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Abstract
Background Preterm birth (PTB) is a serious health problem. PTB complications is the main cause of death in infants 
under five years of age worldwide. The ability to accurately predict risk for PTB during early pregnancy would allow 
early monitoring and interventions to provide personalized care, and hence improve outcomes for the mother and 
infant.

Objective This study aims to predict the risks of early preterm (< 35 weeks of gestation) or very early preterm (≤ 26 
weeks of gestation) deliveries by using high-resolution maternal urinary metabolomic profiling in early pregnancy.

Design A retrospective cohort study was conducted by two independent preterm and term cohorts using 
high-density weekly urine sampling. Maternal urine was collected serially at gestational weeks 8 to 24. Global 
metabolomics approaches were used to profile urine samples with high-resolution mass spectrometry. The significant 
features associated with preterm outcomes were selected by Gini Importance. Metabolite biomarker identification 
was performed by liquid chromatography tandem mass spectrometry (LCMS-MS). XGBoost models were developed 
to predict early or very early preterm delivery risk.

Setting and participants The urine samples included 329 samples from 30 subjects at Stanford University, CA for 
model development, and 156 samples from 24 subjects at the University of Alabama, Birmingham, AL for validation.

Results 12 metabolites associated with PTB were selected and identified for modelling among 7,913 metabolic 
features in serial-collected urine samples of pregnant women. The model to predict early PTB was developed using 
a set of 12 metabolites that resulted in the area under the receiver operating characteristic (AUROCs) of 0.995 (95% 
CI: [0.992, 0.995]) and 0.964 (95% CI: [0.937, 0.964]), and sensitivities of 100% and 97.4% during development and 
validation testing, respectively. Using the same metabolites, the very early PTB prediction model achieved AUROCs 
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Introduction
Preterm birth (PTB: delivery before 37 weeks’ gestation) 
is a serious pregnancy health problem [1, 2]. PTB com-
plications are the main cause of death in infants [3–5]. 
The risk of PTB is mainly based on clinical criteria, physi-
cal examination, measurement of cervical length (CL) 
with transvaginal ultrasound (TVUS) during the 2nd or 
3rd trimester [6, 7]. However, risk stratification at a later 
stage in pregnancy is not instrumental to guide early 
intervention. To improve prenatal care and optimize the 
clinical benefits of prenatal screening tests, early identi-
fication of pregnant women at risk for PTB is warranted.

Recent machine-learning techniques have attempted to 
construct models to predict during pregnancy the risk of 
having PTB [8, 9]. These prediction models were devel-
oped using pre-defined clinical risk factors (psychosocial, 
sociodemographic, and medical) [10–12] or variables 
from electronic health records (EHRs) [13]. Molecular 
biomarkers, including maternal circulating transcripts, 
proteins, and metabolites, have been identified, which are 
associated with fetal growth, gestational age (GA) dating, 
and PTB outcome [14–24]. We have performed maternal 
serological metabolomic profiling [21] to develop meta-
bolic-pathway-based models to assess fetal GA and pre-
dict risk of PTB, which outperformed a commercialized 
predictor (IBP4/SHBG ratio [25]). Such findings have 
revealed the potential of using low-cost and rapid sero-
logical tests as methods to predict risk of PTB, especially 
in low-resource areas where ultrasound measurements 
are unreliable and cost-prohibitive.

Because 70% of urinary molecular content originates 
from the kidneys and urinary tracts with the remaining 
30% from the circulation in healthy individuals, molecu-
lar profiling of the urinary content [26, 27] can provide 
insights into both renal and systemic dysfunctions. Our 
recent study characterized the weekly baseline profile of 
the human urinary metabolome during pregnancy, which 
provides a high-resolution molecular reference [22] for 
future studies of adverse pregnancy outcomes. In this 
study, we hypothesized that aberrations from the normal 
urinary metabolomic profile may identify those pregnan-
cies at risk for PTB. Our findings suggest that measure-
ments of urinary metabolomic biomarkers may serve as a 

noninvasive, cost-effective, and robust approach for PTB 
prediction during the 1st or 2nd trimester.

Methods
PTB definition
In this study, a healthy full-term pregnancy was defined 
as a pregnancy ending with a delivery at ≥ 37 weeks’ GA 
without known complications. PTB was subcategorized 
into two types: early preterm (< 35 weeks’ GA) and very 
early preterm (≤ 26 weeks’ GA) spontaneous (i.e., not 
medically induced) deliveries.

Cohort construction
30 (19 full-term, 11 preterm) mothers who delivered at 
Stanford University (SU, Stanford, CA) were recruited to 
develop the PTB model, and 24 (12 full-term, 12 preterm) 
mothers who delivered at the University of Alabama, 
Birmingham (UAB) were recruited and used to validate 
the model. All enrolled patients had singleton pregnan-
cies. Pregnant women diagnosed with preeclampsia 
were excluded. This research was done without patient 
involvement. Patients were not invited to comment 
on the study design and were not consulted to develop 
patient relevant outcomes or interpret the results. 
Patients were not invited to contribute to the writing or 
editing of this document for readability or accuracy.

Samples
Using a previously described urine collection protocol 
[27], urine samples (n = 485) were collected longitudinally 
from 54 pregnant women. All these samples were gath-
ered from the midstream of fasting urine in the morn-
ing. These pregnant women represented a diverse range 
of races, ethnicities, geographic locations, and socio-
economic backgrounds. The distributions of sample 
collection and delivery timepoints for women who deliv-
ered full-term or preterm in the two cohorts are shown 
in Fig.  1. The SU cohort used for model development 
comprised of 19 full-term pregnancies with 222 urine 
samples collected in the 1st (n = 49) and 2nd (n = 173) 
trimesters, and 11 preterm pregnancies with 107 urine 
samples collected in the 1st (n = 24) and 2nd (n = 83) tri-
mesters. The UAB cohort used for model validation had 

of 0.950 (95% CI: [0.878, 0.950]) and 0.830 (95% CI: [0.687, 0.826]), and sensitivities of 95.0% and 60.0% during 
development and validation, respectively.

Conclusion Models for predicting risk of early or very early preterm deliveries were developed and tested using 
metabolic profiling during the 1st and 2nd trimesters of pregnancy. With patient validation studies, risk prediction 
models may be used to identify at-risk pregnancies prompting alterations in clinical care, and to gain biological 
insights of preterm birth.

Keywords Early pregnancy, Preterm risk prediction, Spontaneous preterm birth, Biomarker, Urinary metabolite, LC-
MS/MS
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12 full-term pregnancies with 78 urine samples collected 
in the 3rd trimester and 12 preterm pregnancies with 78 
urine samples collected in the 1st (n = 5) and 2nd (n = 73) 
trimesters. Additional cohort demographics are shown in 
Table 1.

Ethics approval and consent to participate
The study was approved by ethics committees at Stanford 
University and the University of Alabama, Birmingham, 
and written informed consents were obtained from all 
participants. All methods were carried out in accordance 
with relevant guidelines and regulations.

Urinary metabolite extraction and global liquid 
chromatography mass spectrometry (LC-MS) analysis
As previously described [22], urinary metabolites were 
extracted using a protein precipitation-based approach 
and then subjected to LC-MS/MS global metabolomic 
profiling analyses. 10 µL of urine was extracted with 100 
µL of methanol containing 5  µg/mL of 13C5, 15N-l-pro-
line, 13C6-l-arginine, and D5-l-glutamine. These exter-
nally spiked exogenous isotope-labelled metabolites were 
used as references for sample preparation and extrac-
tion efficiency. The extract was vortexed for 1  min and 

centrifuged at 12,000×g for 5 min. 90 µL of supernatant 
was then collected for the global metabolomics analyses.

The QC sample was generated by pooling a mixture of 
10 µL of each of the full-term and preterm urine samples 
into a single tube [28]. Samples from full-term and pre-
term pregnancies as well as QC samples were injected 
into the MS. For batch analyses, QC urine samples were 
analyzed repetitively at a frequency of one QC injection 
per 10 testing samples to allow for systematic assess-
ments of the data quality. Urine samples were injected 
using a LC metabolomics platform consisting of hydro-
philic interaction chromatography (HILIC) and global 
MS analysis using a Vanquish UHPLC system coupled to 
a Q Exactive plus and Q Exactive HF hybrid Quadrupole-
Orbitrap mass spectrometers (ThermoFisher, San Jose, 
CA).

Data preprocessing and statistics
As previously described [22], data preprocessing was per-
formed to convert the MS raw data into a data matrix of 
relative abundance of metabolites among all samples. The 
obtained features were normalized by a robust QC-based 
locally estimated scatterplot smoothing (LOESS) signal 
correction approach, and each feature was independently 

Fig. 1 The sample distributions in the two cohorts. (A) Charts of urine collection timepoints for Stanford University (SU) and University of Alabama at 
Birmingham (UAB) cohorts. Each line represents an individual patient. Diamonds and triangles indicate sample collection and delivery dates, respectively. 
(B) Distributions of sample collection (dashed lines) and delivery (solid lines) times for full-term (blue) and very and late preterm (red) pregnancies in the 
SU and UAB cohorts

 



Page 4 of 11Zhang et al. BMC Pregnancy and Childbirth          (2024) 24:783 

corrected by fitting a LOESS curve to the signal response 
measured in QC replicates. This procedure was done 
using an R xcms package. Metabolite values in each sam-
ple were then normalized by the median values measured 
with QC samples to reduce any batch effects. Further 
normalization was performed using a probabilistic quo-
tient normalization method [29].

Metabolomic features with coefficient variation 
(CV) ≤ 20% in QC and missing values in ≤ 30% of sam-
ples were selected for downstream analyses. Differential 
expression (DE) was performed using DESeq2 [30]. The 
Gini Index (Gini Impurity) is essentially the probability of 
a new record being incorrectly classified at a given node 
in a decision tree, based on the training data. Through 
weighted by the proportion of samples reaching that node 
in each individual decision tree, the Gini Importance (the 
mean of a feature’s total decrease in Gini Index) could be 
calculated. This is effectively a measure of how important 
a feature is for estimating the value of the target vari-
able across all the trees. A higher mean decrease in Gini 
indicates higher feature importance [31, 32]. Therefore, 
metabolites that were significantly associated with PTB 
were selected using Gini Importance based on the impu-
rity reduction of splits. Partial least-squares discrimi-
nant analysis (PLS-DA) was performed to characterize 
metabolomic profiling of samples collected at the 1st and 
2nd trimesters. KEGG (Kyoto Encyclopedia of Genes and 
Genomes) pathway database [33] was used to identify the 
metabolic pathways associated with PTB. The P-value of 
the metabolic pathway was calculated by the one-sided 

Fisher exact test and corrected using false discovery rate 
to control the false positive rate of the analysis results. 
And the enrichment value of each metabolic pathway 
was calculated as the ratio of the number of differentially 
expressed genes to the number of genes annotated to that 
pathway. The P-Value (less than 0.05) and enrichment 
value were combined to determine the significant enrich-
ment pathways [34].

All statistical analyses were preformed using R pack-
ages, mainly including pROC [35], ropls [36], mlr [37], 
clusterProfiler [38], survival [39].

Metabolite identification and metabolite-based modeling
Metabolite identification (ID) was performed as a tier 1 
or 2 ID with chemical standards according to MSI [40]. 
With tandem mass spectrometry (MS/MS, Thermo Q 
Exactive plus) data of urine samples and manual review 
confirmation, the generated MS1/MS2 profiles were 
searched in public databases: HMDB  (   h t t p : / / w w w . h m d b . 
c a /     ) , MoNA (http:// mona.fi ehnlab. ucda vis.edu/),  M a s s B a 
n k (http://www.massbank.jp/), METLIN  (   h t t p s : / / m e t l i n . s 
c r i p p s . e d u     ) , and NIST (https://www.nist.gov/). The refer-
ence compounds of the metabolites of interest were pro-
cured and subjected to a tier one ID comparing retention 
times and MS1 and MS2 patterns with biomarker candi-
dates using the same LC-MS/MS protocol.

The XGBoost models were developed to predict risk 
for early and very early PTB deliveries using the meta-
bolic features, of which structure IDs were determined. 
All pregnancies were risk-stratified into categories of 

Table 1 Demographics and birth characteristics of the development and validation cohorts
SU Cohort UAB Cohort
Early PTB
(n = 11)

Very early PTB (n = 2) Full-term
(n = 19)

P-value Early PTB
(n = 12)

Very early PTB (n = 4) Full-term
(n = 12)

P-value

Maternal Age, mean ± SD 29.6 ± 7.3 38.5 ± 9.2 32.2 ± 4.7 0.259 27.9 ± 4.4 27.5 ± 5.1 25.4 ± 4.9 0.415
GA weeks at del, mean ± SD 30.4 ± 4.4 22.0 ± 1.4 39.5 ± 1.2 < 0.001 28.5 ± 3.4 24.8 ± 1.3 38.0 ± 1.2 < 0.001
Race, N (%) < 0.001 0.01
American-Indian 1 (9.1) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
Asian 1 (9.1) 1 (50.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
African-American 1 (9.1) 0 (0.0) 0 (0.0) 9 (75.0) 1 (25.0) 12 (100.0)
Indian 1 (9.1) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
Pacific Islander 1 (9.1) 1 (50.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
White 4 (36.4) 0 (0.0) 19 (100.0) 2 (16.7) 2 (50.0) 0 (0.0)
Other 2 (18.2) 0 (0.0) 0 (0.0) 1 (8.3) 1 (25.0) 0 (0.0)
Body mass index, mean ± SD 27.7 ± 5.4 30.9 ± 1.9 22.4 ± 3.1 0.003 30.9 ± 10.3 28.9 ± 9.9 28.3 ± 7.3 0.778
Delivery mode, n (%) < 0.001 0.006
C-Section 8 (72.7) 0 (0.0) 6 (31.6) 5 (41.7) 3 (75.0) 0 (0.0)
NSVD 3 (27.3) 2 (100.0) 12 (63.2) 7 (58.3) 1 (25.0) 12 (100.0)
OVD 0 (0.0) 0 (0.0) 1 (5.3) 0 (0.0) 0 (0.0) 0 (0.0)
History of preterm del, n (%) 0.042 0.619
No 5 (45.5) 0 (0.0) 16 (84.2) 0 (0.0) 0 (0.0) 2 (16.7)
Yes 6 (54.5) 2 (100.0) 3 (15.8) 12 (100.0) 4 (100.0) 10 (83.3)
Values are mean ± SD or numbers (percentages). SD: Standard deviation; IQR: Interquartile range; NSVD: Normal spontaneous vaginal delivery; OVD: Operative 
vaginal delivery. Del: deliveries

http://www.hmdb.ca/
http://www.hmdb.ca/
http://mona.fiehnlab.ucdavis.edu/
http://www.massbank.jp/
https://metlin.scripps.edu
https://metlin.scripps.edu
https://www.nist.gov/
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low- and high-PTB risks at the time of urine serial sam-
plings. To evaluate model performance, receiver oper-
ating characteristic curves (ROCs) and area under the 
curve (AUCs) were used to evaluate prediction perfor-
mance. Multivariable Cox regression was performed for 
subpopulation comparison. Based on the observed sam-
ple statistics after the predictive model grouping, Kaplan-
Meier survival analysis was adopted to calculate the 
probability that the pregnant woman will be able to con-
tinue the pregnancy in each gestational week by the mul-
tiplication theorem of probabilities [41]. The continuous 
curves with the gestational week as the horizontal axis 
and the probability of continuous pregnancy as the verti-
cal axis were drawn to illustrate the relationship between 
the gestational week and the ongoing pregnancy rate in 
different PTB risk groups. Through the survival analysis 
method, the probabilities of delivery in different gesta-
tional week could be compared between PTB low and 
high-risk categories to further validate the performance 
of the predictive models.

Results
A unique PTB-associated metabolomic pattern and 
metabolic pathway analyses
The study workflow is as diagramed in Fig. 2A. Outlined 
in Fig.  2B, after QC, data filtering, and normalization, 
a total of 7,913 metabolic features were identified by 
LC-MS metabolomic profiling of the SU cohort. These 
features were examined globally with unsupervised 
clustering algorithm (PLS-DA, Supplemental Fig.  1), 
revealing unique metabolomic patterns in full-term 
or preterm pregnancies in the 1st and 2nd trimesters. 
Pathway enrichment analyses revealed significant path-
ways (P < 0.05) associated with early and very early pre-
term deliveries (Fig.  3A). Both share similar significant 
metabolic pathway enrichment (Fig.  3B): pentose and 
glucuronate interconversions; ascorbate and aldarate 
metabolism; valine, leucine, and isoleucine biosynthe-
sis; histidine metabolism; arginine and proline metabo-
lism; lysine degradation; and alanine/aspartate/glutamate 
metabolism.

PTB predictive metabolite biomarkers
Analyses of the Gini Importance of metabolic fea-
tures (Fig.  2C) comparing early PTB with full-term uri-
nary metabolomes revealed 47 maternal metabolite 
features (Gini Importance > 0.01) significantly associ-
ated with early preterm deliveries. 27/47 compounds 
were structurally identified by LC-MS/MS profil-
ing and reference compound matching analyses. To 
develop a metabolic panel predictive of early outcomes, 
XGBoost multivariate modeling analysis was per-
formed. 12/27 compounds were found to have a model 
importance > 0 (Supplemental Fig.  2): L-prolinamide, 

4,6-dimethyl-2(1  H)-pyrimidinone, citraconic acid, 
n-butyl lactate, D-α-hydroxyglutaric acid, oxoadipic 
acid, L-carnitine, (2E)-decenoic acid, 5-hexyltetrahydro-
2-oxo-3-furancarboxylic acid, L-1,2,3,4-tetrahydro-beta-
carboline-3-carboxylic acid, glutamyl-hydroxyproline, 
and N-[4-amino-2-(butylsulfanyl)-6-oxo-1  H-pyrimi-
din-5-yl]furan-2-carboxamide. Figure  4A illustrates the 
confirmation of these 12 metabolites with reference com-
pound standards by MS/MS analyses. When comparing 
full-term vs. preterm samples, unique and differentiat-
ing GA patterns of these 12 metabolites were observed 
(Fig. 4B).

Performance of the early PTB prediction model
The 12-maternal-urine-metabolite-based models devel-
oped were used to predict the two subsets of PTB from 
those full-term pregnancies. In Supplemental Fig.  3A, 
the 12-compound panel can predict early PTB with an 
AUC of 0.995 for the SU training cohort and 0.964 for the 
UAB testing cohort. At a sensitivity of 100% (for SU) or 
97.4% (for UAB), our early preterm delivery risk predic-
tive model achieved a PPV of 88.4% and 88.4% for SU and 
UAB, respectively (Supplemental Table 1). Supplemental 
Fig.  3B shows that the 12-compound panel can predict 
very early preterm delivery with AUC of 0.950 and 0.830 
for SU and UAB cohorts, respectively. At a sensitivity of 
95% (for SU) and 60% (for UAB), our very early preterm 
delivery predictive model achieved a PPV of 48.7% and 
56.2% for SU and UAB, respectively.

We performed a Kaplan-Meier analysis to identify the 
delivery dates for pregnancies predicted to be at risk of 
early or very early preterm deliveries (Supplemental 
Fig. 4). When comparing GA at delivery between low and 
high-risk pregnancies, a significant shift was observed 
with high-risk pregnancies delivering significantly earlier 
(P < 0.001 for early preterm delivery prediction in either 
SU or UAB cohorts) during gestation. A similar trend 
was observed for the very early preterm delivery predic-
tors when compared with deliveries at term.

Discussion
Summary of main findings
We recruited pregnant women from two centers in the 
US to explore the ability of the women’s pregnancy uri-
nary metabolome to predict early premature birth (< 35 
weeks’ GA) or very early premature birth (≤ 26 weeks’ 
GA) from full-term pregnancies. Among the global 
metabolomic features obtained from the original seri-
ally collected urine metabolomics profiling, 12 urinary 
metabolites were identified predictive of early preterm 
delivery outcomes. Based on these metabolites, we estab-
lished early as well as very early preterm delivery risk 
prediction models using the urine samples collected 
in the 8th to 24th weeks of pregnancy. Our two models 
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were validated to effectively predict PTB risks in racially 
diverse pregnancies (primary group: SU, White; UAB, 
African-American). These results support the hypoth-
esis that longitudinal analysis of urine metabolites of a 
women during pregnancy can predict the occurrence 
of an early or a very early preterm delivery and provide 
an effective no-invasive and low-cost PTB detection 
method.

Comparison with prior work
This current work is an extension of our previous find-
ings [22] that the weekly baseline profile of the human 

pregnancy metabolome provides a high-resolution 
molecular reference for future studies of adverse preg-
nancy outcomes. In terms of predictors, sampling matri-
ces, and test methods, our PTB risk prediction models 
were different from previous studies [9, 10, 19, 31, 42–
44]. With such differences and with so few studies on 
pregnant women using urine samples collected weekly 
beginning from the 1st trimester to delivery, direct com-
parisons to the extant literature are not informative.

Fig. 2 Study workflow and selection of the significant metabolic features associated with PTB outcomes. (A) Schematic diagram of the overall study 
workflow. Metabolite-based models predictive of early and very early PTB outcomes were established using urine samples from the SU and UAB cohorts. 
(B) The workflow of data preprocessing and feature selection. (C) LC-MS/MS-derived metabolite features ranked by the Gini Importance. Names of the 12 
selected metabolites (red circles, with tier 1 or 2 structure ID) are shown
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PTB biomarker biological implications
Women’s urine metabolite biomarkers significantly asso-
ciated with the early or very early preterm delivery out-
comes were identified. Comparing our urinary biomarker 
findings in normal gestational dating [22] and PTB 
outcomes, oxoadipic acid, L-carnitine, and glutamyl-
hydroxyproline were revealed to be overlapping biomark-
ers. D-α-hydroxyglutaric acid (DGA) is the biochemical 
hallmark of patients affected by neurometabolic disor-
ders [45]. Ascorbate and aldarate metabolism was identi-
fied as significantly enriched in both the early and very 

early preterm birth metabolomics analyses. This is in line 
with previous findings that ascorbic acid deficiency, as a 
result of the low intake of vitamin C, may lead to prema-
ture rupture of the membranes [46]. Arginine and proline 
metabolism is a common pathway significantly enriched 
with PTB outcomes in both our previous blood [21] and 
current urinary metabolomic analyses. L-1,2,3,4-tetra-
hydro-beta-carboline-3-carboxylic acid is the most likely 
to be related to smoking metabolites, particularly those 
associated with nicotine metabolism. Beta-carbolines are 
compounds that can be formed during the combustion of 

Fig. 3 KEGG metabolic pathway enrichment analyses comparing maternal urine metabolomes of early and very early preterm with full-term pregnan-
cies. (A) The vertical axis (y-axis) displays the − log10(P-value) of metabolic pathways comparing early and very early preterm delivery with full-term preg-
nancies, and the horizontal axis (x-axis) displays the corresponding pathway enrichment. Pathways with P < 0.05 are shown as red circles. (B) Comparison 
of metabolic pathway enrichment in early and very early preterm delivery analyses. Pathways that are significant in both are shown as red circles
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tobacco and are also endogenous metabolites. They have 
structural similarities to nicotine metabolites and can 
interact with nicotinic acetylcholine receptors [47, 48]. 
This metabolite, derived from tryptophan metabolism, 
shows notably higher predictive importance for very early 
PTB compared to early PTB (Supplemental Fig.  2). The 
enhanced predictive power for very early PTB may reflect 

underlying biological differences in these distinct pheno-
types. L-1,2,3,4-tetrahydro-beta-carboline-3-carboxylic 
acid, being involved in tryptophan and neurotransmitter 
metabolism, might be particularly sensitive to the more 
pronounced metabolic perturbations characteristic of 
very early PTB. These observations provide evidence to 
support that the underlying pathophysiology of impaired 

Fig. 4 Characterization of the metabolite biomarkers. (A) The structural identification of the 12 metabolites by MS/MS fragmentation against reference 
compound standards. Measured MS/MS spectral fragmentation profiles (top, black lines) matching chemical standards (bottom, red lines). (B) PTB metab-
olite biomarkers with unique urinary abundance patterns along gestation. The mean levels (solid lines) with the 95% CIs (dotted lines) of the metabolite 
changes against the gestational progression of the 8th and 24th weeks are shown for preterm (red) and full-term (blue) births
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metabolic pathways, including arginine, can compromise 
a pregnancy and affect fetal programming.

Advantage of urine testing of PTB risks
This study highlights the clinical utility of urinary 
metabolomic profiling in pregnant women, particularly 
for predicting early or very early preterm birth (PTB). 
Through the identification of a urine metabolite panel, it 
becomes possible to develop a noninvasive test that may 
serve as an alternative to ultrasound for assessing fetal 
growth. This approach could benefit women with limited 
ultrasound access by offering a simple, high-resolution 
method to monitor and manage high-risk pregnancies. 
While PTB may not always be preventable, early identi-
fication allows for timely interventions, including poten-
tial moderate delays in delivery (1-2 weeks) or facilitating 
hospital admissions to ensure safe delivery.

Our longitudinal findings demonstrate the promise of 
urinary metabolomic profiling as a tool for identifying 
biomarkers associated with pregnancy complications, 
particularly PTB. Translating these discovery-phase bio-
markers into clinical practice, however, presents unique 
challenges. For instance, traditional antibody-based 
assays may not be practical for a panel of small-molecule 
metabolites, necessitating the use of quantitative mass 
spectrometry, which, despite its advantages, remains lim-
ited in clinical settings.

The next steps involve carefully designed prospective 
validation studies that evaluate these biomarkers using 
both mass spectrometry and antibody-based methods, 
where feasible, to ensure clinical applicability. With its 
noninvasive sampling and molecular precision, urinary 
metabolomics has the potential to significantly improve 
diagnostic and therapeutic strategies in pregnancy care, 
providing a practical and innovative approach to manag-
ing complications in pregnancy.

Limitations
This study has several limitations. First, as a retrospec-
tive analysis, it includes participants from two distinct 
geographic regions (California and Alabama), resulting in 
disparities in race and age distributions between cohorts. 
The uneven representation of racial groups across our 
discovery and validation cohorts restricts our ability to 
draw robust, generalizable conclusions about PTB risk 
across racial groups. Underrepresentation of some racial 
groups limits our capacity to detect race-specific meta-
bolic signatures or to confirm marker consistency across 
populations. Future studies should prioritize balanced 
racial representation through multi-center recruitment 
and targeted enrollment, allowing a more comprehensive 
evaluation of how racial background influences meta-
bolic profiles and PTB risk, ultimately supporting the 
development of equitable diagnostic approaches. Second, 

while our model can classify early or very early preterm 
delivery (high and low risk) based on a single urine test 
during pregnancy, we have not investigated time to deliv-
ery, which may affect the model’s clinical utility. Third, 
the absence of detailed phenotype classifications for 
PTB limits our analysis of specific pathological char-
acteristics associated with the identified biomarkers. 
Although this study does not directly address PTB etiol-
ogy, future research will investigate the pathophysiology 
linked to these biomarkers, their associated metabolic 
pathways, and potential correlations with specific PTB 
phenotypes. Fourth, we did not collect maternal smok-
ing status, despite its known associations with adverse 
pregnancy outcomes. This omission is a limitation in our 
study design, and future research should include smoking 
status data to strengthen our analysis. Fifth, the lack of 
socioeconomic status (SES) data represents another limi-
tation. SES may act as a significant confounder, affecting 
pregnancy outcomes through lifestyle factors such as diet, 
environmental exposures, and access to prenatal care. 
Including SES data in future studies will help determine 
whether the identified metabolic signatures are robust 
across socioeconomic backgrounds and ensure that any 
developed screening tools are effective for diverse popu-
lations. Sixth, fetal sex was not included in the current 
model, which is another potential limitation. Emerg-
ing evidence suggests fetal sex may influence maternal 
metabolism and pregnancy complications, including PTB 
risk. Future research will conduct a stratified analysis by 
fetal sex to explore any sex-specific patterns in the pre-
dictive signatures and assess if model performance var-
ies based on fetal sex. Finally, a larger prospective cohort 
study across diverse racial, ethnic, and socioeconomic 
backgrounds is necessary to further validate the clinical 
utility of our maternal urinary metabolite panel for PTB 
prediction.

Conclusions
Our study demonstrates that maternal urinary metabolo-
mic profiling is a noninvasive, highly sensitive, and accu-
rate method for predicting risk of early preterm delivery 
(< 35 weeks’ GA) or very early preterm delivery (≤ 26 
weeks’ GA). in the 1st or 2nd trimester. The robustness 
of modeling with diverse racial groups and maternal ages, 
and the simplicity of sample acquisition add to its poten-
tial for clinical development and use. This prediction tool 
provides an effective reference for the diagnosis of PTB 
and enables targeted early intervention to ensure the 
safety of pregnant women and fetus. By following with 
the metabolite biomarkers and underlying enriched path-
ways, we may shed new light on the mechanism of action 
underlying the pathophysiology related to abnormal fetal 
development and pregnancy disorders including sponta-
neous PTB.
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