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Abstract 

Background  The clinically high comorbidity between polycystic ovary syndrome (PCOS) and breast cancer (BC) 
has been extensively reported. However, limited knowledge exists regarding their shared genetic basis and underly-
ing mechanisms.

Method  Leveraging summary statistics from the largest genome-wide association studies (GWASs) to date, we con-
ducted a comprehensive genome-wide cross-trait analysis of PCOS and BC. A variety of genetic statistical methods 
were employed to uncover potential shared genetic causes.

Results  Our analysis revealed genetic overlap between the three trait pairs. After partitioning the genome into 2,495 
independent regions, we identified two loci, chr8: 75,011,700–76,295,483 and chr17: 6,305,079–7,264,458, with sig-
nificant localized genetic correlations. Pleiotropic analysis under a composite null hypothesis identified 1,183 signifi-
cant pleiotropic single nucleotide polymorphisms (SNPs) across three trait pairs. FUMA mapped 26 pleiotropic loci, 
with regions 16q12.2 and 6q25.1 duplicated across all three trait pairs, while COLOC detected three loci with colo-
calization evidence. Gene-based analysis identified 23 unique candidate pleiotropic genes, including the FTO shared 
by all trait pairs, as well as SER1, RALB, and others in two trait pairs. Pathway enrichment analysis further highlighted 
key biological pathways, primarily involving the significant biological pathways were the metabolism of regulation 
of autophagy, regulation of cellular catabolic process, and positive regulation of catabolic process. Latent Herit-
able Confounder Mendelian randomization (LHC-MR) supported a positive causal relationship between PCOS 
and both BCALL and ERPBC but not with ERNBC.

Conclusion  In conclusion, our genome-wide cross-trait analysis identified a shared genetic basis between PCOS 
and BC, specific identical genetic mechanisms and causality between PCOS and various BC subtypes, which could 
better explains the genetics of the co-morbidity of PCOS and ERPBC rather than PCOS and ERNBC. These findings pro-
vide new insights into the biological mechanisms underlying the co-morbidity of these two complex diseases, which 
have important implications for clinical disease intervention, treatment, and improved prognosis.
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Introduction
Breast cancer (BC) remains a significant global health 
challenge, ranking as the second most lethal malignancy 
in women, surpassed only by lung cancer [1]. Lymphatic 
tract metastasis is the most common mode of spread of 
BC, and more than half of the patients will be found to 
have axillary lymph node involvement on examination 
[2]. The median survival time after metastasis of this 
aggressive cancer is so short that patients live less than 
24 months merely. Polycystic ovary syndrome (PCOS), a 
common multi-system disorder, affects 5 to 8% of women 
of reproductive age [3, 4]. A population-based case–con-
trol study indicated that premenopausal women with 
PCOS have nearly triple the risk of developing BC com-
pared to those without PCOS [5]. This increased risk may 
stem from the substantial overlap in risk factors between 
BC and PCOS. Endogenous hormone levels, which have 
been strongly linked to BC risk in previous prospective 
cohort studies, play a crucial role in this association [6]. 
Additionally, elevated androgen levels resulting from 
PCOS can directly stimulate the synthesis of epider-
mal growth factor (EGF) by breast apical cells, thereby 
activating the ErbB family of receptors. Simultaneously, 
serum androgen levels also promote the growth of a 
specific subset of tumors characterized as ER-negative/
AR-positive apocrine tumors, thus establishing their 
comorbidity [7, 8]. Furthermore, key clinical manifesta-
tions of PCOS (such as elevated androgen levels, later 
onset of menarche, and delayed first childbirth) are also 
recognized risk factors for BC [9–11]. The considerable 
heritability of PCOS, estimated at up to 70%, and the var-
iable heritability among BC subtypes, ranging from 35 to 
80%, suggest a genetic architecture for their comorbidity 
[12, 13]. Given the high hereditary nature of both PCOS 
and BC, the high prevalence of comorbidities among 
patients may indeed be attributed to a shared genetic 
mechanism.

PCOS and BC are both recognized as polygenic dis-
eases, their development attributable to the cumula-
tive effects of multiple genes, and such diseases are 
often more affected by environmental factors. To date, 
major genome-wide association studies (GWAS) have 
identified at least 17 loci associated with PCOS, while 
advances in GWAS have unveiled over 180 genetic vari-
ants (single nucleotide polymorphisms, SNPs) linked to 
BC [14]. Notably, a Mendelian randomization (MR) study 
investigating BC risk in PCOS patients found an asso-
ciation between PCOS and an increased risk of ERPBC, 
but not with ERNBC. This study identified three SNPs 
(rs10739076, rs13164856, and rs11031005) among the 
PCOS-associated genetic variants significantly associ-
ated with an increased risk of ERPBC [15]. Further, a MR 
analysis by Wen et  al. explored the causal relationship 

between PCOS and more specifically classified subtypes 
of BC, revealing an association with increased risk for 
luminal A-like, luminal B/HER2-negative-like, and lumi-
nal B-like BC subtypes [16]. These MR studies underscore 
the concept of vertical pleiotropy as one type of genetic 
mechanism, wherein a SNP influences one trait, which in 
turn influences another. In recent years, the use of hori-
zontal pleiotropy as the other type of genetic mechanism 
to explain genetic associations between different diseases 
has become a research hotspot; for example, a recent 
study published in JAMA identified shared genetic deter-
minants between gastrointestinal and psychiatric disor-
ders by exploring horizontal pleiotropy between the two 
diseases. However, there has been a lack of systematic 
studies to date on horizontal pleiotropy between PCOS 
and BC, where SNPs impact both conditions through 
independent pathways. Therefore, our study undertook 
a comprehensive genome-wide cross-trait analysis to 
explore pleiotropic genetic variants and loci, aiming to 
elucidate the shared genetic mechanism between PCOS 
and BC.

In this genome-wide association study, we leveraged 
the latest large-scale GWAS summary statistics and 
applied multiple genetic statistical methods to explore 
pleiotropy at various levels, including SNP, gene, and 
biological pathway. Our goal was to elucidate the shared 
genetic architecture and underlying mechanisms between 
PCOS and BC. Initially, we quantified the genetic asso-
ciations of the two diseases at both the genome-wide and 
regional levels, estimating the genetic overlap. We identi-
fied pleiotropic SNPs and annotated them as pleiotropic 
loci and further conducted positional mapping to further 
investigate potential pleiotropic genes. In addition, we 
expanded our analysis to downstream pleiotropic genes 
and performed tissue-specific enrichment analysis to bet-
ter understand the biological pathways linking PCOS and 
BC. Furthermore, we employed MR analysis methods 
to investigate potential causal relationships between the 
two diseases, focusing on vertical pleiotropy. This com-
prehensive approach aims to construct refined genetic 
linkage, enhancing our understanding of the causes of 
comorbidity Ultimately, our findings aim to contribute 
valuable insights for future therapeutic strategies and risk 
prediction models.

Method
GWAS data sets for PCOS and BC
Figure  1 outlines the workflow for our study. Summary 
statistics were retrieved from publicly available GWASs 
conducted for PCOS and BC. The latest GWAS of PCOS 
was performed by Day F et al. in 2018, which combined 
10,074 PCOS-affected women and 103,164 female con-
trol subjects (all of European ancestry). Diagnosis of 
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PCOS was made based on the National Institutes of 
Health (NIH) criteria or Rotterdam criteria (Zawadzki 
et  al., 1992; ESHRE and Group, 2004) or by self-report. 
The NIH criteria require androgen excess and ovulatory 
dysfunction, whereas polycystic ovarian morphology is 
included in the Rotterdam criteria. In addition, estimates 
of each variable collected from summary statistics of con-
tributing studies were meta-analyzed using fixed-effects, 

and inverse-weighted variance meta-analysis using 
GWAMA or METAL [17]. For BC overall, the most 
recent, also the largest GWAS, was performed by Zhang 
et  al. in 2020, meta-analyzing data from 82 participat-
ing studies of the Breast Cancer Association Consortium 
(BCAC) and 11 other BC genetic studies. This GWAS 
combined 133,384 BC-affected women and 113,789 
female control subjects (all of European ancestry) [13]. In 

LDSC
Genome-wide genetic correlation

GWAS of PCOS and BC

Shared genetic basis
correlation and overlap

Shared genetic mechanisms
(horizontal and vertical pleiotropy)
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Fig. 1  Study design. Summary statistics were retrieved from publicly available GWASs conducted for PCOS and BC. The genetic basis 
between the two diseases was explored through multiple analytical methods. Genome-wide genetic correlations were estimated using LDSC, 
while genome-wide genetic overlap was assessed through MiXeR. Additionally, local genetic correlations were examined using LAVA. Together, 
these analyses provide a comprehensive view of the shared genetic architecture between the two conditions. The shared genetic mechanism 
of the two diseases was analyzed, and the horizontal effect was studied at four levels. PLACO was employed to identify pleiotropic SNPs, which 
were subsequently annotated to genomic loci using FUMA. Location-specific pleiotropic genes were identified through MAGMA, while eMAGMA 
was used to uncover tissue-specific pleiotropic genes at the gene level. Lastly, Metascape was applied to perform functional enrichment analysis 
on the significant genes identified by eMAGMA, providing insights into the biological processes and pathways involved. We applied LHC-MR 
to evaluate the pairwise causal associations between PCOS and the BC, primarily elucidating the contributions from vertical pleiotropy



Page 4 of 16Bi et al. Breast Cancer Research          (2024) 26:161 

this meta-analysis, standard and novel approaches were 
used to better account for potential tumor heterogene-
ity, specifically by estrogen receptor, progesterone recep-
tor, and human epidermal growth factor receptor 2 status 
and tumor grade. For subtype-specific BC, we retrieved 
summary statistics from the largest published GWAS 
on estrogen receptor ER + and ER– BC performed by 
Michailidou et  al. in 2017. This GWAS meta-analyzed 
data from BCAC and DRIVE, combining 122,977 BC-
affected women (of which 69,501 were ER + cases and 
21,468 were ER–) and 105,974 female control subjects (all 
of European ancestry) [18]. Details of the dataset used 
are available in Table 1. To reduce population stratifica-
tion bias we obtained Europe-only summary statistics 
and conducted strict quality controls: (i) compared with 
the reference of the 1000 Genomes Project v3 Europes 
(1000G) constructed from the hg19 genome and deleted 
SNPs that did not match alleles; (ii) excluded sex chro-
mosomes to ensure that all SNPs were restricted to auto-
somes; (iii) deleted SNPs that duplicate or missing rsIDs 
appeared in the GWAS summary data; (iv) filtered SNPs 
with minor allele frequency (MAF) < 0.01. After we uni-
fied and filtered the SNPs shared between the GWAS 
summary statistics for PCOS and three BCs, there were a 
total of 7,270,318 SNPs.

Genome‑wide correlation between PCOS and BC
We first used cross-trait linkage disequilibrium score 
regression (LDSC) [19] to evaluate the heritability of 
PCOS and BC and their genetic correlation. LDSC is a 
newly developed SNP heritability estimation method 
that can estimate genetic correlation through GWAS 
summary data instead of a single level of genotype data. 
This approach minimizes the effects of confounding fac-
tors and population stratification and evaluates genetic 
correlations without bias due to sample overlap. First, 
SNP-based heritability (h2, representing the SNP fraction 

of phenotypic variation explained by common genetic 
variations under study) of PCOS and BC was estimated 
using univariate LDSC. Then, bivariate LDSC was used 
to estimate genetic correlations (rg) between PCOS and 
BC. The z-score for each variant in trait one is multiplied 
by the z-score for each variant in trait 2. LDSC builds a 
weighted linear model by regressing the product of the Z 
statistic on the LD score. We utilized the pre-computed 
LD scores of European ancestry derived from the third 
phase of the 1000 Genomes project provided by the 
LDSC developers as a reference and excluded the MHC 
region. The Bonferroni-corrected significant threshold 
was set at P < 1.67E-02 (0.05/3).

To determine tissues linked to PCOS and BC, the link-
age disequilibrium score for the specific expression of 
genes (LDSC-SEG) [20] analysis using tissue gene expres-
sion data was performed. LDSC-SEG is a computational 
method that uses hierarchical LD score regression to 
identify phenotypically relevant tissues, allowing discern-
ment of which tissues or cell types are most associated 
with a specific disease or health phenotype. Genotype‐
Tissue Expression (GTEx) project served as the genome 
annotation during the analysis. We utilized the 49 tissues 
and used P < 3.40E-04 (0.05/49/3) as the threshold to find 
some traits with significant tissue type-specific enrich-
ment and continue to conduct subsequent tissue-specific 
pleiotropic studies research.

Polygenic overlap analysis using bivariate causal mixture 
model (MiXeR)
LDSC rg as a genome-wide summary measure, returns a 
total measure of the correlation of all SNP effect sizes, it 
does not differentiate genetic overlap with a mixture of 
concordant and discordant effects from an absence of 
genetic overlap, returning an estimate close to 0 in both 
scenarios. MiXeR can quantify the number of shared 
causal variants even when the effects are mixed it can 

Table 1  Overview of PCOS and BC included in this study

Overview of PCOS and BC, abbreviations as used throughout the manuscript, associated PubMed ID, Data source and Year of publication, the sample size, population 
and reference genome on which summary statistics are based, and the number of SNPs included in the original summary statistics, before we applied filtering

Diseases Abbreviations PMID Data source Year Population N Cases Controls Reference genome

breast cancer BC 32,424,353 https://​bcac.​ccge.​
medsc​hl.​cam.​ac.​uk/​
bcacd​ata/​oncoa​rray/​
oncoa​rray-​and-​combi​
ned-​summa​ry-​result/

2020 European 247,173 133,384 113,789 GRCh39 (hg19)

ER + breast cancer ERPBC 29,059,683 ieu-a-1127 2017 European 175,475 69,501 105,974 GRCh39 (hg19)

ER- breast cancer ERNBC 29,059,683 ieu-a-1128 2017 European 127,442 21,468 105,974 GRCh39 (hg19)

polycystic ovarian 
syndrome

PCOS 30,566,500 https://​www.​repos​
itory.​cam.​ac.​uk/​han-
dle/​1810/​289950

2018 European 113,238 10,074 103,164 GRCh39 (hg19)

https://bcac.ccge.medschl.cam.ac.uk/bcacdata/oncoarray/oncoarray-and-combined-summary-result/
https://bcac.ccge.medschl.cam.ac.uk/bcacdata/oncoarray/oncoarray-and-combined-summary-result/
https://bcac.ccge.medschl.cam.ac.uk/bcacdata/oncoarray/oncoarray-and-combined-summary-result/
https://bcac.ccge.medschl.cam.ac.uk/bcacdata/oncoarray/oncoarray-and-combined-summary-result/
https://bcac.ccge.medschl.cam.ac.uk/bcacdata/oncoarray/oncoarray-and-combined-summary-result/
https://www.repository.cam.ac.uk/handle/1810/289950
https://www.repository.cam.ac.uk/handle/1810/289950
https://www.repository.cam.ac.uk/handle/1810/289950
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detect genetic overlap that LDSC may miss, offering a 
more nuanced understanding of shared genetic archi-
tecture. To quantify the number of shared ‘causal’ vari-
ants and identify genetic overlap between trait pairs, 
we applied the statistical tool MiXeR software (https://​
github.​com/​preci​med/​mixer) which is the comple-
ment of genetic correlation, can be more comprehensive 
understanding of the genetic relationship between the 
phenotype [21]. In our study, 1000 Genomes Project v3 
was used as a reference panel for European samples, and 
the MHC region was excluded (Frei et  al., 2019) due to 
the intricate Chained disequilibrium structure. MiXeR 
provides univariate estimates for each trait of interest 
regarding the number of loci affecting the trait and pro-
vides a bivariate analysis model for determining additive 
genetic effects [22]. Univariate mixed models can esti-
mate the number of disease-affecting SNPs (i.e., SNPs 
associated with diseases other than LD). MiXeR uses 
maximum likelihood estimation to estimate the poly-
genicity and discoverability of a given trait. We also used 
a bivariate Gaussian mixture model to determine additive 
genetic effects as a mixture of 4 bivariate Gaussian com-
ponents, representing SNPs that do not affect either phe-
notype, the only SNPs that affect the primary phenotype, 
the only SNPs that affect the minor phenotype SNPs, and 
SNPs that affect both phenotypes. After fitting the model 
parameters, the Dice coefficient (i.e., the proportion of 
shared variants to the total number of variants) was also 
calculated. The overall measure of multigene overlap was 
quantified via the Dice coefficient in the range zero to 
one. The results were presented in the form of Venn dia-
grams, and the difference between the Akaike Informa-
tion Criterion (AIC) and the reference model was used 
to evaluate the model fit, that is, the ability of the MiXeR 
model to predict the actual GWAS data. We chose the 
"infinitesimal model" as the reference model of the uni-
variate MiXeR. The most suitable fit model was com-
pared in terms of the overlap in maximum and minimum 
possible values, with a positive AIC difference considered 
evidence of a distinction between the best-fitting MiXeR 
estimate and the reference model. In addition, logarith-
mic likelihood plots are generated to visually understand 
the analysis process. We also used conditional Q-Q plots 
to visually assess the shared genetic background between 
two phenotypes.

Calculating local genetic correlations and emphasizing 
the relevance of mixed effects
In addition to exploring genome-wide genetic cor-
relations, the Local Analysis of Variance Annota-
tion (LAVA) method was employed to resolve issues 
of opposing directional confounding within specific 
genomic regions. This approach provided a clearer 

determination of whether a shared genetic correlation 
exists between PCOS and BC in independent regions 
of the genome. LAVA, an integrated framework for 
local rg analysis that, in addition to testing the standard 
bivariate local rgs between two phenotypes, can further 
emphasize the relevance of mixed effects [23]. In this 
analysis, we used the LD reference panel based on 1000 
Genomes phase 3 genotype data for European samples, 
and the genome is divided into 2495 partitioned semi-
independent genomic regions, with an average size of 
1  Mb. To study regions with apparent genetic related-
ness, we estimated local genetic correlations using uni-
variate LAVA to test for local genetic signals within 
each trait in 2,495 regions (P < 1.00E-04 as threshold). 
Bivariate tests were then performed on loci and traits 
with significant univariate genetic signals. Using the 
Bonferroni method, we corrected the P-values for local 
genetic correlations for multiple testing (P < 0.05/no. of 
bivariate tests = 0.05/182 = 2.75E-04).

Pleiotropy insights to causal inference between PCOS 
and BC
We used LHC-MR to investigate the possible bidirec-
tional effect that exists between PCOS and BC, resolv-
ing their causal relationship (i.e. vertical pleiotropy). 
LHC-MR is a new method that extends standard 
two-sample MR by modelling potential heritable con-
founders that influence exposure and outcome charac-
teristics. This method appropriately uses genome-wide 
genetic markers to estimate bidirectional causal effects, 
direct heritability, and confounding effects while 
accounting for sample overlap. The standard error of 
each parameter estimated using LHC-MR was obtained 
by implementing a block jackknife procedure, in which 
the SNP effects were divided into blocks, and the maxi-
mum likelihood estimate(MLE) value was calculated 
again in a block-leaving manner. The estimated variance 
can then be calculated based on the results of various 
MLE optimizations [24]. LHC-MR framework has mul-
tiple pathways through which SNPs can affect traits and 
allows for null effects, making it more precise and effi-
cient than many MR methods (i.e., MR egger, weighted 
median, inverse variance weighted, simple mode, and 
weighted mode). Its features make LHC-MR suitable 
for our purpose because we assume that the trait pairs 
have a common cause and that traits mutually affect 
each other. When Paxy < 0.05/3, Payx > 0.05 represents 
the one-way causal relationship between PCOS and BC; 
when Payx < 0.05/3, Paxy > 0.05 represents the one-way 
causal relationship between BC and PCOS, both posi-
tive and negative pass Strict correction represents bidi-
rectional causation.

https://github.com/precimed/mixer
https://github.com/precimed/mixer
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Identification of pleiotropic SNPs of PCOS and BC
While the aforementioned methods suggest genetic 
sharing between PCOS and BC, they do not specifi-
cally address shared genetic variation at the SNP level. 
To assess pleiotropy (specifically horizontal pleiotropy) 
influencing genetic variation and to further elucidate the 
genetic architecture of these complex traits at the SNP 
level, we conducted a pleiotropy analysis using the com-
posite null hypothesis (PLACO) approach [25]. PLACO 
was applied to conduct a genome-wide search for SNPs 
influencing the pleiotropy of both PCOS and BC. It is 
a new statistical approach to detecting pleiotropic loci 
between two traits by considering potential composite 
null hypotheses. This method allows correlation in sum-
mary statistics between studies that may arise due to the 
sharing of controls between disease traits. We calculated 
this using the PLACO test statistic (Z1*Z2), where Z1 
and Z2 are the observed Z-scores for two traits in a given 
genetic variant. This method examines one SNP at a time 
with two sets of Z-statistics as input and proceeds by 
dividing the composite null hypothesis of pleiotropy into 
the following scenarios: (i) H00: the SNP is not associ-
ated with either of the two disorders. (ii) H10: The SNP is 
associated with the first disorder but not the second. (iii) 
H01: The gene is not associated with the first disorder 
but the second. (iv) H11: the SNP is related to both dis-
orders. Moreover, SNPs with very high Z2 (> 100) values 
were removed because spurious pleiotropic signals could 
be caused. For genome-wide significant SNPs, we define 
PPLACO < 5.00E − 08.

Identifying genetic shared loci using mapping
Functional Mapping and Annotation (FUMA) can be 
used to discover independent genomic loci, identify plei-
otropic loci in PCOS and BC, and functionally annotate 
pleiotropic SNPs identified by PLACO. It is helpful to 
better elucidate the genetic mechanism of PCOS and BC. 
FUMA is a platform that built a series of SNP functional 
annotation approaches and then by chromosome, base-
pair position, reference and alternate alleles to multiple 
publicly available databases to annotate candidate SNPs 
for functional consequences on gene functions. All LD 
information is calculated from the 1000 Genomes Phase 
3 published reference panel. Among them, the LD region 
is defined as 500kbp upstream and downstream of lead 
SNP (1Mbp in total). We first identified independently 
significant SNPs with genome-wide significant p-values 
(P < 5.00E-08) and r2 < 0.6. If the independently signifi-
cant SNPs are independent of each other and r2 < 0.1, 
we define their subset as independent leading SNPs. 
Positional mapping in FUMA was performed using the 
ANNOVAR annotations to specify the maximum dis-
tance between SNPs and genes and using Combined 

Annotation Dependent Depletion (CADD) scores to 
predict the functional consequences of SNPs on genes. 
The CADD scores predict how deleterious the effect of 
an SNP is likely to be for a protein structure or function, 
with higher scores referring to higher deleteriousness. 
12.37 could be viewed as the threshold for a deleterious 
score [26]. Independent significant SNPs and SNPs in 
LD with them were annotated for consequences on gene 
function using ANNOVAR, Regulome DB score, and 
15-core chromatin state predicted. Among them, Greater 
evidence for a variant to be located in a functional region 
is shown by lower scores in the RegulomeDB, and a score 
of 7 indicates that there is no data about the function of a 
certain SNP.

Moreover, we conducted a FUMA analysis to conduct 
gene mapping to understand better the genetic mecha-
nisms underlying PCOS and BC. One of the functions 
of FUMA, SNP2GENE, is used to annotate the biologi-
cal functions of SNPs and map SNPs to genes. Using 
the SNP2GENE function, we performed both positional 
mapping (maximum distance 10 kb) and eQTL mapping 
(cis-eQTL, i.e., up to 1 Mb) using GTEx v8. The reference 
panel for extracting chromosomes and locations was the 
human genome hg19, using only protein-coding genes 
from the genetic map.

Colocalization analysis
We conducted a colocalization analysis of potential pleio-
tropic loci identified by FUMA to identify shared causal 
variants across pairwise traits within each locus. In short, 
COLOC analysis is based on five hypotheses: H0, not 
related to any trait; H1, related to trait 1, but not related 
to trait 2; H2, related to trait 2, but not related to trait 
1; H3, traits 1 and 2 are both related to two independent 
SNPs; H4, traits 1 and 2 are both related to a shared SNP 
(Trait 1 is PCOS, trait 2 is BCALL, ERPBC, ERNBC). We 
focus mainly on the last hypothesis, which quantifies the 
support dimension via the posterior probability PPH4. 
Colocalization is represented if the posterior PPH4 of a 
model with shared causal variables is 0.70 [27] or higher. 
Furthermore, the SNP with the largest PPH4 is a candi-
date causal variant.

Variant annotation and MAGMA gene‑based analysis
Based on the PLACO results and single-trait GWAS, we 
attempted to use multimarker genomic annotation analy-
sis (MAGMA) to identify important genes associated 
with PCOS or BC and potential pleiotropic genes associ-
ated with both diseases. MAGMA is a gene-based asso-
ciation approach using only summary statistics [28]. It 
aggregated the joint associations of multiple SNPs within 
whole gene areas with PCOS or BC, considering the LD 
between SNPs. MAGMA computed the statistics results 
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more efficiently with multiple linear regression in a gene 
while accounting for the LD Build 37 (GRCh37/hg19) and 
included 17,636 autosomal protein-coding genes. Phase 3 
of the 1000 Genomes Project was exploited as a reference 
panel for calculating the LD matrix, where LD is defined 
as 10 kb. The Bonferroni-corrected significant threshold 
was set at P < 9.45E-07 (0.05/17,636/3).

Tissue‑specific pleiotropic genes
MAGMA may not accurately identify functionally related 
genes, as it assigns trait-related SNPs to the nearest gene 
within a 10  kb range, potentially overlooking regula-
tory effects on gene expression (eQTLs) that are located 
1 Mb upstream and downstream of the gene promoters 
they influence. However, their remote regulatory roles 
can significantly influence gene expression by interact-
ing with enhancers, promoters, and other regulatory 
elements. This allows eQTLs to play crucial roles in bio-
logical pathways, providing insight into gene function 
and disease mechanisms that are not captured by prox-
imity alone. Therefore, to more accurately study the bio-
logical mechanism of pleiotropy genes, we used eQTL 
genome annotation multi-marker analysis (eMAGMA) 
to analyze the gene association between PCOS and BC, 
thereby more precisely reflecting the functional relation-
ship between SNPs and cis-eQTLs in specific tissues [29]. 
E-MAGMA modifies the MAGMA method by integrat-
ing eQTL information from the GTEx project, providing 
better statistical performance in gene-based association 
analysis and taking tissue specificity into account. This 
method could conduct eQTL-informed gene-based tests 
by assigning SNPs to tissue-specific genes so that they 
provide more biologically meaningful and interpret-
able results. We use GTEx v8-based annotation files that 
are available on the eMAGMA website. Tissue-specific 
gene analysis was performed based on the significantly 
enriched tissues in the LDSC-SEG results that were 
thought to be associated with PCOS and BC and on the 
established consensus biological knowledge. Specifically, 
E-MAGMA analysis included 6098 Breast Mammary 
Tissue-specific genes, 2719 Cells EBV-transformed lym-
phocyte-specific genes, 2872 Ovary-specific genes, 1698 
Uterus-specific genes, 1702 Vagina-specific genes and 
7931 Whole Blood-specific genes. We performed Bon-
ferroni correction for each tissue and selected impor-
tant genes with a P value less than 0.05/ no. of gene sets 
tested/no. of trait pairs [such as P Whole Blood < 2.10E-06 
(0.05/7931/3), P Uterus < 9.80E-06 (0.05/1698/3)].

Pathway enrichment analysis
We performed functional enrichment analysis by 
Metascape using significant genes in eMAGMA to find 
enriched pathways and related functional annotations of 

target genes. Metascape is a database that utilizes more 
than 40 independent knowledge bases to collect data and 
combines functional enrichment, interactome analysis, 
gene annotation and membership search [30]. It presents 
the results in the form of high-quality graphs and concise 
explanations. The GO database can be used to analyze 
the identified important genes in biological processes 
(BP), cellular components (CC), etc., to understand bio-
logical mechanisms better. The Gene Ontology (GO) 
resource (http://​geneo​ntolo​gy.​org/) is a bioinformatics 
tool that provides a framework and set of concepts for 
describing the function of gene products in all organisms. 
GO terms of biological functions associated with set-
ting the cut-off P value as 0.01(the default settings of the 
Metascape) were considered significantly enriched.

Result
Estimated overall genetic correlation between PCOS 
and BC
The results of univariate LDSC showed that the LDSC 
SNP-based heritability (h2

SNP) of PCOS was 11.69% 
(SE = 0.0214). Among three breast cancer traits, 
the heritabilities of BC, ERNBC, and ERPBC were 
12.51% (SE = 0.0092), 7.30% (SE = 0.0065), and 13.30% 
(SE = 0.0114), respectively. It can be seen that the her-
itability of the three types of BC ranges from 7.30% to 
13.30%, among which ERPBC has the strongest herit-
ability and ERNBC has the lowest heritability. To study 
genetic correlations between pairs of traits, we per-
formed bivariate LDSC. The P values between PCOS and 
BCALL (P = 8.71E-01), PCOS and ERNBC (P = 8.71E-
01), PCOS and ERPBC (P = 8.26E-01) are all greater than 
1.67E-02 (0.05/3) (Supplementary Table 1). The P values 
of the three trait pairs are not significant, indicating that 
there is no genetic correlation between them. However, 
genome-wide genetic correlations are unable to dis-
tinguish mixtures of congruent and discordant genetic 
effects from the absence of genetic overlap, potentially 
underestimating the shared genetic basis of PCOS and 
BC. Further analyses were implemented to explore the 
specific genetic mechanisms.

Polygenic overlap analysis using MiXeR
Although no genetic correlation existed between trait 
pairs estimated by LDSC, MiXeR was then applied to elu-
cidate genetic overlap between PCOS and BC, irrespec-
tive of the direction of their effects. Univariate MiXeR 
found that 627 variants [standard error (SE) = 116] are 
associated with BCALL, 416 variants (SE = 88) are shared 
with ERPBC and 514 variants (SE = 60) are shared with 
ERNBC(Supplementary Table  2). These reflected their 
different genetic architectures and also showed that 
BCALL has the highest polygenicity among the three 

http://geneontology.org/
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breast cancer traits; its SNPs can annotate more genes, 
while ERPBC has the lowest polygenicity. Bivariate 
MiXeR analysis revealed polygenic overlaps of PCOS-
influencing variants with each breast cancer. As shown 
in the Venn diagram (Fig.  2a), the estimated number of 
shared ’causal’ variants between PCOS and BCALL was 
129 (SE = 142), with 1673 (690) unique PCOS variants 
and 498 (199) unique BCALL variants. The Dice coef-
ficient was 0.104 for variants shared between PCOS 
and BCALL(Supplementary Table  2). MiXeR estimated 
153 (130) shared ’causal’ variants between PCOS and 
ERNBC, with 1648 (712) unique PCOS variants and 
360 (135) unique ERNBC variants. Moreover, 164 (101) 
shared ’causal’ variants between PCOS and ERPBC, with 
1637 (693) unique PCOS variants and 251 (138) unique 
ERPBC variants. The Dice coefficient was 0.132 for vari-
ants shared between PCOS and ERNBC. The proportion 
of shared ’causal’ variants with concordant effects for 
PCOS-BCALL was 0.530(SE = 0.080), 0.420(SE = 0.110) 
for PCOS-ERNBC and 0.640(SE = 0.080) for 

PCOS-ERPBC. Moreover, there was a positive genetic 
correlation between PCOS and BCALL(rg = 0.004, 
rho = 0.080) and ERPBC(rg = 0.066, rho = 0.420), while 
a negative genetic correlation exists between PCOS and 
ERNBC(rg = −0.026, rho = −0.230). The results of AIC 
differences are shown in a log-likelihood plot based on 
the modelling quantity of causal variables. The mini-
mum value of the X-axis of the image represents the 
minimum value of causal variables, while the maximum 
value of the X-axis represents the maximum value of 
causal variables. In comparing the possible maximum 
overlap in model fitting among the three traits (PCOS-
BCALL, PCOS-ERNBC, and PCOS-ERPBC) with AIC 
values of 13.52, 3.30, and 7.92 respectively, and the mini-
mum overlap with AIC values of 4.76, 0.85, and 5.60 
respectively, positive AIC differences were supported in 
all cases(Additional file  2). However, the result of small 
genetic overlap was still obtained, which may be due to 
the low polygenicity of these phenotypes, resulting in the 
inconsistent causality of several SNPs with a high single 
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driving force in the region confounding the genetic corre-
lation. Based on the above analysis, we have revealed no 
genetic correlation despite polygenic overlaps in PCOS 
and three types of breast cancer, which may be due to the 
existence of “mixed effects”.

Calculating local genetic correlations and emphasising 
the relevance of mixed effects
For local rg analysis, we used LAVA (Fig.  2b, Supple-
mentary Tables 3–4). Among 2495 areas, regions with a 
P-value < 1.00E-04 were considered to be significant. The 
results indicate that 1553 regions are significant, with 
the highest count associated with PCOS at 514, whereas 
ERNBC had the fewest with 289. The regions obtained by 
ERPBC and BCALL are 338 and 412, respectively. More-
over, A total of 182 bivariate tests were conducted to 
explore the relationship between PCOS and three types 
of breast cancer diseases (BCALL, ERNBC, and ERPBC) 
in the context of bivariate LAVA analysis. Local genetic 
correlations LAVA analysis of loci shared between PCOS 
and BC revealed 30 significant local genetic correlations 
(P < 0.05). When p is less than 0.05, among the 14 sites 
connecting PCOS and BCALL, 8 exhibit negative rho 
values, while the remaining six show positive values. 
Similarly, out of the nine sites linking PCOS and ERNBC, 
5 demonstrate negative rho values, with the remain-
ing 4 displaying positive values. Notably, the number of 
positive and negative correlation areas is relatively bal-
anced. The mixture of positive and negative regions 
leads to a lack of genome-wide significance, potentially 
explaining our prior observations of genetic overlap 
without significant genome-wide genetic correlation. 
Further, two loci (chr8: 75,011,700–76,295,483, chr17: 
6,305,079–7,264,458) through Bonferroni correction 
(P < 0.05/182 = 2.75E-04) with significant local heritability 
were found in PCOS and ERPBC (p values respectively: 
2.06E-04, 2.09E-04). One of the loci, situated on chromo-
some 8, shows a positive correlation, whereas the second 
locus exhibits a negative correlation.

Estimating bidirectional causal effects
We used LHC-MR to test for bidirectional causality 
between trait pairs using GWAS summary statistics 
(Fig. 3, Supplementary Table 5). The study results showed 
that LHC-MR did not provide any evidence of a causal 
relationship effect of PCOS on ERNBC (P = 4.67E-01) 
and no evidence for the reverse causal effect (P = 5.93E-
02). However, LHC-MR revealed that corresponding 
to PCOS on BCALL showed a potential positive causal 
effect of PCOS on BCALL (P = 1.07E-03). We found no 
evidence for the reverse causal effect (P = 2.08E-01). 
At the same time, It showed a potential positive causal 
effect of PCOS on ERPBC (P = 2.28E-03) and found no 

evidence for the reverse causal effect (P = 2.05E-01). In 
essence, the presence of PCOS exacerbates the likelihood 
of BCALL, particularly the emergence of ERPBC, while 
showing nearly no correlation with ERNBC incidence.

Identification of pleiotropic loci of PCOS and BC
We applied PLACO to identify 1,183 SNPs with poten-
tial pleiotropic effects associated with PCOS and breast 
cancer, including 491 were identified in the PCOS and 
BCALL trait pairs, 224 in the PCOS and ERNBC trait 
pairs, and 468 in the PCOS and ERPBC trait pairs. FUMA 
mapped 26 genetic risk loci involving 15 unique chro-
mosomal regions, with several pleiotropic regions, such 
as 16q12.2 and 6q25.1 (mapping positional: CASC10, 
SKIDA1, MLLT10 and DNAJC1) (Fig.  4, Supplemen-
tary Tables 6–7), were found to be duplicated across all 
three pairs of traits (Table 2). Additional multiple effec-
tor regions, such as 2q14.2, overlapped in PCOS-BCALL 
and PCOS-ERNBC trait pairs, suggesting that the loci 
have a wide range of pleiotropic effects. Previous stud-
ies have shown that high expression of the RALB gene 
on chromosome 2q14.2 is significantly associated with 
reduced survival in breast cancer patients with meta-
static progression[31].

The result of ANNOVAR, which annotates recent gene 
and gene expression consequences for each SNP, shows 
that among all variants, 8 SNPs (30.8%) were located in 
intronic regions, and 3 (11.5%) were located in intergenic 
regions. We also calculated a CADD score to indicate 
whether each variant would have a deleterious effect. 
The only SNP with a CADD score greater than 12.37 is 
located at 9q31.2. 4 SNPs had an RDB score of 4a, indi-
cating slightly stronger evidence. While 7 SNPs had a 
score of 7, suggesting that the support for a regulatory 
potential is the least.
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Co-localization analysis further identified three sig-
nals with PPH4 greater than 0.7 among the 26 potential 
pleiotropic sites, among which the two SNPs were identi-
fied as candidate co-causal variants. One signal between 
PCOS and BC traits resides on chromosome 16q12.2 
(PPH4 = 0.81), while another is situated on chromosome 
2q14.2 (PPH4 = 0.84), where the association is between 
PCOS and ERNBC. The third signal is identified within 
a region on chromosome 22q12.1 (PPH4 = 0.85) in the 
PCOS-ERPBC trait pairs.

Variant annotation and MAGMA gene‑ and gene‑set‑based 
analysis
MAGMA association analysis was performed on the 
colocalized potential pleiotropic loci to identify genes 
related to PCOS, ERNBC and ERPBC. We identified a 
total of 23 genes, with 10 exhibiting pleiotropic effects 
in the PCOS-BCALL trait pair, four pleiotropic genes 
in the PCOS-ERNBC trait pair, and nine pleiotropic 
genes found between PCOS and ERPBC. The FTO gene 
was present in all three trait pairs, while ESR1, FGFR2, 
SNRPD2, MLLT10, ZMIZ1, SKIDA1 and CASC10 were 
found in both the PCOS-BCALL and PCOS-ERPBC 
trait pairs (Supplementary Tables 9–10). The ESR1 gene, 

which was duplicated in both trait pairs, was shown 
in previous studies to be a key factor in BC susceptibil-
ity. For PCOS, estrogen promotes cAMP synthesis and 
triggers the activation of phosphoinositide 3-kinase 
and extracellular signal-regulated kinase so that ESR1 
is in the development of comorbidities. In addition, the 
FTO gene, a crucial gene among 23 genes, is positioned 
at 16q12.2, 5p12, and 11q13.3 across three distinct trait 
pairs. FTO is overexpressed in breast cancer cells, which 
affects the energy metabolism of the cells [32]. Further-
more, currently, studies indicate that FTO is a crucial 
component of m6A modification; it regulates cancer stem 
cell function and promotes the growth, self-renewal, and 
metastasis of cancer cells [33]. Meanwhile, FTO poly-
morphisms exacerbate susceptibility to PCOS by influ-
encing the function of neighbouring genes, such as IRX5 
and IRX3. MAGMA analysis identified a total of 23 pleio-
tropic genes, of which 2 unique genes (SPRY4, CASC10) 
are novel for BC, and all genes are new to PCOS. Thir-
teen genes (SKIDA1, MLLT10, ZMIZ1, FTO, SNRPD2, 
ESR1, FTO, RALB, SKIDA1, MLLT10, FTO, SNRPD2 
and ESR1) identified by MAGMA passed the verification 
of FUMA position mapping (Supplementary Table 8).

Candidate tissue‑specific pleiotropic genes were identified 
by eQTL mapping
LDSC‐SEG analyses using GTEx were carried out to 
identify tissues linked to PCOS and BC. According to 
P < 1.02E-03 (0.05/49)(Supplementary Table  12), sig-
nificant genetic enrichment of BCALL-related SNP was 
found in breast mammary tissue, followed by Uterus and 
Vagina. Taking all these into consideration, we selected 
six tissues(breast mammary tissue, uterus, ovary, vagina, 
cells EBV-transformed lymphocytes and whole blood) 
to continue the subsequent study on tissue-specific 
pleiotropy.

We used the E-MAGMA method to map pleiotropic 
SNPs to genes based on tissue-specific information from 
the six tissues we chose. Utilizing E-MAGMA analysis, a 
result unveiled a total of 4 pleiotropic genes linked with 
PCOS, while 431 pleiotropic genes were associated with 
BCALL (Supplementary Tables 13–14). Furthermore, the 
analysis identified 68 pleiotropic genes correlated with 
ERNBC, along with 284 pleiotropic genes associated with 
ERPBC. In six different tissues, a total of 20 genes were 
identified to be associated with three trait pairs, with 
PCOS-BCALL involving 9 genes, PCOS-ERPBC involv-
ing 8 genes, and PCOS-ERNBC associated with 3 genes. 
Among these findings, the GDI2 gene stands out, being 
highly enriched in the PCOS-ERPBC trait pair across 
four tissues: Cells EBV-transformed lymphocytes, ovary, 
uterus, and whole blood demonstrating its significant 
tissue specificity within this trait pair and its profound 
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biological relevance. Similarly, the CYBRD1 gene is 
noteworthy for its enrichment not only in the PCOS-
ERPBC trait pair within the ovary, uterus, and vagina 
tissues but also in the PCOS-BCALL trait pair in the 
ovary and uterus tissues. These results collectively high-
light the critical histological value of GDI2 and CYBRD1 
genes in the ovary and uterus tissues for the comorbid-
ity mechanisms of PCOS-BCALL and PCOS-ERPBC, 
further revealing their essential roles in the underlying 
biological mechanisms and providing important insights 
and directions for future research. Most importantly, 
we took the intersection of the location-based gene 
obtained by MAGMA and the pleiotropic gene obtained 
by eMAGMA and finally identified a gene: RalB (Sup-
plementary Table  8). In previous research, automated 
quantification of RalA/B expression levels by immunohis-
tochemistry in primary tumors of breast cancer patients 
unravelled overexpression of both proteins in tumors 
from patients with metastasis [31]. In addition, RalB has 

previously been considered a poor prognostic factor in 
breast cancer patients.

Pathway enrichment analysis
We then employed the Metascape website to conduct GO 
enrichment analysis on the significant genes identified 
by e-MAGMA analysis to identify several represented 
biological processes (Supplementary Table  11). The 18 
pathways shown by GO enrichment analysis all belong to 
the biological process (BP) category. It revealed biologi-
cal processes containing negative regulation of protein 
localization, small GTPase-mediated signal transduction, 
negative regulation of cellular component organization, 
response to metal ion, regulation of autophagy, regulation 
of cellular catabolic process, positive regulation of, cata-
bolic process, response to nutrient levels, regulation of 
secretion by cell process, etc. Remarkably, the significant 
biological pathways were the metabolism of regulation of 
autophagy, regulation of cellular catabolic process, and 

Table 2  26 pleiotropic genomic loci identified by FUMA using PLACO results

PCOS, polycystic ovary syndrome; BC, breast cancer; ERNBC, estrogen receptor-negative breast cancer; ERPBC, estrogen receptor-positive breast cancer; Best causal, 
the candidate causal single-nucleotide polymorphism (SNP); PP.H3, posterior probability of H3; PP.H4, posterior probability of H4; SNP.PP.H4, posterior probability 
of the best causal polymorphism. Locus boundary of each pleiotropic genomic risk locus was denoted as “chromosome: start–end” defined by FUMA for the 
corresponding trait pair. The top SNP in this locus was also identified as a candidate causal SNP

Trait pair Top SNP Locus boundary Region Nearest gene PP.H3 PP.H4 Best causal SNP SNP.PP.H4

PCOS-BCALL rs10423928 19:46,179,043–46202172 19q13.32 GIPR 2.53E-01 2.28E-02 rs4849879 1.40E-01

PCOS-BCALL rs11012730 10:21,766,969–22,275,118 10p12.31 SKIDA1 1.99E-01 1.63E-02 rs552647 1.24E-01

PCOS-BCALL rs147872430 5:44,992,980–45933347 5p12 NA 4.53E-02 2.14E-02 rs930395 7.44E-01

PCOS-BCALL rs17630711 3:27,421,024–27553889 3p24.1 SLC4A7 2.91E-01 2.43E-02 rs60954078 2.13E-01

PCOS-BCALL rs2926589 8:76,362,101–76689287 8q21.13 HNF4G 1.93E-01 5.37E-02 rs72658071 4.03E-01

PCOS-BCALL rs45577136 16:52,566,220–52630972 16q12.1 TOX3 8.82E-02 1.22E-01 rs12251016 2.07E-01

PCOS-BCALL rs4980554 11:69,281,227–69,285,786 11q13.3 NA 2.00E-01 1.35E-02 rs719338 2.76E-01

PCOS-BCALL rs61874140 10:123,435,982–123,435,982 10q26.13 NA 1.33E-01 1.31E-02 rs2981579 8.35E-01

PCOS-BCALL rs73949122 2:121,153,284–121,180,803 2q14.2 NA 1.39E-01 2.37E-02 rs78540526 1.00E + 00

PCOS-BCALL rs753271 10:80,853,575–80869471 10q22.3 ZMIZ1 2.41E-01 1.97E-02 rs4784227 9.55E-01

PCOS-BCALL rs8050136 16:53,797,908–53845487 16q12.2 FTO 1.83E-01 8.12E-01 rs62048402 2.03E-01

PCOS-BCALL rs851984 6:151,970,639–152052215 6q25.1 ESR1 7.87E-02 6.43E-01 rs10423928 2.69E-01

PCOS-ERNBC rs1121980 16:53,797,908–53845487 16q12.2 FTO 2.37E-01 7.79E-02 rs4528762 9.99E-01

PCOS-ERNBC rs1293960 6:151,970,639–151970639 6q25.1 NA 2.83E-01 2.43E-02 rs9397437 2.28E-01

PCOS-ERNBC rs4849857 2:120,986,708–121070811 2q14.2 NA 1.60E-01 8.35E-01 rs55872725 9.14E-02

PCOS-ERPBC rs10423928 19:46,179,043–46202172 19q13.32 GIPR 1.66E-01 1.70E-02 rs490706 6.21E-02

PCOS-ERPBC rs11012730 10:21,766,969–22,275,118 10p12.31 SKIDA1 1.42E-01 3.64E-02 rs985261 3.97E-02

PCOS-ERPBC rs11706019 3:27,421,024–27553889 3p24.1 SLC4A7 2.91E-01 2.43E-02 rs60954078 3.34E-01

PCOS-ERPBC rs12380632 9:110,891,494–110941095 9q31.2 LOC105376214 1.30E-01 1.41E-02 rs7862747 2.54E-01

PCOS-ERPBC rs13131992 4:175,819,086–175870676 4q34.1 ADAM29 8.71E-02 1.32E-01 rs10828248 2.73E-01

PCOS-ERPBC rs45577136 16:52,566,220–52630972 16q12.1 TOX3 1.33E-01 1.31E-02 rs2981579 7.34E-01

PCOS-ERPBC rs4980554 11:69,281,227–69,285,786 11q13.3 NA 1.39E-01 2.37E-02 rs78540526 1.00E + 00

PCOS-ERPBC rs61874140 10:123,435,982–123,435,982 10q26.13 NA 2.41E-01 1.94E-02 rs4784227 9.93E-01

PCOS-ERPBC rs715537 22:28,625,685–29,257,046 22q12.1 NA 1.45E-01 8.50E-01 rs62048402 1.29E-01

PCOS-ERPBC rs8050136 16:53,797,908–53845487 16q12.2 FTO 1.05E-01 5.24E-01 rs10423928 3.40E-01

PCOS-ERPBC rs851984 6:152,008,780–152024985 6q25.1 ESR1 1.84E-01 4.62E-02 rs62237573 1.00E + 00
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positive regulation of catabolic process, as they are path-
ways enriched by RALB, the only one gene overlapped 
by MAGMA and e-MAGMA analysis. Previous studies 
have shown that metabolic disorders are closely related 
to breast cancer incidence and outcome [34]. It is also 
a major cause of PCOS, as it is a widespread endocrine 
and metabolic disorder. The ovarian autophagy mecha-
nism is one of the pathogenesis of PCOS.[35] In terms 
of cancer initiation, autophagy is considered tumor sup-
pressive due to its cytoprotective role. This is evidenced 
by an increased autophagy-related gene signature in nor-
mal mammary glands, which is lost during breast cancer 
progression [36]. In addition, autophagy regulation is also 
a type of metabolic regulation, which, together with the 
regulation of cellular catabolic processes and the positive 
regulatory pathways of catabolic processes, further sup-
ports the common genetic mechanism of PCOS and BC 
in metabolism.

Discussion
To our knowledge, this investigation represents the first 
and most extensive cross-trait analysis to date, utiliz-
ing the most comprehensive GWAS data available for 
PCOS and BC, including ERNBC, ERPBC, and BCALL 
subtypes. This study systematically examines the shared 
genetic foundations and mechanisms between these 
two complex diseases. Although genome-wide genetic 
associations between the three pairs of traits were con-
sidered weak, our analysis revealed substantial evidence 
of genetic overlap. Remarkably, through the division of 
the genome into multiple smaller regions, our regional 
genetic correlation analysis identified significant herit-
able gene regions with opposite correlation directions 
between PCOS and ERPBC. Further cross-trait meta-
analyses illuminated multiple shared loci, with compre-
hensive analyses elucidating the biological pathways 
involved. Ultimately, MR analysis substantiated a posi-
tive causal relationship between PCOS and ERPBC, while 
not establishing any causal relationship with ERNBC. 
This pioneering study not only sheds light on the intri-
cate genetic interplay between PCOS and various sub-
types of BC but also paves the way for future research 
to delve deeper into these complex relationships, offer-
ing potential insights for therapeutic strategies and risk 
assessment.

Utilizing LDSC analysis, we observed a minimal genetic 
correlation between PCOS and BC at the whole-genome 
level. Notably, despite a very weak genome-wide genetic 
correlation, bivariate MiXeR analysis employed to quan-
tify the genetic overlap between PCOS and BC revealed 
a certain degree of shared genetic risk the genetic cor-
relation between them. This suggests potential exten-
sive confounding effects among trait pairs. Continuing 

our investigation with the LAVA analytical method, we 
delved into local genetic correlations among the three 
trait pairs. Post Bonferroni correction, we identified two 
shared regions exhibiting significant yet opposite genetic 
correlations between PCOS and ERPBC, with effect 
sizes closely mirroring each other, indicative of a coun-
terbalancing effect. The nine shared regions identified in 
PCOS and ERNBC also matched this cancelling effect, 
suggesting that LAVA has a pattern of confounding 
effect directions masked by estimates of genome-wide 
genetic correlations, further supporting our previous 
inferences. In summary, our analysis uncovers a shared 
genetic foundation between PCOS and BC, hinting at 
the presence of significant pleiotropic effects influencing 
both conditions, despite the lack of clear evidence at the 
genome-wide level. Univariate MiXeR analysis was used 
to estimate the polygenicity of PCOS and BC. Although 
these findings are still in the clinical stage to be con-
firmed, polygenotypes may be useful markers of clinical-
level heterogeneity.

Based on the substantial genetic overlap between 
BC and PCOS, we further explored the shared genetic 
mechanisms underlying these disorders at the multi-
plicity level (both vertical multiplicity and horizontal 
multiplicity), and we first explored the causal relation-
ship between them at the vertical multiplicity level using 
LHC-MR analysis. The results of the analysis confirmed 
the presence of positive causality exclusively between 
PCOS and both ERPBC and all BC while identifying no 
positive causal relationship with ERNBC. These findings 
align with previous MR studies, which also reported a 
positive association between PCOS and ERPBC [15]. Our 
findings are also consistent with other studies wherein 
genetically predicted PCOS was associated with estro-
gen receptor (ER) positive rather than ER-negative breast 
cancer [16]. Our LHC-MR analyses are based on larger 
sample sizes while being able to effectively mitigate a 
variety of problems such as sample overlap, bidirectional 
causality, and the inability to predict confounding effects, 
which provides a guarantee of the reliability of the con-
clusions. Our findings do not support a causal relation-
ship between PCOS and ERNBC, suggesting that vertical 
pleiotropy alone may not fully account for the comorbid-
ity of these conditions. Thus, in the next study, multiple 
analytical approaches were used to probe the shared 
genetic mechanisms of the two diseases at the level of 
horizontal pleiotropy.

Initially, the PLACO analysis method was employed 
to identify pleiotropic genes at the variant level in order 
to validate the genetic mechanism of co-morbid risk. It 
is worth noting that PLACO identified rs1121980 and 
rs8050136 were localized to locus 16q12.2, while risk 
locus 16q12.2 was detected in all three trait pairs and the 
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gene FTO, which is associated with adiposity and obesity, 
was located at this risk locus [37]. The FTO gene (asso-
ciated with fat mass and obesity) promotes proliferation, 
enrichment, and metastasis of BC cells by mediating 
m6A demethylation of BNIP3 within the pro-apoptotic 
protein family, and the stability of this effect is negatively 
regulated via a YTHDF2-independent mechanism [33, 
38]. In PCOS patients, FTO polymorphisms ultimately 
mediate increased susceptibility to PCOS by modulating 
the activity of nearby genes, such as IRX5 and IRX3, with 
effects on fat mass, BMI, and risk of obesity. Interestingly 
enough, even after adjusting for BMI, effects on PCOS 
manifestation caused by FTO mutation have not been 
completely eliminated, and the potential mechanism has 
not been studied yet, which needs to be further explored 
[39].

Subsequent to our analyses, we conducted a MAGMA 
association analysis to identify genes based on position 
linked with PCOS and BC, and we employed eMAGMA 
to pinpoint tissue-specific pleiotropic genes. The RalB 
gene was identified as an overlapping gene of MAGMA 
and eMAGMA, and is thought to play an important 
role downstream of Ras oncoproteins. Specifically, RalB 
promotes cell invasion and accelerates cancer progres-
sion through two cytokines, RGL 1 and RGL 2, as well 
as by regulating a group of proteins called exocyst that 
are present in cells. A set of clinical data investigating 
RalB levels in breast cancer patients showed a signifi-
cant positive relationship between BC disease progres-
sion and elevated RalB levels [40], while Shima Ghoroghi 
et  al. identified RalB as an important factor in the poor 
prognosis of BC patients [31]. However, the mechanism 
of the genetic role of the RalB gene in PCOS patients 
has not been systematically elaborated by research, and 
more samples and clinical studies as well as experimental 
designs are needed to fill this gap in the future. This anal-
ysis reiterated the pleiotropic nature of the pleiotropic 
loci targeted gene FTO across all three trait pairs, sup-
porting its role in promoting comorbidity, as previously 
discussed. Moreover, we observed that the ESR1 gene 
recurred in the trait pairs PCOS-BCALL and PCOS-
ERPBC. The ESR1 gene, encoding estrogen receptor-α 
(ER-α), emerges as a critical factor for sensitivity in BC 
[41], stimulating cell proliferation through the induc-
tion of MYC and cyclin D1 expression [42]. Additionally, 
mutations in ESR1 enhance drug resistance in this type 
of BC by altering protein structure and recruiting coac-
tivators, resulting in reduced sensitivity to endocrine 
therapy (ET) [43, 44]. In the context of PCOS, estrogen 
is known to facilitate cAMP production and activate 
phosphoinositide 3-kinase (PI3K) and extracellular sig-
nal-regulated kinase (ERK), further implicating ESR1 in 
the development of comorbidities. Apart from FTO, no 

additional overlapping pleiotropic genes were identified 
in PCOS-ERNBC.

Based on the eMAGMA analysis, RALB has been 
identified as a pleiotropic gene associated with both 
PCOS and BC. Pathway enrichment via Metascape high-
lights its involvement in regulating cellular catabolic 
processes, positive regulation of catabolic processes, 
and autophagy, all crucial for understanding its pleio-
tropic roles. The regulation of cellular catabolism is key 
for maintaining energy homeostasis, which is vital in 
metabolic diseases like PCOS, and in cancer progres-
sion, where altered catabolism supports rapid tumor 
growth.[45] In BC, tumor cells often exhibit upregulated 
autophagy to survive metabolic stress and nutrient dep-
rivation [46], a process similarly observed in PCOS. For 
instance, heightened autophagy in ovarian cells can dis-
rupt follicular development in PCOS [47], while in BC, 
autophagy aids cancer cell survival during chemotherapy 
[48]. Positive regulation of catabolism enhances macro-
molecule breakdown, reducing oxidative stress and creat-
ing an environment conducive to both tumor progression 
and metabolic imbalance [49]. These shared pathways 
suggest a common mechanistic link in RALB-mediated 
processes, providing further insights into the genetic 
architecture underlying both conditions. Understand-
ing these biological mechanisms offers deeper insight 
into how PCOS and BC share catabolism-related genetic 
mechanisms.

Based on the information from the genetic data, our 
study identified multiple risk loci shared by both PCOS-
ERPBC and PCOS-BCALL, providing a basis for the 
existence of a pleiotropic effect that is difficult to ignore. 
The common genetic mechanism of PCOS-ERPBC and 
PCOS-BCALL observed in multi-pleiotropic analyses at 
all levels further supports a possible common aetiology, 
although there is no evidence of a significant genome-
wide genetic association. Although PCOS and ERNBC 
trait pairs have a certain genetic basis, we only found that 
this trait pair overlaps FTO with the other two trait pairs 
at the SNP level, and this overlap has not been found 
at the level of genes and biological pathways. This sug-
gests that a high genetic association can explain PCOS 
and ERPBC comorbidity, but not PCOS and ERNBC 
comorbidity.

We recognize that this study has some limitations. 
First, given the statistical power of this study and to 
avoid bias due to population stratification, the genetic 
data we chose were derived only from common variants 
of European ancestry, which limits the generalizability 
of our findings to a wide range of ethnic populations. 
Second, this study only explored the shared genetic 
mechanisms between BCALL, ERNBC, ERPBC, 
and PCOS, while other BC subtypes based on the 
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expression of other hormone receptors, such as human 
epidermal growth factor receptor 2 (HER2), were not 
investigated, and future BC-specific typing cross-sec-
tional studies based on a larger sample size are neces-
sary to further broaden our research results. Third, 
while the genes associated with PCOS and BC were 
identified in this study, longitudinal studies and more 
experimental data are needed in the future to unravel 
the underlying biological mechanisms.

In conclusion, our research elucidates the intricate 
genetic connections underpinning these two preva-
lent female conditions. Through demonstrating genetic 
correlations, identifying potential pleiotropic loci, and 
suggesting causal links, our study identified the genetic 
mechanism of the shared gene between PCOS and BC, 
and shared pathways suggest a common mechanistic 
link in RALB-mediated processes, providing insights 
into the genetic basis underlying both conditions. This 
comprehensive analysis opens new avenues for explor-
ing the complex interplay between genetic factors and 
offers advanced insights into the converging pathways 
that may underlie these diseases.
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