nominal level is chosen as 𝛼 = 0.05. The third column displays the mean
proportions of censored individuals.

for the individual procedure which is extremely conservative, as
the simulated level is practically zero in all configurations. This
Type I error inflation disappears for increasing sample sizes. For
instance, considering 𝑛1 = 𝑛2 = 500 all simulated Type I errors
are below 0.06, except for a censoring rate of 0.01, corresponding
to approximately 80% of the individuals being censored. Hence
we conclude that Type I errors still converge to the desired level
of 𝛼 = 0.05 with increasing sample sizes.

Regarding the power we observe a substantial improvement with
the new method for almost all configurations, particularly in case
of small sample sizes and large censoring rates, for example,
achieving now a simulated power of 0.290 instead of 0.076 for
𝑛1 = 𝑛2 = 200 and a censoring rate of 0.01. If sample sizes are
large, the results of both procedures are qualitatively the same
which is in line with the asymptotic theory stated in Binder et al.
[18] and in Theorem 2.1 of this paper.

3.2.2 | Scenario 2

We still assume constant intensities for all transitions, but choose
two identical models, that is 𝜃(2) = 𝜃

(1), resulting in 𝑑 = 0. Con-
sequently, we now simulate the maximum power of the test.
Figure 2a displays a direct comparison of the method proposed
in Algorithm 1 and the individual method. We observe that
for the smaller similarity threshold of Δ = 0.001 the power of
the new method is higher for all sample sizes under consid-
eration. Of note, this effect is much more visible for smaller
sample sizes. For instance, considering 𝑛1 = 𝑛2 = 200 the power
is given by 0.652 for the new method and 0.415 for the indi-
vidual method, respectively, whereas almost identical values
(0.982 and 0.987, resp.) are observed for the largest sample size
of 𝑛1 = 𝑛2 = 500. Considering Δ = 0.0015, the same conclusion
can be drawn for larger similarity thresholds, as all values of

the simulated power are qualitatively the same across the two
methods.

3.2.3 | Scenario 3

For simulating the Type I error in Scenario 3, we consider
Δ = 0.002 and Δ = 0.0028, the latter again reflecting the sit-
uation of being on the margin of the null hypothesis. Note
that for this choice of parameters for each of the three differ-
ence curves 𝛼

(1)
0𝑗 (𝑡) − 𝛼

(2)
0𝑗 (𝑡), 𝑗 = 1,2,3, the maximum over the

time range  is attained at one single point. Consequently,
the set  defined in Theorem 2.1 consists of this one point,
meaning that this simulation scenario reflects the situation
in (19).

Again, these theoretic findings are supported by the simulation
results, which are displayed in Table 3. Precisely, we observe
that Type I error rates converge to the desired level of 𝛼 = 0.05
with increasing sample sizes. For instance, considering the sce-
nario which is the closest to the application example, that is,
(𝑛1, 𝑛2) = (250,400) the simulated Type I error is given by 0.059.
However, we observe a slight Type I error inflation for the smaller
samples under consideration, that is up to 300 patients per group.
For example, the highest observed Type I error is given by 0.110,
attained for sample sizes of 𝑛1 = 𝑛2 = 200. Of note, for this con-
figuration the number of expected transitions is only 36 for group
1 and 46 for group 2, respectively, due to the high amount of
censoring (see also Section 4). The power increases with increas-
ing sample sizes. We note that the threshold should not be
too small, as the power is not very satisfying in this case. For
instance, we observe a power of 0.2 for a medium sample size of
𝑛1 = 𝑛2 = 300 and a very small threshold of Δ = 0.004, whereas
it almost doubles for Δ = 0.005 and finally approximates 1
for Δ = 0.01.
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FIGURE 2 | (a) Scenario 2, constant intensities, 𝑑 = 0: Power of the new method and the individual method [18] in dependence of the sample size
for different similarity thresholds. (b) Scenario 4, Gompertz and Weibull distributed intensities, 𝑑 = 0: Power of the new method in dependence of the
sample size for different similarity thresholds. As Scenario 2 and Scenario 4 assume different underlying distributions, different similarity thresholds
are considered for a meaningful analysis.

TABLE 3 | Scenario 3: Simulated level (Column 2) and power (Columns 3–6) of the new method, that is, the test described in Algorithm 1, consid-
ering different sample sizes and thresholds Δ. The nominal level is chosen as 𝛼 = 0.05.

(𝒏1, 𝒏2) 𝚫 = 0.0028 𝚫 = 0.004 𝚫 = 0.005 𝚫 = 0.007 𝚫 = 0.01

(200200) 0.110 0.198 0.316 0.602 0.920
(250300) 0.094 0.194 0.366 0.742 0.978
(300300) 0.080 0.200 0.367 0.756 0.982
(250450) 0.068 0.208 0.426 0.860 0.996
(300500) 0.060 0.196 0.463 0.900 0.996
(500500) 0.055 0.233 0.528 0.920 1.000

Finally, Figure 3 displays the results for the simulated Type I
error and the power considering different amounts of random
right censoring for a fixed sample size of 𝑛1 = 𝑛2 = 500. Censor-
ing rates are chosen as 0.0002, 0.001, 0.002, and 0.005, resulting in
mean proportions of censored individuals ranging from approx-
imately 16% up to 80%. We observe that even for high censoring
rates the power is reasonably high and, moreover, higher than in
case of administrative censoring at the end of the study. However,
this comes at the cost of a slightly inflated Type I error, which
attains its maximum of 0.091 for the highest censoring rate of
0.005. When considering administrative censoring, which results
in very similar proportions of censored individuals, the corre-
sponding Type I error is given by 0.055, demonstrating that for
this type of censoring the problem of Type I error inflation does
not occur.

3.2.4 | Scenario 4

We now consider two identical models as in Scenario 2, but we
assume a Gompertz distribution for the first two states and a

Weibull distribution for the third one, respectively. All other con-
figurations remain as described in Scenario 3. Consequently, we
thereby simulate the maximum power, as 𝑑 = 0. Figure 2b dis-
plays the power of the test in dependence of the sample size for
different similarity thresholds Δ. We note that the power is rea-
sonably high and above 0.8 for all configurations except for the
combination of the smallest threshold and the smallest sample
size.

4 | Application Example: Healthcare Pathways
of Prostate Cancer Patients Involving Surgery

In our application example, we examine coding data from rou-
tine inpatient care of prostate cancer patients at the Depart-
ment of Urology at the Medical Center—University of Freiburg,
which was systematically processed as part of the German Med-
ical Informatics Initiative. For each inpatient case, the main
and secondary diagnoses are coded in the form of ICD10 codes
(10th revision of the International Statistical Classification of Dis-
eases and Related Health Problems); in addition, all applied and
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billing-relevant diagnostic and therapeutic procedures are coded
together with a time stamp in the form of OPS codes (operation
and procedure codes).

Specifically, we consider cases that have undergone open surgery
with resection of the prostate including the vesicular glands, also
known as open radical prostatectomy (ORP). We retrospectively
identified all patients with prostate cancer who underwent ORP
at the Department of Urology, University of Freiburg, between
January 1, 2015 and February 1, 2021. This resulted in a total of
n= 695 patients. The current diagnostic standard before such a
surgical procedure is a magnetic resonance imaging-based exam-
ination with targeted fusion biopsy (FB). In our data, n= 213
(31%) patients received an FB diagnosis prior to ORP, while a
larger proportion of patients, n= 482 (69%), did not receive an
FB diagnosis in the Department of Urology prior to ORP.

In the healthcare pathway after ORP, in some cases there are
hospital readmissions due to competing causes, which can be
attributed to the surgery in the period of typically 90 days after
surgery. The question now is whether these pathways are simi-
lar irrespective of the type of prior diagnosis. Therefore, we dis-
tinguish two populations, 𝓁 = 1, 2, based on the FB diagnosis
obtained prior to surgery and aim to investigate the similarity of
subsequent pathways using the two independent competing risk
models, as shown in Figure 4, where the 𝛼

(𝓁)
0𝑗 (𝑡), 𝑗 = 1,2,3,𝓁 =

1, 2, describe the transition intensities to the different possible

states in the model (see (3)). In the data, the following hospi-
tal readmissions occurred over time within 90 days after surgery:
Lymphocele (ICD10:I89.9; Model 1: n= 17, 8%; Model 2: n= 29,
6%), malignant neoplasm of the prostate (ICD10:C61, Model 1:
n= 18, 8%; Model 2: n= 60, 12%), or “any other diagnosis” (Model
1: n= 6, 3%; Model 2: n= 31, 6%). We administratively censor
follow-up at 90 days after ORP.

To understand the dynamics and magnitude of the different risks
and to identify a suitable parametric distribution, we estimate the
cumulative transition intensities in both models nonparametri-
cally using the Nelson–Aalen estimator [28]. In addition, we fit
an exponential, Weibull, and Gompertz model to the data. The
estimates are shown in Figure 5. For the first and second com-
peting risks states in both models, the estimates indicate a clear
nonconstant accumulated risk, and specifically the Gompertz
distribution captures the time dynamics in all cumulative intensi-
ties best (as compared with the nonparametric estimates). For the
third state, a Weibull fit seems to be equally suitable as a fit from
the Gompertz model, even the assumption of constant intensities
seems to be met. As overall only few events were observed per
state, the magnitude of the transitions intensities is low, and cor-
respondingly the uncertainty of estimates relatively high. This is
also reflected in the estimates of the parameters of the transitions
intensities (see Table 4).

For investigating the similarity of the two competing risk mod-
els using Algorithm 1, we assume two different settings of event
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transitions between the states that are investigated. The 𝛼(𝓁)0𝑗 (𝑡), 𝑗 = 1,2,3, 𝓁 = 1, 2 mark the transition intensities as functions of time (see Equation 3).
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TABLE 4 | Estimates of the parameters 𝜃(𝓁)0𝑗 (4) of potential event time distributions for the three transition intensities from competing risks Model
1 and competing risks Model 2 in the application example.

Model 1 Model 2

𝜽
(1)
01 𝜽

(1)
02 𝜽

(1)
03 𝜽

(2)
01 𝜽

(2)
02 𝜽

(2)
03

Exponential 0.001 0.0011 0.004 0.0008 0.0017 0.0009
Gompertz 0.002, −0.016 0.003, −0.036 0.0002, 0.003 0.002, −0.018 0.006, −0.043 0.0007, −0.003
Weibull −0.112, 1304.5 −0.38, 3098.3 0.097, 2894.8 −0.12, 1729.8 −0.404, 1595.9 0.108, 1242.1

Note: For Gompertz and Weibull, the first value corresponds to the scale and the second value to the shape parameter (following 23 and 24). Numbers in bold are used in the
simulation study.
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FIGURE 6 | (a) p Values of the test described in Algorithm 1 (new method, solid line) compared with the individual method [18] (dashed line) for
the application example assuming constant intensities, in dependence of the threshold Δ. (b) p Values of the test described in Algorithm 1 assuming a
Gompertz/Weibull model in dependence of the threshold Δ. The horizontal line indicates a p value of 0.05, the vertical line indicates the test statistic 𝑑.

time distributions and various similarity thresholds Δ, ranging
from 0.0005 to 0.0015. Subsequently, when assuming constant
intensities, we will compare the results of this analysis with the
results obtained by the individual method [18]. As described
in Remark 1, by determining the minimum threshold Δ in a
data-adaptive manner, this Δ serves as a measure of evidence for
similarity with a controlled Type I error 𝛼. Figure 6 displays the
results of the tests in dependence of the similarity threshold Δ,
and we can read from the Figure which Δ it is at which we can
first reject the null hypothesis. The p values for the individual
method are obtained by the maximum of the p values of the three
individual tests, as this is the necessary condition to conclude
similarity of the competing risk models [18]. Figure 6a directly
yields a comparison of the two methods. As expected, the p val-
ues of the test proposed in Algorithm 1 are overall similar, but
slightly smaller than the ones from the individual method, due
to the generally lower power of the latter. Consequently, accord-
ing to the new method, the null hypothesis can be rejected for
a minimal threshold of Δ = 0.0011. This means that for at least
this threshold similarity of both patient populations regarding all
their transition intensities in the model can be claimed. The p val-
ues in Figure 6b correspond to the more realistic setting of fitting

Weibull/Gompertz distributions. We observe that the threshold
has to be at least Δ = 0.005 such that the null hypothesis can be
rejected and similarity of both groups can be claimed. Of note, as
the difference of the curves lies on another scale as when assum-
ing constant intensities, these results cannot be compared with
the p values displayed in Figure 6a.

5 | Discussion

In this work, we have addressed the question of whether two
competing risk models can be considered similar, specifically
in situations with fairly small numbers of transitions. Building
on the foundation laid by Binder et al. [18], we have extended
the approach in two innovative ways. First, we have success-
fully overcome the previous restriction to constant intensities.
Although we have concentrated in the illustrations of Sections 3
and 4 on the exponential, Weibull and Gompertz model, our
refined method introduces a framework that can incorporate
arbitrary parametric regression models for the transition inten-
sities as considered, for example, in Liu, Pawitan, and Clements
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[29]. This advance not only allows for a more nuanced model-
ing of transition intensities, but also leads to a more robust and
effective testing procedure. Second, we introduced a novel test
statistic: the maximum of all maximum distances between tran-
sition intensities. This replaces the earlier method of aggregating
individual state tests using the IUP. Through comprehensive sim-
ulation studies, we demonstrated the superior power of this new
procedure.

While our approach introduces a unified similarity threshold Δ,
replacing the need for multiple individual thresholds Δ

𝑗
, 𝑗 =

1, . . . , 𝑘, this does come with a trade-off. The loss of detailed
information in individual state comparisons is a consideration,
but this is balanced by the increased overall power of the test.
For those seeking detailed comparisons, individual tests should
still be considered. However, for a broader assessment of the sim-
ilarity between two competing risk models, our new approach
is clearly superior. Choosing a global threshold Δ is a necessity
of the construction of the test statistic, which now bundles the
maximum distances of all transition intensities into one single
value 𝑑 via taking their maximum instead of performing indi-
vidual tests for each state. An area for future exploration is the
challenge of interpreting differences between transition intensi-
ties and establishing a meaningful similarity threshold. A poten-
tial solution could be to develop a test statistic based on ratios,
allowing for more universally applicable thresholds, such as a
permissible deviation of 10%. This would simplify the process,
accommodating ratios within the range of 0.9 − 1.1, regardless of
the absolute intensity values. For example, such an approach is
common in bioequivalence trials, where the threshold is set to
log 1.25, which results from allowing a deviation of ± 20% and a
log-transformation of the exposure parameters [30].

Since the proposed approach relies on the correct specification
of the underlying models, we investigated the robustness by fur-
ther simulations under different levels of misspecification, again
based on the underlying application example. We conclude that,
depending on the degree of misspecification of the models, for
small to moderate sample sizes both mild Type I error inflation
and conservative behavior with loss of power can be observed.
However, we find that for moderate levels of misspecification,
the simulated values are very close to those obtained from cor-
rectly specified models. The detailed results can be found in
the Supporting Information. We further note that the simulation
study focuses on situations with relatively small numbers of cases
and very few transitions, and it could be argued that the proposed
test procedure is less useful when much larger amounts of data
are available. However, the availability of large amounts of data
is of limited use in longitudinal analyses with multiple poten-
tial transitions, which can be understood as a concatenation of
numerous competing risks models. Even if we have a very large
patient population to start with, in routine clinical practice with
a wide range of therapeutic options and clinical courses we have
pathways that quickly become very branched, heterogeneous and
small in frequency. Therefore, such similarity tests, even if they
do not initially appear relevant for large amounts of data, can
actually get very relevant for large amounts of data, especially for
questions relating to pathway similarity.

We conclude mentioning further interesting directions for future
research. One is the use of nonparametric methods for the esti-
mation transition intensities [31, 32]. However, a nonparametric
approach for testing the hypotheses (10) versus (11) requires the
asymptotic distribution of statistics of the form ∥ 𝛼̂

(1)
0𝑗 − 𝛼̂

(2)
0𝑗 ∥

∞

− ∥ 𝛼
(1)
0𝑗 − 𝛼

(2)
0𝑗 ∥

∞
(here 𝛼̂(1)0𝑗 and 𝛼̂

(2)
0𝑗 denote the nonparametric

estimates), which is not known up to now. For a first step in
this direction, indicating the mathematical difficulties of such an
approach in the context of nonparametric regression we refer to
Bücher, Dette, and Heinrichs [33].

Another challenging question is the extension of our approach to
other target parameters such as transition or occupation probabil-
ities. To illustrate the difficulties, consider, for example, the case,
where all transition intensities are constant, that is 𝛼(𝓁)0𝑗 (𝑡) = 𝜃

(𝓁)
0𝑗 .

In this case, we can calculate the transition probabilities from the
transition intensities using the matrix exponential of the transi-
tion rate matrix and can consider the hypothesis:

𝐻0 ∶ 𝑑
ℙ
∞
= max

𝑗=1, . . . ,𝑘
max
𝑡∈[0,𝜏]

∣ ℙ(1)
0𝑗 (0, 𝑡) − ℙ(2)

0𝑗 (0, 𝑡) ∣≥ Δ

In the same way (using the matrix exponential of the estimated
transition rate matrix), we obtain an estimator 𝑑ℙ

∞
of 𝑑ℙ

∞
. How-

ever, in order to implement the constrained bootstrap approach
we would have to generate data under the constraint 𝑑ℙ

∞
= Δ

which cannot be directly translated into a constraint regarding
the parameters of the transition intensities.
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Appendix

Proof of Theorem 2.1. Recall the definition of the vector of parameters
𝜃
(𝓁)

∈ ℝ𝑝 in (6) (𝓁 = 1, 2) and define 𝜃 =
((
𝜃
(1))⊤(

𝜃
(2))⊤

)⊤
∈ ℝ2𝑝 as the

vector of all parameters in the two competing risk models. Furthermore

denote by 𝜃(𝓁)0𝑗 , 𝜃(𝓁) and 𝜃 =
((

𝜃
(1)
)⊤(

𝜃
(2)
)⊤)⊤

the corresponding maxi-

mum likelihood estimators defined by maximizing (5) (or equivalently 7)
and define by

𝛼̂
(𝓁)
0𝑗 (𝑡) = 𝛼̂

(𝓁)
0𝑗

(
𝑡, 𝜃

(𝓁)
0𝑗

)
(A1)

the corresponding estimators of the transition intensity functions (note
that for 𝑗 = 1, . . . , 𝑘, 𝓁 = 1, 2 (A1) defines a 2𝑘-dimensional vector of
functions defined on the interval  = [0, 𝜏]). Then, by Theorem 2 in Bor-
gan [27] it follows that

√
𝑛(𝜃 − 𝜃) converges weakly to a multivariate

normal distribution with mean vector 0 and a block diagonal covariance
matrix. We now interpret the vectors as stochastic processes on the finite
set = {1, . . . , 𝑘} × {1, 2} and rewrite this weak convergence as

{√
𝑛

(
𝜃
(𝓁)
0𝑗 − 𝜃

(𝓁)
0𝑗

)}

(𝑗,𝓁)∈
⇝ {𝔻(𝑗,𝓁)}

(𝑗,𝓁)∈ (A2)

Therefore, an application of the continuous mapping theorem (see, e.g.,
van der Vaart [34]) implies the weak convergence of the process

{√
𝑛

((
𝛼
(1)
0𝑗

(
𝑡, 𝜃

(1)
0𝑗

)
− 𝛼

(1)
0𝑗

(
𝑡, 𝜃

(1)
0𝑗

))
−

(
𝛼
(2)
0𝑗

(
𝑡, 𝜃

(2)
0𝑗

)
− 𝛼

(2)
0𝑗

(
𝑡, 𝜃

(2)
0𝑗

)))}

(𝑗,𝑡)∈

⇝ {𝔾(𝑗, 𝑡)}
(𝑗,𝑡)∈

(A3)
in 𝓁∞(), where  = {1, . . . , 𝑘} ×  and {𝔾(𝑗, 𝑡)}

(𝑗,𝑡)∈
is a centered

Gaussian process on  . Note that this is the analog of the equation (A.7)
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in Dette et al. [19], and it follows by similar arguments as stated in this
paper that

√
𝑛

(
∥ 𝛼̂

(1)
− 𝛼̂

(2)
∥
∞,∞

− ∥ 𝛼
(1)

− 𝛼̂
(2)

∥
∞,∞

)

→ max
{

max
(𝑗,𝑡)∈

+

𝔾(𝑗, 𝑡), max
(𝑗,𝑡)∈

−
− 𝔾(𝑗, 𝑡)

} (A4)

where the vectors 𝛼̂
(𝓁) and 𝛼̂

(𝓁) are defined by 𝛼̂
(𝓁)
(𝑡) =

(𝛼̂
(𝓁)
0𝑗

(
𝑡, 𝜃

(𝓁)
0𝑗

)

𝑗∈{1, . . . ,𝑘}
and 𝛼

(𝓁)
(𝑡) = (𝛼

(𝓁)
0𝑗

(
𝑡, 𝜃

(𝓁)
0𝑗

)

𝑗∈{1, . . . ,𝑘}
, respectively,

and


±
=

{
(𝑗, 𝑡) ∈ {1, . . . , 𝑘} ×  ∶ 𝛼̂

(1)
0𝑗 (𝑡) − 𝛼̂

(2)
0𝑗 (𝑡) = ± ∥ 𝛼̂

(1)
− 𝛼̂

(2)
∥
∞,∞

}

Note that − ∪ + =  , where  is defined in (20), and that (A4)
is the analog of Theorem 3 in Dette et al. [19] Similarly, we obtain
the weak convergence of the bootstrap process and the corresponding
statistic, that is

{√
𝑛

((
𝛼
(1)
0𝑗

(
𝑡, 𝜃

∗(1)
0𝑗

)
− 𝛼

(1)
0𝑗

(
𝑡,
̂̂
𝜃

(1)
0𝑗

))
−

(
𝛼
(2)
0𝑗

(
𝑡, 𝜃

∗(2)
0𝑗

)
− 𝛼

(2)
0𝑗

(
𝑡,
̂̂
𝜃

(2)
0𝑗

)))}

(𝑗,𝑡)∈

⇝ {𝔾(𝑗, 𝑡)}(𝑗,𝑡)∈
(A5)

and √
𝑛

(
∥ 𝛼̂

∗(1)
− 𝛼̂

∗(2)
∥
∞,∞

− ∥ 𝛼̂
(1)
− 𝛼̂

(2)
∥
∞,∞

)

→ max
{

max
(𝑗,𝑡)∈

+

𝔾(𝑗, 𝑡), max
(𝑗,𝑡)∈

−
− 𝔾(𝑗, 𝑡)

}

conditionally on 𝑋(1)
1 , . . . , 𝑋

(1)
𝑛1
, 𝑋

(2)
1 , . . . , 𝑋

(2)
𝑛2

, where 𝛼̂∗(𝓁) is the bootstrap

version of 𝛼̂(𝓁) and ̂̂𝛼
(𝓁)

is obtained by the constrained estimates ̂̂
𝜃

(𝓁)

0𝑗 ,

that is, ̂̂𝛼
(𝓁)

0𝑗 (𝑡) = 𝛼
(𝓁)
0𝑗

(
𝑡,
̂̂
𝜃

(𝓁)

0𝑗

)
, 𝑗 = 1, . . . , 𝑘, 𝓁 = 1, 2, see also Algorithm

1. This is the analog of statement (A.25) in Dette et al. [19]. Now the state-
ments (A.7) and (A.25) and their Theorem 3 are the main ingredients for
the proof of Theorem 4 in Dette et al. [19]. In the present context, these
statements can be replaced by (A3), (A5), and (A4), respectively, and a
careful inspection of the arguments given in Dette et al. [19] proves the
claim of Theorem 2.1.◽
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