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ABSTRACT
There are limited options to estimate the treatment effects of variables which are continuous and measured at multiple time points,
particularly if the true dose–response curve should be estimated as closely as possible. However, these situations may be of rel-
evance: in pharmacology, one may be interested in how outcomes of people living with—and treated for—HIV, such as viral
failure, would vary for time-varying interventions such as different drug concentration trajectories. A challenge for doing causal
inference with continuous interventions is that the positivity assumption is typically violated. To address positivity violations, we
develop projection functions, which reweigh and redefine the estimand of interest based on functions of the conditional support
for the respective interventions. With these functions, we obtain the desired dose–response curve in areas of enough support, and
otherwise a meaningful estimand that does not require the positivity assumption. We develop 𝑔-computation type plug-in esti-
mators for this case. Those are contrasted with g-computation estimators which are applied to continuous interventions without
specifically addressing positivity violations, which we propose to be presented with diagnostics. The ideas are illustrated with lon-
gitudinal data from HIV positive children treated with an efavirenz-based regimen as part of the CHAPAS-3 trial, which enrolled
children < 13 years in Zambia/Uganda. Simulations show in which situations a standard g-computation approach is appropri-
ate, and in which it leads to bias and how the proposed weighted estimation approach then recovers the alternative estimand
of interest.

1 | Introduction

Causal inference for multiple time-point interventions has
received considerable attention in the literature over the past few
years: if the intervention of interest is binary, popular estimation
approaches include inverse probability of treatment weight-
ing approaches (IPTW) [1], g-computation estimators [2, 3]
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and longitudinal targeted maximum likelihood estimators
(LTMLE) [4], among others. For IPTW, the treatment and cen-
soring mechanisms need to be estimated at each time point,
parametric g-computation requires fitting of both the outcome
and confounder mechanisms, sequential g-computation is based
on the iterated outcome regressions only, and LTMLE needs
models for the outcome, censoring, and treatment mechanisms,
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iteratively at each point in time. All of those methods are rel-
atively well-understood and have been successfully applied in
different fields (e.g., in [5–10]).

However, suggestions on how to estimate treatment effects of
variables that are continuous and measured at multiple time
points are limited. This may, however, be of interest to construct
causal dose–response curves (CDRC). For example, in pharma-
coepidemiology, one may be interested in how counterfactual
outcomes vary for different dosing strategies for a particular drug,
see Section 2.

Early work on continuous interventions includes the seminal
paper of Robins, Hernán, and Brumback [1] on inverse proba-
bility weighting of marginal structural models (MSMs). For a sin-
gle time point, this requires the estimation of stabilized weights
based on the conditional density of the treatment, given the con-
founders. This density may be estimated with parametric regres-
sion models, such as linear regression models. The MSM, describ-
ing the dose–response relationship (i.e., the CDRC), can then be
obtained using weighted regression. The suggested approach can
also be used for the longitudinal case, where stabilized weights
can be constructed easily, and one may work with a working
model where, for example, the effect of cumulative dose over all
time points on the response is estimated.

There are several other suggestions for the point treatment case
(i.e., a single time point): for example, the use of the generalized
propensity score (GPS) is often advocated in the literature [11].
Similar to the MSM approach described above, both the condi-
tional density of the treatment, given the confounders, and the
dose–response relationship have to be specified and estimated.
Instead of using stabilized weights, the GPS is included in the
dose–response model as a covariate. To reduce the risk of bias due
to model mis-specification, it has been suggested to incorporate
machine learning (ML) in the estimation process [12]. However,
when combining GPS and ML approaches, there is no guarantee
for valid inference, that is, related confidence intervals may not
achieve nominal coverage [4]. Doubly robust (DR) approaches
allow the integration of ML while retaining valid inference. As
such, the DR-estimator proposed by Kennedy et al. [13] is a viable
alternative to both MSM and GPS approaches. It does not rely on
the correct specification of parametric models and can incorpo-
rate general machine learning approaches. As with other, similar,
approaches [14] both the treatment and outcome mechanisms
need to be modeled. Then a pseudo-outcome based on those two
estimated nuisance functions is constructed, and put into rela-
tionship with the continuous intervention using kernel smooth-
ing. Further angles in the point treatment case are given in the
literature [15–18].

There are fewer suggestions as to how to estimate CDRCs for
multiple time point interventions. As indicated above, one could
work with inverse probability weighting of marginal structural
models and specify a parametric dose–response curve. Alter-
natively, one may favor the definition of the causal parame-
ter as a projection of the true CDRC onto a specified work-
ing model [19]. Both approaches have the disadvantage that,
with mis-specification of the dose–response relationship or an
inappropriate working model, the postulated curve may be far

away from the true CDRC. Moreover, the threat of practi-
cal positivity violations is even more severe in the longitudi-
nal setup, and working with inverse densities—which can be
volatile—remains a serious concern [20]. It has thus been sug-
gested in the literature to avoid these issues by changing the sci-
entific question of interest, if meaningful, and to work with alter-
native definitions of causal effects.

For example, Young, Hernan, and Robins [21] consider so-called
modified treatment policies, where treatment effects are allowed
to be stochastic and depend on the natural value of treatment,
defined as the treatment value that would have been observed
at time 𝑡, had the intervention been discontinued right before 𝑡.
A similar approach relates to using representative interven-
tions, which are stochastic interventions that maintain a con-
tinuous treatment within a pre-specified range [22]. Diaz et al.
[23] present four estimators for longitudinal modified treatment
policies (LMTPs), based on IPTW, g-computation and doubly
robust considerations. These estimators are implemented in an
R-package (lmtp). An advantage of those approaches is that the
positivity assumption can sometimes be relaxed, depending on
how interventions are being designed. Moreover, the proposed
framework is very general, applicable to longitudinal and sur-
vival settings, and one is not forced to make arbitrary paramet-
ric assumptions if the doubly robust estimators are employed. It
also avoids estimation of conditional densities as it recasts the
problem at hand as a classification procedure for the density ratio
of the post-intervention and natural treatment densities. A disad-
vantage of the approach is that it does not aim at estimating the
CDRC, which may, however, relate to the research question of
interest, see Section 2.

In this paper, we are interested in counterfactual outcomes after
intervening on a continuous exposure (such as drug concentra-
tion) at multiple time points. For example, we may be interested
in the probability of viral suppression after 1 year of follow-up,
had HIV-positive children had a fixed concentration level of
efavirenz during this year. In this example, it would be desirable
to estimate the true CDRC as closely as possible, to understand
and visualize the underlying biological mechanism and decide
what preferred target concentrations should be. This comes with
several challenges: most importantly, violations of the positiv-
ity assumption are to be expected with continuous multiple
time-point interventions. If this is the case, estimands that are
related to modified treatment policies or stochastic interventions,
as discussed above, can be tailored to tackle the positivity viola-
tion problem, but redefine the question of interest. In pharma-
coepidemiology and other fields this may be not ideal, as inter-
pretations of the true CDRC are of considerable clinical interest,
for example to determine appropriate drug target concentrations.

We propose g-computation based approaches to estimate and
visualize causal dose–response curves. This is an obvious sugges-
tion in our setting because developing a standard doubly robust
estimator, for example, a targeted maximum likelihood estima-
tor, is not possible as the CDRC is not a pathwise-differentiable
parameter; and developing non-standard doubly robust estima-
tors is not straightforward in a multiple time-point setting. Our
suggested approach has two angles:
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i. As a first step, we simply consider computing counterfac-
tual outcomes for multiple values of the continuous inter-
vention (at each time point) using standard parametric
and sequential g-computation. We evaluate with simulation
studies where this “naive” estimation strategy can be suc-
cessful and useful, and where not; and which diagnostics
may be helpful in judging its reliability. To our knowledge,
this standard approach has not been evaluated in the litera-
ture yet.

ii. We then define regions of low support through low val-
ues of the conditional treatment density, evaluated at the
intervention trajectories of interest. Our proposal is to
redefine the estimand of interest (i.e., the CDRC) only in
those regions, based on suitable weight functions. Such
an approach entails a compromise between identifiabil-
ity and interpretability: it is a tradeoff between estimating
the CDRC as closely as possible [as in (i)], at the risk of
bias due to positivity violations and minimizing the risk
of bias due to positivity violations, at the cost of redefin-
ing the estimand in regions of low support. We develop a
g-computation based plug-in estimator for this weighted
approach.

We introduce the motivating question in Section 2, followed
by the theoretical framework in Section 3. After presenting
our extensive Monte-Carlo simulations (Section 4), we ana-
lyze the illustrative data example in Section 4.3. We conclude
in Section 5.

2 | Motivating Example

Our data comes from CHAPAS-3, an open-label, parallel-group,
randomized trial (CHAPAS-3) [24]. Children with HIV (aged
1 month to 13 years), from four different treatment centers (one
in Zambia, three in Uganda) were randomized to receive one
out of 3 different antiretroviral therapy (ART) regimens, given
as fixed-dose-combination tablets. Each regimen consisted of 3
drugs. Every child received lamivudine (first drug), and either
nevirapine or efavirenz (second drug), which was chosen at the
discretion of the treating physician (and based on age). The third
drug was randomly assigned (1:1:1) and either stavudine, zidovu-
dine, or abacavir. The primary endpoint in the trial were adverse
events, both clinical (grade 2/3/4) and laboratory (confirmed
grade 3, or any grade 4).

Several substudies of the trial explored pharmacokinetic aspects
of the nonnucleoside reverse transcriptase inhibitors (NNRTI)
efavirenz and nevirapine (the second, non-randomized drug), in
particular the relationship between the respective drug concen-
trations and elevated viral load, that is, viral failure [25, 26]. Our
analyses are motivated by these substudies and are based on the
subsets of children, who received efavirenz (i.e., 125 out of 478
patients). We use the same data as Bienczak et al. [25].

In the trial, efavirenz dose was recommended to be based on
weight using 200 mg for those weighing 10–13.9 kg, 300 mg
for 14–19.9 kg, 400 mg for 20–34.9 kg, and 600 mg (the adult
dose) above 34.9 kg. While children may receive the same dose,
EFV concentrations vary individually and depend on the child’s

metabolism (i.e., specifically the single nucleotide polymor-
phisms in the CYP2B6 gene encoding the key metabolizing
enzyme). Too low concentrations reduce antiviral activity of the
drug and thus lead to viral failure (a negative outcome, which
typically leads to a change in drug regimen). This is the reason
why one is interested in the minimum concentration that is still
effective against viral replication; or, more generally in the range
of concentrations that should be targeted.

Our analysis evaluates the relationship between EFV con-
centrations (not doses) and viral failure, over a follow-up
period of 84 weeks. We are specifically interested in the coun-
terfactual probability of viral load (VL) > 100 copies/ml at
84 weeks if children had concentrations (12/24 h after dose)
of 𝑥 mg/L at each follow-up visit, where 𝑥 ranges from 0 to
6 mg/L. This question translates into the longitudinal causal
dose–response curve (CDRC), which –in our example–, is actu-
ally a concentration-response curve. That is, we want to know
how the probability of failure varies for different concentration
trajectories.

However, drawing a particular CDRC is challenging for the fol-
lowing reasons: (i) the form of the curve should be flexible and as
close as possible to the truth; (ii) there exist time-dependent con-
founders (e.g., adherence, weight) that are themselves affected by
prior concentration levels, making regression an invalid method
for causal effect estimation [27]; (iii) with long follow-up and
moderate sample size, and given the continuous nature of the
concentration variables, positivity violations are an issue of con-
cern that have to be addressed.

More details on the data analysis are given in Section 4.3.

3 | Framework

3.1 | Notation

We consider a longitudinal data setup where at each time point 𝑡,
𝑡 = 0, 1, . . . , 𝑇, we measure the outcome 𝑌

𝑡
, a continuous inter-

vention 𝐴
𝑡

and covariates 𝐿
𝑗

𝑡
, 𝑗 = 1, . . . , 𝑞 for 𝑖 = 1, . . . , 𝑛 indi-

viduals. We denote L
𝟎
=

{
𝐿

1
0 , . . . , 𝐿

𝑞0
0
}

as “baseline variables”
and L

𝑡
=

{
𝐿

1
𝑡
, . . . , 𝐿

𝑞

𝑡

}
as follow-up variables, with 𝑞, 𝑞0 ∈ ℕ. The

intervention and covariate histories of a unit 𝑖 (up to and includ-
ing time 𝑡) are 𝐴

𝑡,𝑖
=

(
𝐴0,𝑖 , . . . , 𝐴𝑡,𝑖

)
and 𝐿

𝑠

𝑡,𝑖
=

(
𝐿
𝑠

0,𝑖 , . . . , 𝐿
𝑠

𝑡,𝑖

)
,

𝑠 = 1, . . . , 𝑞, 𝑖 = 1, . . . , 𝑛, respectively. The observed data struc-
ture is

𝑂 = (L0, 𝐴0, 𝑌0,L1, 𝐴1, 𝑌1, . . . ,L𝑇
, 𝐴

𝑇
, 𝑌

𝑇)

That is, we consider 𝑛 units, followed-up over 𝑇 time points
where at each time point we work with the order 𝐿

𝑡
→ 𝐴

𝑡
→ 𝑌

𝑡
.

We are interested in the counterfactual outcome 𝑌
𝑎
𝑡

𝑡,𝑖
that would

have been observed at time 𝑡 if unit 𝑖 had received, possibly con-
trary to the fact, the intervention history 𝐴

𝑡,𝑖
= 𝑎

𝑡
, 𝑎

𝑡,𝑖
∈ ℝ. For

a given intervention 𝐴
𝑡,𝑖
= 𝑎

𝑡
, the counterfactual covariates are

denoted as L
𝑎
𝑡

𝑡,𝑖
. We use H

𝑡
to denote the history of all data up to

before 𝐴
𝑡
.
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3.2 | Estimands

3.2.1 | Estimands for One Time Point

In order to illustrate the ideas, we first consider a simple example
with only one time point where 𝑂 = (L, 𝐴, 𝑌). Suppose we
observe an independent and identically distributed sample 𝑂 =

(𝑂1, . . . , 𝑂𝑛), where 𝑂 has support supp(𝑂) = { × × }. Our
estimand of interest is the causal dose–response curve:

Estimand 1:
𝑚 ∶ 𝑎 ↦ 𝐸(𝑌

𝑎
) ∀𝑎 ∈  (1)

where  = supp(𝐴) ≔ {𝑎 ∈ 𝐴 ∶ 𝑓(𝑎) ≠ 0}. Assume L has den-
sity 𝑝0(l) with respect to some dominating measure 𝜈(l). The
dose–response curve (1) can be identified [13] as

𝑚(𝑎) = 𝐸L[𝐸(𝑌
𝑎 |𝐴 = 𝑎,L)] = 𝐸L[𝐸(𝑌 |𝐴 = 𝑎,L)]

=
∫l∈

𝐸(𝑌 |𝐴 = 𝑎,L = l)𝑝0(l)d𝜈(l) (2)

where the first equality follows by the law of iterated expecta-
tion, the assumption that 𝑌𝑎 is independent of 𝐴 conditional on
L (conditional exchangeability) and positivity (see below). The
second equality follows because 𝑌

𝑎
= 𝑌 in the event of 𝐴 = 𝑎

(consistency). An example of such a curve for a particular interval
[𝑎min, 𝑎max] is given in Figure 1a.

This quantity is undefined if there is an intervention level 𝑎 ∈ 

such that the conditional density function 𝑔(𝑎 | l) is zero for some
l with 𝑝0(l) > 0. The strong positivity assumption reflects this
consideration by requiring that inf

𝑎∈
𝑔(𝑎 | l) > 0 almost every-

where [28]. This assumption may be weakened by making addi-
tional parametric model assumptions or restricting the range of
𝑎. In this paper, we however address violations of the positivity
assumption through a redefinition of the estimand of interest,
where we replace the marginal distribution function of L in (2)
by a user-given distribution function. That is, we instead target

𝑚
𝑤
(𝑎) =

∫
𝐸(𝑌 |𝐴 = 𝑎,L = l)𝑤(𝑎, l)𝑝0(l)d𝜈(l) (3)

FIGURE 1 | Considerations for causal dose–response curves (CDRCs).
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for some weight function 𝑤(𝑎, l). This is essentially a
weighted average of the conditional dose–response curve
𝐸(𝐸(𝑌

𝑎 |L)𝑤(𝑎,L)).

To illustrate the construction of a meaningful weight func-
tion for (3), consider two extreme cases: 𝑤(𝑎, l) = 1, and
𝑤(𝑎, l) = 𝑔(𝑎 | l)∕𝑔(𝑎), where 𝑔(𝑎) is the marginal density of 𝐴.
Under the first case, we have 𝑚

𝑤
(𝑎) = 𝑚(𝑎), which is equal

to the dose–response curve (Estimand 1) whenever the posi-
tivity assumption holds. Under 𝑤(𝑎, l) = 𝑔(𝑎 | l)∕𝑔(𝑎), we have
𝑚

𝑤
(𝑎) = 𝐸(𝑌 |𝐴 = 𝑎), which is not a causal quantity (unless

exchangeability is assumed) but it does not require the positiv-
ity assumption. We therefore propose to use a function 𝑤(𝑎, l)
such that 𝑤(𝑎, l) = 1 in areas of {,} that have good support,
and 𝑤(𝑎, l) = 𝑔(𝑎 | l)∕𝑔(𝑎) in areas of {,} that have low sup-
port. By “good support”, we mean that the positivity assumption
is met in the sense of 𝑔(𝑎 | l) > 𝑐 > 0, that is, bounded away from
zero. Thus, one possible function to use is

𝑤(𝑎, l) =

{
1 if 𝑔(𝑎 | l) > 𝑐

𝑔(𝑎 | 𝑙)
𝑔(𝑎)

otherwise
(4)

Alternatively, one may use 𝑔(𝑎 | l)∕𝑔(𝑎) > 𝑐 > 0 to define good
support. Using (4) in (3) targets the desired dose–response curve
under enough support and avoids reliance on positivity other-
wise. Formally,

Estimand 2 is then given by:

𝑚
𝑤
(𝑎) = 𝐸(𝑌

𝑎 |𝑔(𝑎 |𝐿) > 𝑐)𝑃(𝑔(𝑎 |𝐿) > 𝑐)

+ 𝐸(𝑌
𝑎
𝑤(𝑎 |𝐿) |𝑔(𝑎 |𝐿) ≤ 𝑐)𝑃(𝑔(𝑎 |𝐿) ≤ 𝑐) ∀𝑎 ∈ 

(5)

For fixed 𝑎, this is taking a weighted average of the counterfactu-
als 𝑌𝑎, where the weights are equal to one for units in the pop-
ulation for whom positivity 𝑔(𝑎 |𝐿) > 𝑐 holds, and the weights
are 𝑤(𝑎 |𝐿) < 𝑐∕𝑔(𝑎) for those for whom it does not. When-
ever 𝑐∕𝑔(𝑎) < 1, this simply downweights observations that rely
more on extrapolation so that they are not as influential in
the estimators, and imply an interpretation as outlined below
otherwise

Interpretation. To understand the implication and interpre-
tation of using this estimand, consider our motivating data
example: first, note that both 𝑚(𝑎) and 𝑚

𝑤
(𝑎) are undefined out-

side the support region of 𝐴. For instance, in our study the CDRC
is undefined for negative concentration values and biologically
implausible concentration values of > 40 mg/L. Suppose we are
interested in 𝐸(𝑌

𝑎
) for 𝑎 = 0.5 mg/L: for all patients with covari-

ate regions l that have 𝑔(0.5 | l) > 𝑐 we stick to the CDRC m(a),
such that we obtain𝐸(𝑌

𝑎
); but for those where this does not hold,

maybe because they are ultraslow metabolizers who will not clear
the drug fast enough to ever achieve 0.5 mg/L under full adher-
ence (i.e., 𝑔(0.5 |ultraslow, adherent) = 0), we target𝐸(𝑌 |𝑎). This
means that we do not require positivity or rely on parametric
extrapolations in poor support regions (where the intervention
seems “unrealistic”); we rather use the present associations to
allow individual concentration trajectories that lead to 𝐸(𝑌 |0.5)
for those patient groups. Thus, the proposed estimand (5) offers
a tradeoff between identifiability and interpretability: that is, a

tradeoff between estimating the CDRC as closely as possible, at
the risk of bias due to positivity violations because of the continu-
ous intervention; and minimizing the risk of bias due to positivity
violations, at the cost of redefining the estimand. More details on
possible interpretations are given in Sections 3.2.2 and 3.5.

Choice of c. As in the case for binary interventions, when trun-
cating the propensity score for inverse probability weighting or
targeted maximum likelihood estimation, one may use rules of
thumbs and simulation evidence to decide for 𝑐. This is because
we want the conditional treatment density to be bounded away
from zero, to avoid negative effects of (near-)positivity violations.
Possible ad-hoc choices are 0.01 and 5∕(

√
(𝑛) ln𝑛∕5) [29], though

we argue below that multiple c’s may be selected and presented
based on diagnostics, see Section 3.4.

Estimands under different weight functions. In principal,
one could construct other weight functions too. An obvious
choice would be to simply use the marginal treatment density
𝑔(𝑎) as a weight. Such a weight choice has been motivated in
the context of estimands that are defined through parameters
in a marginal structural working model for (continuous sum-
maries of) longitudinal binary interventions [30]. In this case,
greater weight is given to interventions with greater marginal
support; and the more support there is for each possible interven-
tion choice, the estimand will be closer to the CDRC. While intu-
itively it may make sense to rely more on interventions that are
more often observed in the data, this approach does not directly
address positivity violations; in the example above, there may be
enough patients with concentrations close to 0.5 mg/L overall,
but not among ultraslow metabolizers, which is the issue to be
addressed.

3.2.2 | Estimands for Multiple Time Points

To illustrate our proposed concepts for multiple time points, con-
sider data for two time points first: (L0, 𝐴0, 𝑌0,L1, 𝐴1, 𝑌1). We
are interested in 𝐸

(
𝑌

𝐴0=𝑎0 ,𝐴1=𝑎1
1

)
. In principle, we may be inter-

ested in any (𝑎0, 𝑎1) within the support region {1 ×2}. Prac-
tically, it may be possible that we only care about interventions
(𝑎0, 𝑎1) for which 𝑎0 = 𝑎1 > 0 (as in the motivating example), or
𝑎0 < 𝑎1: in this case, we may restrict the estimand to the respec-
tive region

{


∗

1 ×
∗

2
}
⊂ {1 ×2}. Similar to a single time

point there may be the situation where 𝑔(𝑎1) > 0, 𝑔(𝑎1, 𝑎0) > 0
but 𝑔(𝑎1 | l1, 𝑎0, 𝑦0, l0) ≈ 0. This corresponds to a situation where
there is little support for the intervention value 𝑎1 given that we
already intervened with 𝑎0 and given the covariate history; for
regions, where this is the case, we address the respective positiv-
ity violations by redefining the estimand.

A. Causal Dose–Response-Curve. If there are multiple time
points, the CDRC is

Estimand 1:

𝑚
𝑡
∶ 𝑎

𝑡
↦ 𝐸

(
𝑌

𝑎
𝑡

𝑡

)
∀𝑎

𝑡
∈ 

𝑡
, ∀𝑡 ∈  (6)

where  = {0, 1, . . . , 𝑇} and
𝑡
= {1 × . . . ×

𝑡}. The estimand
(6) can, in principle, be identified through various ways. A pos-
sible option under the assumptions of sequential conditional
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exchangeability, consistency and positivity [31] –as defined
below– is the sequential g-formula (also known as the iterated
conditional expectation representation [3]):

𝔼
(
𝑌
𝑎𝑡

𝑡

)

= 𝔼( . . .𝔼(𝔼(𝑌𝑡
|𝐴

𝑡
= 𝑎

𝑡
,H

𝑡) |𝐴𝑡−1 = 𝑎
𝑡−1,H𝑡−1 ) . . . |𝐴0 = 𝑎0,H0 ))

(7)

In the above expression, 𝑌
𝑡−1 is part of L

𝑡
, and thus H

𝑡
. Because

𝐴
𝑡

is continuous, a strong positivity requirement corresponds to

inf
𝑎
𝑡
∈

𝑡

𝑔(𝑎𝑡 |h
𝑡) > 0 whenever

𝑝0(l𝑡 |𝐴𝑡−1 = 𝑎
𝑡−1,H𝑡−1 = h

𝑡−1) > 0 ∀𝑡 ∈ 

(8)

This means, we require within the support region 
𝑡

a positive
conditional treatment density for each 𝑎

𝑡
, given its past. This

strong assumption may be relaxed either under additional para-
metric modeling assumptions or by a restriction to some

∗

𝑡
⊂ 

𝑡

or by a redefinition of the estimand. We continue with the lat-
ter strategy. Consistency in the multiple time-point case is the
requirement that 𝑌

𝑎
𝑡

𝑡
= 𝑌

𝑡
if 𝐴

𝑡
= 𝑎

𝑡
and L

𝑎
𝑡−1

𝑡
= L

𝑡
if 𝐴

𝑡−1 =

𝑎
𝑡−1. With sequential conditional exchangeability we require the

counterfactual outcome under the assigned treatment trajectory
to be independent of the actually assigned treatment at time 𝑡,
given the past: 𝑌𝑎

𝑡

𝑡

∐
𝐴

𝑡
|𝐻

𝑡
for 𝑡 = 0, . . . , 𝑇.

Note: Sometimes, we may want to visualize the CDRC graphically,
for example, by plotting 𝑚

𝑡

(
𝑎
𝑡

)
for each 𝑡 (and stratified by L

𝟎
, or

a subset thereof, if meaningful) if the set of strategies is restricted
to those that always assign the same value at each time point,
see Figure 1b for an illustration. Alternatively, we may opt to plot
the CDRC as a function of 𝑡, for some selected strategies 𝑎

𝑡
, see

Figure 1c. This may be useful if intervention values change over
time, or for survival settings.

To link the above longitudinal g-computation formula (7) to our
proposals, it may be written in terms of the following recursion.
Let �̃�

𝑡+1 = 𝑌
𝑡
. For 𝑠 = 𝑡, . . . , 0 recursively define

�̃�
𝑠
∶ (𝑎𝑠,h𝑠) ↦

∫
�̃�

𝑠+1
(
𝑎
𝑠+1,h𝑠+1

)
dP0

(
l
𝑠+1 |𝐴𝑠

= 𝑎
𝑠
,H

𝑠
= h

𝑠

)

(9)
where ∫ �̃�

𝑠+1
(
𝑎
𝑠+1,h𝑠+1

)
dP0

(
l
𝑠+1 |𝐴𝑠

= 𝑎
𝑠
,H

𝑠
= h

𝑠

)
= 𝐸(�̃�

𝑠+1
(𝑎

𝑠+1H
𝑠+1) |𝐴𝑠

= 𝑎
𝑠
,H

𝑠
= h

𝑠
).

Then, the counterfactual mean outcome 𝐸

(
𝑌

𝑎
𝑡

𝑡

)
is identified as

𝔼(�̃�0(𝑎0, ℎ0)), which follows from the reexpression of (9) in terms
of (7) by recursively evaluating the integral; see Appendix A.1 for
details. The above recursive integral is well defined only if the
positivity assumption (8) is met. As for the single time-point case,
we propose to address violations of the positivity assumption by
targeting a modified identifying expression, which we express
through the following recursive integral:

�̃�
𝑤,𝑠

∶ (𝑎𝑠,h𝑠) ↦
∫

�̃�
𝑠+1

(
𝑎
𝑠+1,h𝑠+1

)
𝑤

𝑠

(
𝑎
𝑠+1,h𝑠+1

)
dP0

(
l
𝑠+1 |𝐴𝑠

= 𝑎
𝑠
,H

𝑠
= h

𝑠

) (10)

As before, if the weight function 𝑤
𝑠

(
𝑎
𝑠+1,h𝑠+1

)
is equal to one,

the above expression can be used to define the actual CDRC (6)

through recursive evaluation of (10). If, however, the weight func-
tion is equal to

𝑤
𝑠

(
𝑎
𝑠+1,h𝑠+1

)
=

𝑔
𝑠

(
𝑎
𝑠+1 |h

𝑠+1
)

𝑔
𝑠

(
𝑎
𝑠+1 |𝑎𝑠,h𝑠

) (11)

then the expression becomes

�̃�
𝑤,𝑠

∶ (𝑎𝑠,h𝑠) ↦
∫

�̃�
𝑠+1

(
𝑎
𝑠+1,h𝑠+1

)

dP0
(
l
𝑠+1 |𝐴𝑠+1 = 𝑎

𝑠+1, 𝐴𝑠
= 𝑎

𝑠
,H

𝑠
= h

𝑠

) (12)

by application of Bayes’ rule. Intuitively, the above quantity does
not remove confounding of the relation between 𝐴

𝑠+1 and 𝑌
𝑠+1,

because it conditions on𝐴
𝑠+1 = 𝑎

𝑠+1 rather than fixing (i.e., inter-
vening on) 𝐴

𝑠+1 = 𝑎
𝑠+1. However, the above expression does not

require the positivity assumption to be well defined, as motivated
further below. Generally speaking, applying the above weights
iteratively over all time points (and all units) leads to

𝐸

(
𝑌
𝑡
|𝑎

𝑡

)

see Appendix A.2 for details.

For the longitudinal case, we follow a strategy similar to that con-
sidered for the single time-point case, and consider a compromise
between satisfying the positivity assumption and adjusting for
confounding. This compromise can be achieved by using weight
functions that are 1 in areas of good support, and are equal to (11)
in areas of poor support:

𝑤
𝑠

(
𝑎
𝑠+1,h𝑠+1, 𝑐

)

=

⎧
⎪
⎨
⎪
⎩

1 if 𝑔
𝑠

(
𝑎
𝑠+1 |h

𝑠+1
)
> 𝑐

𝑔
𝑠(𝑎𝑠+1 |h

𝑠+1)

𝑔
𝑠(𝑎𝑠+1 |𝑎𝑠,h𝑠)

if 𝑔
𝑠

(
𝑎
𝑠+1 |h

𝑠+1
)
≤ 𝑐

(
and 𝑔

𝑠

(
𝑎
𝑠+1 |𝑎𝑠,h𝑠

)
> 𝑐

)

(13)
Using the weights (13) in (10) has similar implications as for a
single time point; that is, we obtain a weighted average of coun-
terfactuals depending on the units’ support for a given strategy
𝑎
𝑡
. Formally, Estimand 2 equates to:

𝑚
𝑤,𝑡

(
𝑎
𝑡

)
= 𝐸

(
𝑌
𝑎𝑡

𝑡
| {𝑔(𝑎𝑠 |H

𝑠) > 𝑐}
𝑡

𝑠=0

)
𝑃

(
{𝑔(𝑎𝑠 |H

𝑠) > 𝑐}
𝑡

𝑠=0
)
+

𝐸

(
𝑌
𝑎𝑡

𝑡
�̃�
𝑡
|∨𝑡

𝑠=0{𝑔(𝑎𝑠 |H
𝑠) ≤ 𝑐}

)

𝑃

(
∨
𝑡

𝑠=0{𝑔(𝑎𝑠 |H
𝑠) ≤ 𝑐}

)
∀𝑎

𝑡
∈ 

𝑡
, ∀𝑡 ∈ 

(14)

where {𝑔(𝑎𝑠 |H
𝑠) > 𝑐}

𝑡

𝑠=0 = (𝑔(𝑎𝑡 |H
𝑡) > 𝑐, . . . , 𝑔(𝑎0 |H0) > 𝑐),

∨
𝑡

𝑠=0{𝑔(𝑎𝑠 |H
𝑠) ≤ 𝑐} indicates that at least one 𝑔(𝑎𝑠 |H

𝑠) ≤ 𝑐,
𝑤

𝑡
= 𝑤

𝑡

(
𝑎
𝑡+1,h𝑡+1, 𝑐

)
, and the notation �̃�

𝑡
indicates that the

weights have been applied up to and including time 𝑡. Practically,
this means that

i. For units where there is enough conditional support for a
strategy 𝑎

𝑠
in terms of 𝑔

𝑠(𝑎𝑠 |h
𝑠) > 𝑐 for all time points 𝑠 up

to and including time 𝑡, the weights are 1. For those, we still
target the CDRC, that is, 𝐸

(
𝑌

𝑎
𝑡

𝑡

)
.

ii. For units that do not have enough conditional support for a
strategy at all time points, the weights in (13), second row,
are used. With this, intuitively we target 𝐸

(
𝑌
𝑡
|𝑎

𝑡

)
as out-

lined above.
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iii. If there exist units for which there is support for a strategy
at some points, but not at others, the weights will be 1 at
some time points, but not for all. The implication is that
we target the CDRC as much as this possible and deviate
from it only at the time points where it is necessary.

Note that for the second estimand no positivity assumption as
defined in (8) is required for identification because whenever
a (near-)positivity violation is present in terms of 𝑔

𝑠(𝑎𝑠 |h
𝑠) ≤ 𝑐

the weights (13) redefine the estimand in a way such that the
assumption is not needed.

If the denominator in (13) is very small, that is, ≤ 𝑐, one could
replace it with a very small ad-hoc value. Alternatively, one may
want to compromise in the sense of evaluating the conditional
density until previous time points:

𝑤
𝑠

(
𝑎
𝑠+1,h𝑠+1, 𝑐

)

=

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

1 if 𝑔
𝑠

(
𝑎
𝑠+1 | h

𝑠+1
)
> 𝑐

𝑔𝑠(𝑎𝑠+1 |h𝑠+1)
𝑔𝑠(𝑎𝑠+1 |𝑎𝑠,h𝑠)

if 𝑔
𝑠

(
𝑎
𝑠+1 | h

𝑠+1
)
≤ 𝑐 and 𝑔

𝑠

(
𝑎
𝑠+1 |𝑎𝑠,h𝑠

)
> 𝑐

𝑔𝑠(𝑎𝑠+1 |h𝑠+1)
𝑔𝑠(𝑎𝑠+1 |𝑎𝑠−1 ,h𝑠−1)

if 𝑔
𝑠

(
𝑎
𝑠+1 | h

𝑠+1
)
≤ 𝑐 and 𝑔

𝑠

(
𝑎
𝑠+1 |𝑎𝑠,h𝑠

)
≤ 𝑐

and 𝑔
𝑠

(
𝑎
𝑠+1 | 𝑎

𝑠−1,h𝑠−1
)
> 𝑐

⋮ ⋮
𝑔𝑠(𝑎𝑠+1 |h𝑠+1)

𝑔𝑠(𝑎𝑠+1)
otherwise

(15)
Interpretation of the weighted estimand. The weighted esti-
mand can be interpreted as follows: those units which have a
covariate trajectory that makes the intervention value of interest
at 𝑡 not unlikely to occur (under the desired intervention before
𝑡), receive the intervention at 𝑡; all other units get different inter-
ventions that produce, on average, outcomes as we would expect
among those who actually follow the intervention trajectory of
interest (if the weight denominator is well-defined). Informally
speaking, we calculate the CDRC in regions of enough support
and stick to the actual research question, but make use of the
marginal associations otherwise, if possible.

As a practical illustration for this interpretation, consider our
motivating study: if, given the covariate and intervention history,
it seems possible for a child to have a concentration level of 𝑎
mg/L, then we do indeed calculate the counterfactual outcome
under 𝑎. For some patients however, it may be unlikely (or even
biologically impossible!) to actually observe this concentration
level: for example, children who are adherent to their drug reg-
imen and got an appropriate drug dose prescribed, but are slow
metabolizers will likely never be able to have very low concentra-
tion values. In this case, we do not consider the intervention to be
feasible and rather let those patients have individual concentra-
tion levels which generate outcomes that are typical for children
with 𝑎 mg/L. In short, we calculate the probability of failure at
time 𝑡 if the concentration level is set at 𝑎 for all patients where
this seems “feasible”, and otherwise to individual concentration
trajectories that produce “typical” outcomes with 𝑎 mg/L.

The more complex cases of the weighted estimand reflect the
fact that certain strategies become unlikely only at certain time
points: for example, patients who are adherent to their treat-
ment and receive always the same dose will likely not have
heavy varying concentrations in their body; thus, a strategy that

looks at the effect of a concentration jump during follow-up, for
example, (3, 3, 3, 0) will only be unlikely at the fourth visit, but
not before—and hence a deviation from the CDRC will only be
needed at the fourth time point.

The interpretation of this weighted dose–response curve seems
somewhat unusual; note however that this approach has the
advantages that (i) compared to a naive approach it does not
require the positivity assumption, and (ii) compared to LMTP’s
it both sticks to the actual research question as close as “possi-
ble” and does not require a positivity assumption for the cho-
sen policies of interest. We explain below, in Section 3.5, why
we believe, however, that the weighted estimand (Estimand 2)
should typically be presented together with the CDRC, that is,
Estimand 1.

3.3 | Estimation

To develop an estimation strategy, it is useful to see that we
can reexpress our target quantity (10) in terms of the iterated
weighted conditional expectation representation

�̃�
𝑤,𝑡

= 𝔼(𝔼( . . .𝔼(𝔼
(
𝑌
𝑡
𝑤

𝑡
|𝐴

𝑡
= 𝑎

𝑡
,L

𝑡

)
𝑤

𝑡−1 ∣ 𝐴
𝑡−1

= 𝑎
𝑡−1,L𝑡−1 ) . . . )𝑤0 ∣ 𝐴0 = 𝑎0,L0 ))

(16)

where 𝑤
𝑠
= 𝑤

𝑠

(
𝑎
𝑠+1,h𝑠+1

)
; see Appendix A.3 for details. This

means that Estimand 2 can be written as a series of iterated
weighted outcomes. An alternative representation, based on a
weighted parametric 𝑔-formula is given in Appendix A.4.

For Estimand 2, one can build a substitution estimator based
on either (16) or (A.3). That is, we use either a parametric or
sequential g-formula type of approach where the (iterated) out-
come is multiplied with the respective weight at each time point,
regressed on its past, and recursively evaluated over time for a
specific intervention 𝑎

𝑡
. More specifically, a substitution estima-

tor of (16) can be constructed as follows: (i) estimate the inner-
most expectation, that is, multiply the estimated weights (13)
with the outcome at time 𝑡; then, (ii) intervene with the first
intervention trajectory of interest 𝑎(1)

𝑡
; (iii) predict the weighted

outcome under this intervention; (iv) estimate the second inner-
most expectation by regressing the product of the prediction from
(iii) and the respective weight on its past; (v) then, intervene with
𝑎
(1)
𝑡−1 and obtain the predicted weighted outcome under the inter-

vention. These steps can be repeated until 𝑡 = 0, and for each
intervention trajectory of interest.

As the weighted (iterated) outcomes may possibly have a skewed,
complex distribution (depending on the weights), we advocate for
the use of (16) as a basis for estimation. This is because estimating
the expectation only is typically easier than estimating the whole
conditional distribution, as needed for (A.3). In many applica-
tions, a data-adaptive estimation approach may be a good choice
for modeling the expectation of the weighted outcomes.

For the estimates of the weighted curve to be consistent, both the
expected weighted (iterated) outcomes and the weights need to
be estimated consistently.
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Note that for 𝑡 = 0, we suggest to calculate a weighted
mean, instead of estimating the weighted expected outcome
data-adaptively. This is because the former is typically more sta-
ble when 𝑌0 follows some standard distribution, but 𝑤0 does
not. It is a valid strategy as standardizing with respect to the
pre-intervention variables 𝐿0 and then calculating the weighted
mean of the outcome is identical to standardizing the weighted
outcome with respect to 𝐿0, and then calculating the mean.
Another option for 𝑡 = 0 is to facilitate step 6 before step 5 and
then create a stacked dataset of the counterfactual outcomes for
all intervention values 𝑎0, and then fit a weighted regression of
𝑌0 on 𝐴0, based on the stacked weight vectors. The fitted model
can then be used to predict the expected outcome under all 𝑎0.
This strategy is however not explored further in this paper.

The algorithm in Table 1 presents the detailed steps for a
substitution estimator of (16). The algorithm is implemented

in the 𝑅-package mentioned below, and further illustrated in
Appendix A.6.

3.3.1 | Multiple Interventions and Censoring

So far, we have described the case of 1 intervention variable
𝐴

𝑡
per time point. Of course, it is possible to employ the pro-

posed methodology for multiple intervention variables A
𝑡
=(

𝐴
𝑡,1, 𝐴𝑡,2, . . . , 𝐴𝑡,𝑝

)
. In this case, one simply has to estimate the

conditional densities for all those intervention variables, and tak-
ing their product, at each time point. This follows from replac-
ing (11) with 𝑔

𝑠

(
a
𝑠+1 |h

𝑠+1
)
∕𝑔

𝑠

(
a
𝑠+1 |a

𝑠
,h

𝑠

)
, and then factoriz-

ing the joint intervention distribution based on the assumed
time ordering of

(
𝐿
𝑠
, 𝐴

𝑠,1, 𝐴𝑠,2, . . . , 𝐴𝑠,𝑝
, 𝑌

𝑠

)
. Intervention vari-

ables may include censoring variables: we may, for instance, con-
struct estimands under the intervention of no censoring. A pos-
sible option to apply the proposed methodology is then to use

TABLE 1 | Algorithm for estimating Estimand 2 at time 𝑡.

Step 0a Define a set of interventions
𝑡
, with ∣ 

𝑡
∣= 𝑛

𝑎
and 𝐴

(𝑗)

𝑡
is the 𝑗

th element of
𝑡
, 𝑗 = 1, . . . , 𝑛

𝑎
.

Step 0b Set �̃�
𝑡
= 𝑌

𝑡
.

For 𝑠 = 𝑡, . . . ,𝟏

Step 1a Estimate the conditional density 𝑔(𝐴𝑠
|H

𝑠), see also Footnote 1.
Step 1b Estimate the conditional density 𝑔(𝐴𝑠

|𝐴
𝑠−1,H𝑠−1), see also Footnote 1.

Step 2 Set 𝑎
𝑠
= 𝑎

(1)
𝑠

, where 𝑎
(1)
𝑠

is the 𝑠
th element of intervention

(1)
𝑡

∈ 
𝑡
.

Step 3a Plug in 𝑎
(1)
𝑠

into the estimated densities from step 1, to calculate 𝑔

(
𝑎
(1)
𝑠

|h
𝑠

)
and 𝑔

(
𝑎
(1)
𝑠

|𝑎(1)
𝑠−1,h𝑠−1

)
.

Step 3b Calculate the weights 𝑤
𝑠

(
𝑎
(1)
𝑠
, 𝑐

)
from (15) based on the estimates from 3a.

If 𝑔
(
𝑎
(1)
𝑠

|𝑎(1)
𝑠−1,h𝑠−1

)
≤ 𝑐, estimate 𝑔

(
𝑎
(1)
𝑠

|𝑎(1)
𝑠∗
,h

𝑠∗

)
as required by the definition of (15) for 𝑠∗ = 𝑠 − 2, . . . , 0.

Step 4 Estimate 𝔼
(
𝑤

𝑠

(
𝑎
(1)
𝑠
𝑐

)
�̃�

𝑠
|𝐴

𝑠
,H

𝑠

)
, see also Footnote 2.

Step 5 Predict �̃�
𝑠−1 = �̂�

(
𝑤

𝑠

(
𝑎
(1)
𝑠
𝑐

)
�̃�

𝑠
|𝐴

𝑠
= 𝑎

(1)
𝑠
, l

𝑠

)
based on the fitted model from step 4 and the given intervention

𝑎
(1)
𝑠

.
For 𝑡 = 𝟎

Step 1a Estimate the conditional density 𝑔(𝐴0 |L0), see also Footnote 1.
Step 1b Estimate the conditional density 𝑔(𝐴0), see also Footnote 1.
Step 2 Set 𝑎0 = 𝑎

(1)
0 .

Step 3a Calculate 𝑔

(
𝑎
(1)
0 | l0

)
and 𝑔

(
𝑎
(1)
0

)
.

Step 3b Calculate the weights 𝑤0

(
𝑎
(1)
0 , 𝑐

)
. If 𝑔

(
𝑎
(1)
0

)
≤ 𝑐, then 𝑚

𝑤,𝑡

(
𝑎
(1)
𝑡
, 𝑐

)
is undefined.

Step 4 Estimate 𝔼(�̃�0 |𝐴0,L0).

Step 5 Calculate �̂�
𝑤,𝑡

(
𝑎
(1)
𝑡
, 𝑐

)
= �̂�

𝑤(𝑐)

(
𝑌

𝑎
(1)
𝑡

𝑡

)
=

(∑𝑛

𝑖=1𝑤0,𝑖
)−1

(
𝑤0

(
𝑎
(1)
0 , 𝑐

)T
�̃�

−1

)
; that is, obtain the estimate of

Estimand 2 at 𝑎(1)
𝑡

through calculating the weighted mean of the iterated outcome under the respective
intervention 𝑎

(1)
0 at t=0.

Then

Step 6 Repeat steps 2–5 for the other interventions 𝐴
(𝑗)

𝑡
, 𝑗 = 2, . . . , 𝑛

𝑎
. This yields an estimate of estimand 2 at 𝑡.

Step 7 Repeat steps 1–6 on 𝐵 bootstrap samples to obtain confidence intervals.

Note: 1The conditional treatment densities can be estimated with (i) parametric models, if appropriate, like the linear model, (ii) nonparametric flexible estimators, like
highly-adaptive LASSO density estimation [32], (iii) a “binning strategy” where a logistic regression model models the probability of approximately observing the
intervention of interest at time 𝑡, given one has followed the strategy so far and given the covariates, (iv) other options, like transformation models or generalized additive
models of location, shape and scale [33, 34]. Items (i)–(iii) are implemented in our package mentioned below. 2The iterated weighted outcome regressions are
recommended to be estimated data-adaptively, because the weighted outcomes are often non-symmetric. We recommend super learning for it [4], and this is what is
implemented in the package mentioned below.
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weights to target 𝐸
(
𝑌

𝐶
𝑡
=0

𝑡
|𝐴

𝑡
= 𝑎

𝑡
, . . . , 𝐴0 = 𝑎0

)
for units that

do not have enough conditional support for the intervention strat-
egy of interest. Appendix A.5 lists the required modifications of
the estimation procedure in this case. Alternatively, one may use
weights that lead to 𝐸(𝑌𝑡

|𝐶
𝑡
= 𝑐

𝑡
, 𝐴

𝑡
= 𝑎

𝑡
, . . . 𝐶0 = 𝑐0, 𝐴0 = 𝑎0)

under positivity violations. For this, one would require estimat-
ing the conditional censoring mechanisms in steps 1a and 1b too.
There are however many subtleties and dangers related to the
interpretation and estimation under censoring, and possibly com-
peting events; for example, conditioning on the censoring indica-
tors may lead to collider bias, intervening on censoring mecha-
nisms to direct effect estimands [35], identification assumptions
need to be refined and generic time-orderings where treatment
variables are separated by different blocks of confounders may
lead to more iterated expectations that have to be fitted. Those
details go beyond the scope of this paper.

3.4 | Violations of the Positivity Assumption,
Diagnostics and the Choice of 𝒄

Suppose we are interested in a subset of interventions 
∗

𝑡
that

are part of the support region {1 × . . . ×
𝑡}. A violation of the

strong positivity assumption exists if for any particular interven-
tion of interest (�̃�0, . . . , �̃�𝑡) ∈ 

∗

𝑡
it happens that 𝑔(�̃�𝑡

|h
𝑡) = 0. To

diagnose the extent of practical positivity violations, one needs
estimates of the conditional treatment densities, at each time
point, and evaluated for each treatment strategy that is part of


∗

𝑡
—and summarize them in a meaningful way. We propose two

options for facilitating this:

1. Calculate the proportion of weights (13) that are different
from 1 (and thus indicate positivity violations) for each time
point, for a range of 𝑐’s and the interventions of interest.
Figure 4c gives an example on how to visualize those pro-
portions: it shows that for intervention trajectories close to
(0, . . . , 0) a high proportion of children have weights ≠ 1
and thus for these interventions practical positivity viola-
tions exist (which we may want to address with the weighted
estimand).

2. Estimate the conditional treatment densities, under the
intervention trajectories of interest, with the following bin-
ning strategy: suppose 𝐴

(𝑗)

𝑡
=

(
𝑎
(𝑗)

0 , . . . , 𝑎
(𝑗)

𝑡

)
is the 𝑗

th ele-

ment of 
∗

𝑡
and the intervention values at 𝑡 are already

ordered such that 𝑎(1)
𝑡

< 𝑎
(2)
𝑡

< . . . < 𝑎
(𝑛𝑎)

𝑡
; then calculate

𝑃

(
𝑎
(𝑗)

𝑡
∈

[
𝑎
(𝑗)

𝑡
−

1
2

(
𝑎
(𝑗)

𝑡
− 𝑎

(𝑗−1)
𝑡

)
; 𝑎

(𝑗)

𝑡
+

1
2
(𝑎

(𝑗)

𝑡
− 𝑎

(𝑗+1)
𝑡

)|||

𝑎
(𝑗)

𝑡−1 ∈

[
𝑎
(𝑗)

𝑡−1 −
1
2

(
𝑎
(𝑗)

𝑡−1 − 𝑎
(𝑗−1)
𝑡−1

)
; 𝑎

(𝑗)

𝑡−1 +
1
2
(𝑎

(𝑗)

𝑡−1 − 𝑎
(𝑗+1)
𝑡−1

)
, 𝑙

𝑡

)

(17)

that is, we want to estimate the probability to approximately
observe the intervention value 𝑎

(𝑗)

𝑡
under strategy 𝑗, given that

one has followed the same strategy of interest 𝑗 so far (until 𝑡 − 1),
and irrespective of the covariate history. Alternatively, instead
of defining the bin widths through the intervention values of
interest, we may calculate them data-adaptively [36]. Estimating

the mean of those probabilities over all observed 𝑙
𝑡

in a particu-
lar data set serves as diagnostic tool to measure the support for
each rule 𝑗, at each time point. One could estimate (17) with
standard regression techniques among the subset of those units
who followed the respective strategy until 𝑡 − 1, and present a
summary of those probabilities as a rough measure of support
for each intervention trajectory of interest. This approach gives
a sense of actual units following the strategies of interest in the
data, given the covariates. Examples are given in Figure B2.

Choice of c: The first diagnostic, possibly visualized as in
Figure 4c, can be used to get a sense which set of 𝑐′𝑠 are informa-
tive to present weighted curves (as argued in Section 3.5). More
specifically, those c’s which are close enough to zero to detect
positivity violations, but do not alter the intervention values of
interest for a too large proportion of units (and for too many inter-
vention values), are good candidates. Alternatively, as indicated
above, similar to the case when truncating the propensity score
for inverse probability of treatment weighting or TMLE, ad-hoc
choices could be used to decide when a treatment density is con-
sidered to be bounded away from zero (e.g., 0.01).

3.5 | The Case for Presenting Both Estimands

Consider again our running example where we are interested
in the probability of failure at 84 weeks under concentra-
tion levels of (0, 0, . . . , 0), . . . , (6, 6, . . . , 6). As indicated
above, adherent patients who are ultraslow metaboliz-
ers may not be able to have low concentration levels,
for example, 𝑔(0 |ultraslow, adherent) = 0. In such a case,
there is a strong case to redefine the estimand and not
enforce to calculate 𝐸

(
𝑌

(0,0, . . . ,0)
𝑡

)
. Now, suppose we have

𝑔84(6 |prior concentrations = 6, past covariates) > 0: obvi-
ously, there is no need to redefine the estimand. How-
ever, due to the finite sample the actual estimate may be
𝑔84(6 |prior concentrations = 6, past covariates) ≈ 0. Obviously,
we would in this region more likely rely on extrapolation than
changing the estimand.

Now, practically, whenever an estimate of the conditional treat-
ment density is close to zero, we do not necessarily know whether
this is a finite sample (or estimation) issue, or due to “infeasibili-
ty”, that is, an illogical intervention given the history of a patient.
Presenting Estimand 1 shows the case where nothing is infeasi-
ble and we rely on extrapolations; presenting Estimand 2, possi-
bly shown for multiple c’s, shows the change in the curve as we
consider more intervention trajectories to be infeasible. Both esti-
mands together give us a sense if main conclusions could change
when positivity violations are addressed differently.

4 | Monte-Carlo Simulations

In this section, we evaluate the proposed methods in three dif-
ferent simulation settings. Simulation 1 considers a very sim-
ple setting, as a basic reference for all approaches presented. In
Simulation 2, a survival setting is considered, to explore the sta-
bility of standard, unweighted g-computation in more sophisti-
cated setups. The third simulation is complex, and inspired by
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the data-generating process of the data analysis. It serves as the
most realistic setup for all method evaluations.

4.1 | Data Generating Processes and Estimands

Simulation 1: We simulated both a binary and normally dis-
tributed confounder, a continuous (normally distributed) inter-
vention and a normally distributed outcome—for 3 time points
and a sample size of 𝑛 = 10.000. The exact model specifications
are given in Appendix C.1. The intervention strategies of interest
comprised intervention values in the interval [2, 11] which were
constant over time; that is,

1
𝑡
= {(2,2,2), . . . , (11,11,11)}. The pri-

mary estimand 𝜓
1 is the CDRC (6) for 𝑡 = 1,2,3 and all 𝑎

𝑡
∈


1
𝑡
. The secondary estimand 𝜓

1
𝑤

is the weighted curve defined
through (14), with the weights (13), for the same intervention
strategies.

Simulation 2: We simulated a continuous (normally dis-
tributed) intervention, two covariates (one of which is a
confounder), an event outcome and a censoring indicator—for
5 time points and varying sample sizes of 𝑛1 = 500, 𝑛2 =

1.000, 𝑛3 = 10.000 and 𝑛4 = 50.000. The exact model spec-
ifications are given in Appendix C.2. The intervention
strategies of interest comprised intervention values in the
interval [−7, 13] which were constant over time; that is,


2
𝑡
= {(−7, −7, −7, −7, −7), . . . , (13,13,13,13,13)}. The estimand

𝜓
2 is the CDRC (6) for 𝑡 = 1,2,3,4,5, all 𝑎

𝑡
∈ 

2
𝑡

and under no
censoring (𝑐

𝑡
= (0, . . . , 0)).

Simulation 3: We simulated data inspired by the data generat-
ing process of the data example outlined in Sections 2 and 4.3
as well as Figure 3. The continuous intervention refers to drug
concentration (of evavirenz), modeled through a truncated nor-
mal distribution. The binary outcome of interest is viral failure.
Time-varying confounders, affected by prior interventions, are
weight and adherence. Other variables include co-morbidities
and drug dose (time-varying) we well as sex, genotype, age
and NRTI regimen. We considered 5 clinic visits and a sample
size of 𝑛 = 1.000. The exact model specifications are given in
Appendix C.3. The intervention strategies of interest comprised
concentration values in the interval [0, 10] which were constant
over time; that is, 

3
𝑡
= {(0,0,0,0,0), . . . , (10,10,10,10,10)}. The

primary estimand 𝜓3 is the CDRC (6) for 𝑡 = 1,2,3,4,5 and all
𝑎
𝑡
∈ 

3
𝑡
. The secondary estimand 𝜓

3
𝑤

is the weighted curve (14)
with the weights (13) for the same intervention strategies.

4.2 | Estimation and Evaluation

All simulations were evaluated based on the results of  =

1.000 simulation runs. We evaluated the bias of estimating 𝜓1
, 𝜓

2

and 𝜓
3 with standard parametric g-computation with respect

to the true CDRC. In Simulations 1 and 3 model specification
for 𝑔-computation was based on variable screening with LASSO,
Simulation 2 explored the idealized setting of using correct model
specifications. We further evaluated the bias of the estimated
weighted curve with the true weighted curve, for 𝑐 = 1; that is, we
looked whether 𝐸(𝑌𝑡

|𝐴
𝑡
= 𝑎

𝑡
, . . . , 𝐴0 = 𝑎0) could be recovered

for every intervention strategy of interest. Estimation was based

on the algorithm of Table 1. The density estimates, which are
required for estimating the weights, were based on both appro-
priate parametric regression models (i.e., linear regression) and
binning the continuous intervention into intervals; a computa-
tionally more sophisticated data-adaptive approach for density
estimation is considered in Section 4.3. We then compared the
estimated CDRC and weighted curve (𝑐 = 1) with other weighted
curves where 𝑐 = 0.01 and 𝑐 = 0.001. To estimate the iterated con-
ditional expectations of the weighted outcome, we used super
learning, that is, a data adaptive approach [4]. Our learner sets
included different generalized linear (additive) regression models
(with penalized splines, and optionally interactions), multivari-
ate adaptive regression splines, LASSO estimates and regression
trees—after prior variable screening with LASSO and Cramer’s V
[37]. Lastly, we visualize the conditional support of all considered
intervention strategies, in all simulations, as suggested in (17).

4.3 | Results

The results of the simulations are summarized in Figures 2, B1,
and B2.

In Simulation 1, applying standard g-computation to the contin-
uous intervention led to approximately unbiased estimates for all
intervention values, through all time points (Figure 2a); and inde-
pendent of the level of support (Figure B2a). The weighted curve,
with 𝑐 = 1, recovered the association 𝐸(𝑌1 |𝐴1 = 𝑎1) perfectly for
the first time point, independent of the density estimation strat-
egy (Figure 2b). For later time points, some bias can be observed
in regions of lower support (i.e., for intervention values between
9 and 11), see Figure B1a.

Simulation 2 shows a setting in which g-computation estimates
for the CDRC are not always unbiased, despite correct model
specifications! Figure 2c visualizes this finding for the fifth time
point: it can be seen that a sample size of ≥ 10.000 is needed for
approximately unbiased estimation of the CDRC over the range
of all intervention strategies. Note, however, that for some time
points lower sample sizes are sufficient to guarantee unbiased
estimation (Figure B1b).

The most sophisticated simulation setting 3 reveals some more
features of the proposed methods. First, we can see that in
areas of lowest support, toward concentration values close
to zero (Figure B2c), there is relevant bias of a standard
g-computation analysis (Figure 2d); whereas in areas of reason-
able to good support the CDRC estimates are approximately unbi-
ased. The weighted curve with 𝑐 = 1 can recover the associa-
tions 𝐸(𝑌𝑡

|𝐴
𝑡
= 𝑎

𝑡
, . . . , 𝐴1 = 𝑎1) (Figure 2e) but there is some

bias for later time points as the most critical area close to zero is
approached, independent of the method used for estimating the
weights (Figure 5d). Both Figures 2f and B1e highlight the behav-
ior of Estimand 2 for 𝑐 = 0.01 and 𝑐 = 0.001: it can be clearly seen
that the curves represent a compromise between the CDRC and
the association represented by the weighted curve (with 𝑐 = 1).
Evaluating the results for intervention values of zero, shows that
weighting the curve in areas of low support yields to a compro-
mise that moves the CDRC away from the estimated high prob-
abilities of viral failure to more moderate values informed by the
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FIGURE 2 | Results of the Monte-Carlo simulations.

5390 Statistics in Medicine, 2024



FIGURE 3 | Directed acyclic graph for the data analysis. The intervention variable is shown in green (efavirenz concentration), the outcome in
blue (viral load at the end of follow-up). Unmeasured variables are colored in gray. Both MEMS and weight are time-dependent confounders which are
affected by prior treatment nodes.

observed association. Knowledge of this behavior may be infor-
mative for the data analysis below.

5 | Data Analysis

We now illustrate the ideas based on the data from Bienczak
et al. [25], introduced in Section 2. We consider the trial
visits at 𝑡 = 0,6,36,48,60,84 weeks of 125 children on an
efavirenz-based treatment regime. The intervention of inter-
est is efavirenz mid-dose interval concentration (𝐴

𝑡
), defined as

plasma concentration (in mg∕L) 12 h after dose; the outcome
is viral failure (𝑌

𝑡
, defined as > 100 copies/mL). Measured

baseline variables, which we included in the analysis, are
L
𝟎
= {sex, genotype, age, the nucleoside reverse transcriptase

inhibitors drug (NRTI),weight}. Genotype refers to the
metabolism status (slow, intermediate, extensive) related to
the single nucleotide polymorphisms in the CYP2B6 gene, which
is relevant for metabolizing evafirenz and directly affects its
concentration in the body. Measured follow-up variables are Lt =

{weight, adherence (measured through memory capsMEMS),
dose}.

The assumed data generating process is visualized in the DAG in
Figure 3, and explained in more detail in Appendix D. Briefly,
both weight and adherence are time-dependent confounders,
potentially affected by prior concentration trajectories, which are
needed for identification of the CDRC.

Our target estimands are the CDRC (6) and the weighted curve
(14) at 𝑡 = 84 weeks. The intervention strategies of interest are


𝑡
= {(0,0,0,0), . . . , (6,6,6,6)}.

The analysis illustrates the ideas based on a complete case analy-
sis of all measured variables represented in the DAG (𝑛 = 58), but
excluding dose (not needed for identification) and MEMS (due to
the high proportion of missingness) [38].

We estimated the CDRC both with sequential and paramet-
ric g-computation using the intervention strategies 

𝑡
. The

estimation of the weighted curve followed the algorithm of
Table 1. The conditional treatment densities, which are needed
for the construction of the weights, were estimated both para-
metrically based on the implied distributions from linear mod-
els (for concentrations under 5 mg∕L) and with highly-adaptive
LASSO conditional density estimation (for concentrations ≥ 5
mg∕L) [32, 39]. This is because the density in the lower con-
centration regions were approximately normally distributed, but
more complex for higher values.

The conditional expectation of the weighted outcome (Step 4 of
the algorithm) was estimated data-adaptively with super learning
using the following learning algorithms: multivariate adaptive
regression splines, generalized linear models (also with interac-
tions), ordinal cumulative probability models, generalized addi-
tive models as well as the mean and median. Prior variable
screening, which was essential given the small sample size, was
based on both the LASSO and Cramer’s 𝑉.

We estimated the weighted curve for 𝑐 = 0.001,0.01,0.025,0.2,1.
We also calculate the support of the continuous intervention
strategies

𝑡
as described in Section 3.4.

5.1 | Results

The main results of the analyses are given in Figure 4.

Figure 4a,b show that the estimated CDRC (black solid line) sug-
gests higher probabilities of failure with lower concentration val-
ues. The curve is steep in the region from 0 to 2 mg, which is even
more pronounced for parametric g-computation when compared
to sequential g-computation (Figure B1f).

Both Figures 4a and B2d illustrate the low level of (conditional
support) support for extremely small concentration values close
to 0 mg/L.

Note that in Figure 4a the area shaded in dark blue relates to low
conditional support, defined as a proportion > 50% of weights
being unequal from 1; that is, more than 50% of observations
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FIGURE 4 | Results of the data analysis.

having an estimated conditional treatment density < 0.01 under
the respective intervention values. Intermediate, light and no
blue background shadings refer to percentages of 15%–50%,
5%–15% and < 5%, respectively. More details on how the con-
ditional support defined through weight summaries varies as
a function of 𝑐 and the intervention values is illustrated in
Figure 4c. It can be seen that with a choice of 𝑐 ≤ 0.025, for most
patients the actual intervention of interest seems feasible for con-
centrations values above 0.5 mg/L; however, concentrations≤ 0.5
mg/L seem unrealistic for many patients and thus weighting is
then used more often. As the proportion of weights, which are
unequal 1, do not change much between 𝑐 = 0.01 and 𝑐 = 0.025,
we report only curves for 𝑐 = 0.001 and 𝑐 = 0.01 in Figure 4a.

The weighted curves in Figure 4b are less steep in the crucial areas
close to zero and –as in the simulation studies– we observe a ten-
dency of the curves with 𝑐 = 0.001,0.01,0.025 to provide a visual
compromise between the CDRC and the estimand recovering the
relevant association (𝑐 = 1).

The weighted curves show the probability of failure under differ-
ent concentration levels, at least if the respective concentration
level is likely possible (realistic, probable) to be observed given the
patient’s covariate history; for patients where this seems unlikely,
patients rather have individual concentrations that lead to out-
comes comparable to the patient population with the respective
concentration trajectory. For example, if patients are adherent
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and slow metabolizers, it may be unlikely that they achieve low
concentration levels and we do not enforce the intervention of
interest. We let these patients rather behave individually in line
with outcomes typically seen for low concentration values.

The practical implication is that if we do not want to extrap-
olate in regions of low support and/or do not consider spe-
cific concentration values to be feasible for some patients, the
concentration-response curve is flatter. The current lower recom-
mended target concentration limit is 1 mg/L, at which we still
estimate high failure probabilities under standard g-computation
approaches. If , for example, we do not want to accept failure proba-
bilities < 10%—but are worried about positivity violations—, then
we see that main conclusions with respect to a lower recommended
target concentration limit would not change when using Estimand
2 in addition to Estimand 1 (Figure 4a).

We recommend to report results similar to Figure 4a, that is pre-
senting a figure that shows both Estimand 1 and Estimand 2 (pos-
sibly based on several 𝑐’s, informed by a graph as in Figure 4c).

6 | Discussion

We have introduced and evaluated various methods for causal
effect estimation with continuous multiple time-point interven-
tions. As an obvious first step, we investigated standard (para-
metric or sequential) g-formula based approaches for iden-
tification and estimation of the actual causal dose–response
curve. We emphasized that this has the advantage of sticking to
the estimand of interest, but with a relatively strong positivity
assumption which will likely be violated in most data analyses.
Our simulations were designed to explore how well such a stan-
dard approach may extrapolate in sparse data regions and how
the approach performs in both simple and complex settings. We
found that in simple scenarios the CDRC estimates were approx-
imately unbiased, but that in more complex settings sometimes
large sample sizes were needed for good performance and that
in regions of very poor support a relatively large bias could be
observed. These findings suggest that the toolkit for causal effect
estimation with longitudinal continuous interventions should
therefore ideally be broader.

We therefore proposed the use of a weight function which returns
the CDRC under enough conditional support, and makes use of
the crude associations between the outcome at time 𝑡 and the
treatment history otherwise. This choice ensures that the esti-
mand is always well-defined and one does not require positivity.
Our simulations suggest that the provided estimation algorithm
can indeed successfully recover the weighted estimand and illus-
trate the compromise that is practically achieved. As the pro-
posed weights may have skewed distributions, we highlighted
the importance of using a data-adaptive estimation approach,
though appropriate interval estimation, beyond using bootstrap-
ping, remains to be investigated.

We hope that our manuscript has shown that for continuous mul-
tiple time point interventions one has to ultimately make a trade-
off between estimating the CDRC as closely as possible, at the
risk of bias due to positivity violations and minimizing the risk of

bias due to positivity violations, at the cost of redefining the esti-
mand. If the scientific question of interest allows a redefinition
of the estimand in terms of longitudinal modified treatment poli-
cies [23, 40, 41] then this may be a great choice. Otherwise, it may
be helpful to use g-computation algorithms for continuous inter-
ventions, visualize the estimates in appropriate curves, calculate
the suggested diagnostics by estimating the conditional support
and then estimate the proposed weighted curves as a magnifying
glass for the curves behavior in areas of low support (where the
intervention of interest may not be feasible or realistic).

Our suggestions can be extended in several directions: it may be
possible to design different weight functions that keep the spirit
of modifying estimands under continuous interventions only in
areas of low support; the extent of the compromise, controlled by
the tuning parameter 𝑐, may be chosen data-adaptively and our
basic considerations for time-to-event data may be extended to
cover more estimands, particular in the presence of competing
risks.

6.1 | Software

All approaches considered in this paper have been implemented
in the 𝑅-packages CICI and CICIplus available at https://cran.r
-project.org/web/packages/CICI/index.html and https://github
.com/MichaelSchomaker/CICIplus.
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Appendix A

Additional Theory Details

A.1 | Iterated Nested Expectation Representation of
Estimand 1

Using (9) corresponds to a recursive definition of Estimand 1. For 𝑠 = 𝑡,
the integral corresponds to
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Moving to 𝑠 = 𝑡 − 1 yields
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Reevaluating the integral from 𝑠 = 𝑡 − 2, . . . , 0 then leads to
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This expression is identical to 𝔼
(
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𝑡
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)
under conditional sequential

exchangeability, positivity and consistency, which yields the sequential
g-formula listed in (7). The result is known from Bang and Robins [3].
Briefly, first recall that positivity can be defined as in (8), consistency is
the requirement that
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and sequential conditional exchangeability is defined as
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Suppose 𝑡 = 2. Then,
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where the first and third equality follow from the law of iterated
expectation, the second and fourth by conditional exchangeability (i.e.,
𝑌

𝑎1 ,𝑎0
∐

𝐴0 ∣ 𝐿0 and 𝑌
𝑎1 ,𝑎0

∐
𝐴1 ∣ 𝐿0, 𝐿1, 𝐴0), the fifth by definition and

the sixth by consistency. Similarly, we can derive (7) generically for any
𝑡 ∈  . For the conditional expectations to be well-defined, one needs the
positivity assumption.

A.2 | On Why the Weights (11) Lead to 𝑬
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Consider the recursive evaluation of the integral (12) from 𝑠 = 𝑡 to 𝑠 = 0,
which shows how the weights recover the association:
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A.3 | Iterated Nested Expectation Representation of
Estimand 2
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A.4 | Parametric 𝒈-Formula Representation

The weighted estimand, shown in the iterated weighted outcome repre-
sentation in (16) can, alternatively, also be rewritten as
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where the second term in (A.3) is
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Note that in the above notation 𝐿
𝑠

includes past outcomes, multiplied
with the respective weights.
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The equality follows from the knowledge that iterated nested expecta-
tion representations of the g-formula can be reexpressed as a traditional
(parametric) g-formula factorization because both representations essen-
tially standardize with respect to the post intervention distribution of the
time-dependent confounders [3, 6, 42]. In our case, the outcome is 𝑤

𝑡
𝑌
𝑡
.

A.5 | Time-to-Event Considerations

Suppose we have a time-ordering of
(
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𝑠
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for

units that do not have enough conditional support for the interven-
tion strategy of interest, that is, 𝐴

(𝑗)

𝑡
, we have to modify the estimation

algorithm of Table 1 as follows:

Step 1a/b Estimate the densities among those uncensored, and
without prior event (𝐶

𝑡
= 0, 𝑌

𝑡−1 = 0).
Step 2 Also, set 𝑐

𝑡
= 0.

Step 4 Fit the model for the weighted outcome among those
uncensored and without prior event, that is, estimate

𝔼
(
𝑤

𝑡

(
𝑎
(1)
𝑡
𝑐

)
�̃�

𝑡
|𝐴

𝑡
, 𝐶

𝑡
= 0, 𝑌

𝑡−1 = 0,H
𝑡

)
.

Step 5 Additionally, set �̃�
𝑡−1,𝑖 = 1, if 𝑌

𝑡−2,𝑖 = 1.

A.6 | Example Code for the Implementation of the Algorithm of Table 1

# load example efavirenz data from package CICI, select 2 time points for illustration
# variable order: sex metabolic log_age NRTI weight.0 efv.0 VL.0 adherence.1 weight.1 efv.1 VL.1
library(CICI); library(CICIplus); data(EFV); EFV.2 <- EFV[,1:11]

# manual implementation of estimand 2

# Step 0a: interventions are (efv.0, efv.1) = [(0,0),(0.5,0.5),(1,1)]
# Step 0b: define \tilde{Y}_1 = Y_1 = VL.1
Y.tilde.1 <- EFV.2$VL.1

### iteration: t=1
# Step 1a: estimate numerator density g(efv.1 | past)
# (assuming normality for illustration)
fitted.n.1 <- lm(efv.1 ̃ .,data=subset(EFV.2, select=-VL.1))
# Step 1b: estimate denominator density g(efv.1 | past up to efv.0)
fitted.d.1 <- lm(efv.1 ̃ sex+metabolic+log_age+NRTI+weight.0+efv.0,data=EFV.2)
# Step 2: set a_1=a_0=0
EFV.2.A <- EFV.2; EFV.2.A[,c("efv.0","efv.1")] <- 0
# Step 3a: evaluate densities at a=0
eval.n.1 <- dnorm(0,mean=predict(fitted.n.1, newdata=EFV.2.A),sd=summary(fitted.n.1)$sigma)
eval.d.1 <- dnorm(0,mean=predict(fitted.d.1, newdata=EFV.2.A),sd=summary(fitted.d.1)$sigma)
# Step 3b: estimate weights with c=0.01
wf <- function(num,den,c)as.numeric(num > c) + as.numeric(num <= c)*(num/den)
w.1 <- wf(eval.n.1,eval.d.1,c=0.01)
# Step 4: estimate iterated weighted outcome regression
# (binomial as all wY are 0/1 in this specific case, otherwise gaussian)
mY.1 <- glm(I(Y.tilde.1*w.1) ̃ ., data=subset(EFV.2, select=-VL.1), family="binomial")
# Step 5: predict iterated weighted outcome under intervention
Y.tilde.0 <- predict(mY.1, newdata=EFV.2.A, type="response")

### iteration: t=0
# Step 1a: estimate numerator density g(efv.0 | past)
fitted.n.0 <- lm(efv.0 ̃ sex+metabolic+log_age+NRTI+weight.0,data=EFV.2)
# Step 1b: estimate denominator density g(efv.0)
fitted.d.0 <- lm(efv.0 ̃1,data=EFV.2)
# Step 2: set a_0=0 (done above already)
# Step 3a: evaluate densities at a=0
eval.n.0 <- dnorm(0,mean=predict(fitted.n.0, newdata=EFV.2.A),sd=summary(fitted.n.0)$sigma)
eval.d.0 <- dnorm(0,mean=predict(fitted.d.0, newdata=EFV.2.A),sd=summary(fitted.d.0)$sigma)
# Step 3b: estimate weights with c=0.01
w.0 <- wf(eval.n.0,eval.d.0,c=0.01)
# Step 4: estimate iterated (unweighted) outcome regression
mY.0 <- glm(Y.tilde.0 ̃ sex+metabolic+log_age+NRTI+weight.0+efv.0, data=EFV.2)
# Step 5: final estimate under intervention
estimate <- weighted.mean(predict(mY.0, newdata=EFV.2.A),w=w.0)

# Step 6: Repeat steps 1-5 for a=(0.5,0.5) and a=(1,1)
# Step 7: Bootstrapping

# Note: the online material contains code on how to arrive at exactly the same result with the package
# Note: typically super learning is used to estimate the iterated outcome regressions, and the
# densities are preferably estimated non-parametrically. The package offers these options.
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Appendix B

Additional Results

B.1 | Simulation and Analysis Results

FIGURE B1 | Additional simulation and analysis results.

5397



B.2 | Intervention Support

FIGURE B2 | Conditional support for intervention strategies of interest, for both the simulation settings and the data analysis.

Appendix C

Data-Generating Processes

C.1 | DGP for Simulation 1

For 𝑡 = 0:
L1

0 ∼ B(𝑝 = 0.3)

L2
0 ∼ N

(
𝜇 = −1 + 2 × L1

0, 𝜎 = 1
)

A0 ∼ N
(
𝜇 = 7 + L1

0 + 0.7 × L2
0, 𝜎 = 1

)

Y0 ∼ N
(
𝜇 = −1 + 0.5 × A0 + 0.5 × L2

0, 𝜎 = 1
)

For 𝑡 = 1, 2:

L1
𝑡
∼ B

(
𝑝 = 1∕

(
1 + exp

(
−

(
−4 + L1

𝑡−1 + 0.15 × L2
𝑡−1 + 0.15 × A

𝑡−1
))))

L2
𝑡
∼ N

(
𝜇 = 0.5 × L1

𝑡
+ 0.25 × L2

𝑡−1 + 0.5 × A
𝑡−1, 𝜎 = 1

)

A
𝑡
∼ N

(
𝜇 = A

𝑡−1 + L1
𝑡
− 0.1 × L2

𝑡
, 𝜎 = 0.5

)

Y
𝑡
∼ N

(
𝜇 = −2 + 0.25 × A

𝑡
− 0.2 × L1

𝑡
+ L2

𝑡
, 𝜎 = 0.5

)

C.2 | DGP for Simulation 2

For 𝑡 = 0:
L1

0 ∼ B(𝑝 = 0.3)

L2
0 ∼ N

(
𝜇 = −1 + 2 × L1

0, 𝜎 = 1
)

A0 ∼ N
(
𝜇 = 7 + L1

0 + 0.7 × L2
0, 𝜎 = 1

)

Y0 ∼ B
(
𝑝 = 1∕

(
1 + exp

(
−
(
−4 + 0.2 × A0 + 0.5 × L2

0
))))

For 𝑡 = 1,2,3,4:

L1
𝑡
∼ B

(
𝑝 = 1∕

(
1 + exp

(
−

(
−4 + L1

𝑡−1 + 0.15 × L2
𝑡−1 + 0.15 × A

𝑡−1
))))

L2
𝑡
∼ N

(
𝜇 = 0.5 × L1

𝑡
+ 0.25 × L2

𝑡−1 + 0.5 × A
𝑡−1, 𝜎 = 1

)

A
𝑡
∼ N

(
𝜇 = −2 + 0.5 × A

𝑡−1 + 0.75 × L1
𝑡
+ 0.35 × L2

𝑡
, 𝜎 = 0.5

)

C
𝑡
∼ B

(
𝑝 = 1∕

(
1 + exp

(
−

(
−2 + 0.5 × L1

𝑡
+ 0.2 × A

𝑡

))))

Y
𝑡
∼ B

(
𝑝 = 1∕

(
1 + exp

(
−

(
−4 + 0.2 × A

𝑡
+ 0.5 × L2

𝑡

))))
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C.3 | DGP for Simulation 3

Both baseline data (𝑡 = 0) and follow-up data (𝑡 = 1, . . . , 4) were created
using structural equations using the 𝑅-package simcausal. The below
listed distributions, listed in temporal order, describe the data-generating
process. Our baseline data consists of sex, genotype, log(age), log(weight)
and the respective Nucleoside Reverse Transcriptase Inhibitor (NRTI).
Time-varying variables are co-morbidities (CM), dose, efavirenz mid-dose
concentration (EFV), elevated viral load (= viral failure, VL) and adher-
ence (measured through memory caps, MEMS), respectively. In addi-
tion to Bernoulli (𝐵), Multinominal (MN) and Normal (𝑁) distribu-
tions, we also use truncated normal distributions; they are denoted by

𝑁
[𝑎,𝑎1 ,𝑎2 ,𝑏,𝑏1 ,𝑏2]

, where 𝑎 and 𝑏 are the truncation levels. Values which are
smaller than 𝑎 are replaced by a random draw from a 𝑈(𝑎1, 𝑎2) distribu-
tion and values greater than 𝑏 are drawn from a 𝑈(𝑏1, 𝑏2) distribution,
where 𝑈 refers to a continuous uniform distribution. For the specified
multinomial distributions, probabilities are normalized, if required, such
that they add up to 1. The data-generating process reflects the following
considerations: more complexity than the first two simulation settings in
terms of distribution shape and variety, as well as non-linearities; similar-
ity to the assumed DGP in the data analysis; generation of both areas of
poor and good conditional intervention support, such that the proposed
weighting scheme can be evaluated in all its breadth.

For 𝑡 = 0:
Sex0 ∼ B(𝑝 = 0.5)

Genotype0 ∼ MN
⎛
⎜
⎜
⎜
⎝

𝑝1 = 1∕(1 + exp(−(−0.103 + I(Sex0 = 1) × 0.223 + I(Sex0 = 0) × 0.173)))
𝑝2 = 1∕(1 + exp(−(−0.086 + I(Sex0 = 1) × 0.198 + I(Sex0 = 0) × 0.214)))
𝑝3 = 1∕(1 + exp(−(−0.090 + I(Sex0 = 1) × 0.082 + I(Sex0 = 0) × 1.070)))

⎞
⎟
⎟
⎟
⎠

Age0 ∼ 𝑁
[0.693,0.693,1,2.8,2.7,2.8](𝜇 = 1.501, 𝜎 = 0.369)

Weight0 ∼ 𝑁
[2.26,2.26,2.67,3.37,3.02,3.37](𝜇 = (1.5 + 0.2 × Sex + 0.774 × Age) × 0.94), 𝜎 = 0.369)

NRTI0 ∼ MN
⎛
⎜
⎜
⎜
⎝

𝑝1 = 1∕
(
1 + exp

(
−

(
−0.006 + I

(
Age0 > 1.4563

)
× Age0 × 0.1735 + I

(
Age0 ≤ 1.4563

)
× Age0 × 0.1570

)))

𝑝2 = 1∕
(
1 + exp

(
−
(
−0.006 + I

(
Age0 > 1.4563

)
× Age0 × 0.1735 + I

(
Age0 ≤ 1.4563

)
× Age0 × 0.1570

)))

𝑝3 = 1∕
(
1 + exp

(
−
(
−0.006 + I

(
Age0 > 1.4563

)
× Age0 × 0.1570 + I

(
Age0 ≤ .14563

)
× Age0 × 0.1818

)))

⎞
⎟
⎟
⎟
⎠

CM0 ∼ B(𝑝 = 0.15)

Dose0 ∼ MN

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑝1 = 1∕
(

1 + exp
(
−

(
5 +

√(
Weight0

)
× 8 − Age0 × 10

)))

𝑝2 = 1∕
(

1 + exp
(
−

(
4 +

√(
Weight0

)
× 8.768 − Age0 × 9.06

)))

𝑝3 = 1∕
(

1 + exp
(
−

(
3 +

√(
Weight0

)
× 6.562 − Age0 × 8.325

)))

𝑝4 = 1 − (𝑝1 + 𝑝2 + 𝑝3)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

EFV0 ∼ 𝑁
[0.2032,0.2032,0.88,21,8.376,21](𝜇 = −8 + Age0 × 0.1 + Genotype0 × 4.66 + Dose0 × 0.1+

I(Genotype0 ≤ 2) × 2.66 + I(Genotype0 = 3) × 4.6, 𝜎 = 4.06)

VL0 ∼ B
(
𝑝 = 1 −

(
1∕

(
1 + exp

(
−

(
0.4 + 1.9 ×

√
EFV0

)))))

For 𝑡 ≥ 1:
MEMS

𝑡
∼ B(𝑝 = 1∕(1 + exp(−(0.71 + CM

𝑡−1 × 0.31 + MEMS
𝑡−1 × I(𝑡 ≥ 2) × 0.31))))

with MEMS
𝑡−1usedasof 𝑡 = 2

Weight
𝑡
∼ 𝑁

[2.26,2.26,2.473,3.37,3.2,3.37]
(
𝜇 = Weight

𝑡−1 × 1.04 − 0.05 × I(CM
𝑡−1 = 1), 𝜎 = 0.4

)

CM
𝑡
∼ B

(
𝑝 = 1 −

(
1∕

(
1 + exp

(
−
(
0.5 × I(CM

𝑡−1 = 1) + Age0 × 0.1 + Weight
𝑡−1 × 0.1

)))))

Dose
𝑡
∼ MN

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑝1 = (1∕
(

1 + exp
(
−

(
4 + Dose

𝑡−1 × 0.5 +

√
Weight

𝑡
× 4 − Age0 × 10

)))

𝑝2 = (1∕
(

1 + exp
(
−

(
−8 + Dose

𝑡−1 × 0.5 +

√
Weight

𝑡
× 8.568 − Age0 × 9.06

)))

𝑝3 = (1∕
(

1 + exp
(
−

(
20 + Dose

𝑡−1 × 0.5 +

√
Weight

𝑡
× 6.562 − Age0 × 18.325

)))

𝑝4 = 1 − (𝑝1 + 𝑝2 + 𝑝3)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

EFV
𝑡
∼ 𝑁

[0.2032,0.2032,0.88,21.84,8.37,21.84](𝜇 = 0.1 × DOSE
𝑡
+ 0.1 × MEMS

𝑡
+ I(Genotype0 ≤ 2) × 2.66 + I(Genotype0 = 3) × 4.6, 𝜎 = 4.06)

VL
𝑡
∼ B

(
𝑝 = 1 −

(
1∕

(
1 + exp

(
−

(
1 − 0.6 × I(𝑡 = 1) − 1.2 × I(𝑡 = 4) + 0.1 × CM

𝑡−1 + (2 − 0.2 × I(𝑡 = 3)) ×
√

EFV
𝑡

)))))
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Appendix D

More on the DAG

The measured efavirenz concentration depends on the following fac-
tors: the dose itself (which is recommended to be assigned based on
the weight-bands), adherence (without regular drug intake, the concen-
tration becomes lower), and the metabolism characterized in the gene
CYP2B6, through the 516G and 983T polymorphisms [43]. Given the
short half-life of the drug relative to the measurement interval, no arrow
from EFV

𝑡
to EFV

𝑡+1 is required. Viral failure is essentially caused if
there is not enough drug concentration in the body; and there might
be interactions with co-morbidities and co-medications. Note also that
co-morbidities, which are reflected in the DAG, are less frequent in the
given data analysis as trial inclusion criteria did not allow children with
active infections, treated for tuberculosis and laboratory abnormalities
to be enrolled into the study. Both weight and MEMS (= adherence)
are assumed to be time-dependent confounders affected by prior treat-
ments (= concentrations). Weight affects the concentration indirectly
through the dosing, whereas adherence affects it directly. Adherence
itself is affected by prior concentrations, as too high concentration val-
ues can cause nightmares and other central nervous system side effects, or
strong discomfort, that might affect adherence patterns. Weight is affected
from prior concentration trajectories through the pathway of viral load
and co-morbidities. Finally, both weight and adherence affect viral out-
comes not only through EFV concentrations, but potentially also through
co-morbidities such as malnutrition, pneumonia and others.
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