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Abstract
Background  The clinical management of breast cancer (BC) is mainly based on the assessment of receptor 
expression by tumour cells. However, there is still an unmet need for novel biomarkers important for prognosis 
and therapy. The tumour immune microenvironment (TIME) is thought to play a key role in prognosis and therapy 
selection, therefore this study aimed to describe the TIME in Ethiopian BC patients.

Methods  RNA was isolated from formalin-fixed paraffin-embedded (FFPE) tissue from 82 women with BC. 
Expression of PAM50 and 54 immune genes was analysed using the Nanostring platform and differentially expressed 
genes (DEGs) were determined using ROSALIND®. The abundance of different cell populations was estimated 
using Nanostring’s cell type profiling module, while tumour infiltrating lymphocytes (TILs) were analysed using 
haematoxylin and eosin (H&E) staining. In addition, the PIK3CA gene was genotyped for three hotspot mutations 
using qPCR. Kaplan-Meier survival analysis and log-rank test were performed to compare the prognostic relevance of 
immune subgroups.

Results  Four discrete immune phenotypes (IP1-4) were identified through hierarchical clustering of immune gene 
expression data. These IPs were characterized by DEGs associated with both immune activation and inhibition as well 
as variations in the extent of immune infiltration. However, there were no significant differences regarding PIK3CA 
mutations between the IPs. A downregulation of immune suppressive and activating genes and the lowest number 
of infiltrating immune cells were found in IP2, which was associated with luminal tumours. In contrast, IP4 displayed 
an active TME chracterized by an upregulation of cytotoxic genes and the highest density of immune cell infiltrations, 
independent of the specific intrinsic subtype. IP1 and IP3 exhibited intermediate characteristics. The IPs had a 
prognostic relevance and patients with an active TME had improved overall survival compared to IPs with a significant 
downregulation of the majority of immune genes.
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Introduction
Breast cancer (BC) is one of the most common female 
cancer and leading cause of cancer death among women 
in the vast majority of countries. In 2020, approxi-
mately 2.3 million new female BC cases were diagnosed 
worldwide accounting for almost 25% of cancer cases in 
women [1]. In several sub-Saharan African countries, 
including Ethiopia, BC has now become the most com-
monly diagnosed cancer and the second cause of cancer 
death among women [2].

BC is a highly heterogeneous disease attributed to 
distinct genetic alterations in mammary epithelial cells 
leading to different disease manifestations. It is classified 
into four intrinsic subtypes (luminal A, luminal B, HER2-
enriched and basal-like) based on the expression pattern 
of hormone receptors (estrogen and/or progesterone 
receptors; ER/PR), epidermal growth factor receptor 2 
(HER2) and additional genomic/transcriptomic profiling 
[3]. This molecular subtyping has enabled an improved 
estimation of patients’ risk and treatment stratification 
for adjuvant hormonal, radiation and/or chemotherapy 
[4, 5]. Although the molecular subtyping has segregated 
BC into different prognostic groups, it does not fully rep-
resent the heterogeneity concerning genomic features 
and clinical outcomes. Patients of similar molecular sub-
types under identical treatments have a distinct clini-
cal outcome suggesting the need to identify additional 
parameters to effectively classify patients into different 
treatment and prognostic groups [6–8].

The tumour microenvironment (TME), consisting of 
cancer cells, stromal tissue, immune cells, extracellular 
matrix and soluble mediators has recently emerged as 
an important factor influencing patients’ prognosis and 
therapy response [9]. Immune cells as important TME 
components are found either in the stroma surround-
ing tumour nests (stromal) or in direct contact with 
tumour cells (intratumoural) [10]. Expression profil-
ing of the tumour immune microenvironment (TIME) 
revealed the presence of distinct immune subtypes with 
a marked difference in prognosis within the molecular 
subtypes in many populations. A large study from The 
Cancer Genome Atlas (TCGA) demonstrated a prog-
nostic subgroup of luminal tumours with a differential 
expression of immune-related genes (IRGs) [11]. Zhu 
and colleagues have also identified immune subtypes in 
luminal BC displaying distinct patterns of immune gene 
expression in the Asian population [12]. A similar pattern 

of immune-based segregation has also been described in 
triple-negative BC (TNBC) with significant differences in 
prognosis between subtypes [13].

The crucial role of the immune cell composition of 
the TME in prognosis, therapy selection and immuno-
therapy success demonstrates the high relevance of an 
in-depth characterization of BC lesions [14]. Based on 
this assumption, the present study aimed to unravel the 
architecture of the TME in BC from Ethiopian patients 
with a focus on its immune landscape and its correlation 
to clinical and pathological parameters and prognosis.

Materials and methods
Patients and samples
Eighty-two patients, diagnosed with BC between 2013 
and 2019 at Tikur Anbessa Specialized Hospital, Addis 
Ababa, Ethiopia, were enrolled in this study. Formalin-
fixed paraffin-embedded (FFPE) samples from each 
patient were examined by an experienced pathologist 
using hematoxylin and eosin (H&E) staining to deter-
mine the presence of primary cancer cells and to quantify 
tumour infiltrating lymphocytes (TILs). Immunohis-
tochemical analyses (IHC) of the expression of ER, PR, 
HER2 and Ki67 are available from the samples. Clinico-
pathologic data were retrieved from patients’ medical 
charts and biopsy reports. Pathologic staging was per-
formed using the American Joint Committee on Cancer 
(AJCC) TNM system. Patients who had taken neodjuvant 
chemotherapy were excluded from the study. Due to a 
significant number of patients lacking follow-up informa-
tion regarding recurrence, metastasis and overall survival 
from the medical records, survival status was determined 
through follow-up phone calls and served as the end-
point measure for this study. This study was approved 
by the institutional review board (IRB) of the College 
of Health Sciences of Addis Ababa University (proto-
col DMIP092/17/17) and the National Research Ethics 
Review Committee of Ethiopia (protocol MOSHE//RD).

Publicly available validation cohort
A validation data set obtained from The Cancer Genome 
Atlas (TCGA) was utilized as a validation cohort [15]. 
The TCGA BRCA data set encompasses RNAseq data of 
177 African American BC patients with available clinical 
and pathological data, such as stage, immunohistochemi-
cal receptor expression and patients’ outcome.

Conclusion  Immune gene expression profiling identified four distinct immune contextures of the TME with unique 
gene expression patterns and immune infiltration. The classification into distinct immune subgroups may provide 
important information regarding prognosis and the selection of patients undergoing conventional treatments or 
immunotherapies.
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RNA extraction
Purification of RNA from FFPE tissues was carried out 
by Qiagen miRNeasy FFPE Kit (Catalog no. 217504). Up 
to four sections of FFPE material each with a thickness 
of 10  μm were used. Deparaffinization was carried out 
by treating samples with xylene, 100% ethanol and 70% 
ethanol followed by incubation of the samples with lysis 
buffer containing proteinase K. All samples were subse-
quently treated with DNase in order to eliminate con-
taminating DNA. Buffer RBC and ethanol were added 
to the lysate and the resulting mixture was finally loaded 
to RNeasy MinElute spin column in which purified RNA 
remains attached until subsequent elution of RNA by 
RNase-free water.

mRNA expression analysis
After the assessment of the quality and quantity, RNA 
samples meeting the required quality criteria for 
hybridization reactions on the nCounter platform were 
subsequently analysed. 25 µg RNA of normal breast tis-
sue (Agilent technologies, MVP™ Total RNA, Human 
Breast, Catalog Number 540045; pooled from 2 donors) 
served as a control. Gene expression was determined by 
nCounter MAX/FLEX platform (Nanostring Technolo-
gies, Seattle, WA, US), which is based on direct molecular 
barcoding of target RNA molecules using colour-coded 
probe pairs. Hybridization of the probe pairs with RNA 
was done by incubating 3 µL of the reporter Code Set, 5 
µL of hybridization buffer, 5 µL of 400 ng RNA and 2 µL 
of the Capture ProbeSet overnight. After a washing step 
to remove excess unbound probes, the RNA/probe com-
plexes were eluted and immobilized in the cartridge for 
data collection. Counts were read with 555 fields of view 
(FOV) by the nCounter® Digital Analyzer.

Intrinsic subtyping of BC was carried out using the 
research-based, 50-gene prediction analysis of microar-
ray (PAM50) subtype predictor [16]. PAM50 was calcu-
lated from the nanostring expression data.

PIK3CA genotyping
Genomic DNA (gDNA) was extracted from FFPE tis-
sue samples utilizing the QIAamp® DNA FFPE Tissue 
Kit. PIK3CA mutations at three hotspot loci—p.E542K 
(c.1624G > A), p.E545K (c.1633G > A), and p.H1047R 
(c.3140A > G)—were assessed using the TaqMan® Muta-
tion Detection Assay (Applied Biosystems, Carlsbad, 
CA 92008 USA). The genotyping procedure involved 
two experiment types for ΔCT cutoff determination 
and mutation detection. Each experiment included the 
detection of both the mutant allele and a corresponding 
reference gene. PCR mixtures were prepared by com-
bining 20 ng of gDNA with TaqMan® Genotyping Mas-
ter Mix and the TaqMan® Mutation Detection Assay. 
The reaction mixture was then added to a PCR plate and 

processed using the real-time PCR instrument according 
to the detection protocol. Data analysis was performed in 
Applied Biosystems®’ real-time PCR instrument software 
(ABI StepOnePlus v2.1). Tumours were considered wild 
type (wt) only when all three genotyped sites were con-
gruent with the human DNA reference sequence [17].

Data processing
Data were analysed using ROSALIND® ​(​​​h​t​t​p​s​:​/​/​r​o​s​a​l​i​n​d​.​
b​i​o​/​​​​​) platform (ROSALIND, Inc., San Diego, CA, USA). 
QC metrics, such as imaging quality, binding density, 
positive control linearity and limit of detection, were 
inspected. Normalization of raw counts was executed as 
specified by Nanostring. Eleven housekeeping genes with 
lowest coefficient of variation (var. <0.6) were selected 
following the geNorm algorithm and used as normaliser 
probes [18]. Data were then normalized against the geo-
metric mean of the selected housekeeping genes and pos-
itive control probes as described [19].

Unsupervised hierarchical clustering of the normal-
ized gene expression data was performed using ClustVis, 
a web tool implementing the pheatmap R package [20]. 
Expression values were centered and unit variance scal-
ing was applied. Samples were clustered using the corre-
lation distance and Ward linkage.

Identification of differentially expressed genes (DEGs) and 
cell type profiling
The identification of DEGs between specified groups was 
performed using ROSALIND®. The Benjamini-Hochberg 
method was applied for adjustment of p-values in order 
to correct for multiple comparisons. Genes with |log2 
fold-change| > 1.5 and adjusted p-value < 0.05 were defined 
as DEGs. Abundance of various cell populations was cal-
culated in ROSALIND® using the Nanostring cell type 
profiling module.

Statistical analysis
Data distributions and frequencies were compared 
among different groups with oneway ANOVAs, if not 
stated otherwise, as implemented in GraphPad Prism 
v9 (GraphPad, San Diego, CA, USA). Fisher-Freeman-
Halton exact tests of independence were performed 
for contingency tables larger than 2 × 2 using IBM SPSS 
Statistics v26 (IBM Corp., Armonk, NY, USA). Krus-
kal–Wallis H tests were employed to compare the num-
bers of TILs among the four IPs using the “stats” library 
for Scipy/Python [21]. Kaplan–Meier survival analysis 
was performed to compare the prognostic significance 
of the immune subgroups and DEG.s Log-rank test was 
employed as statistical a test.

https://rosalind.bio/
https://rosalind.bio/
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Results
Clinico-pathologic data of participants
In total eighty-two patients with pathologically con-
firmed BC were included in this study. Age at diagnosis 
of participants ranged from 20 to 70 years (median = 40). 
Early stage tumours (stage I & II) were more frequent in 
our cohort than late stage tumours (48.8% vs. 33%). The 
majority (65.8%) of the tumours were highly proliferat-
ing and showed a histological grade III. PAM 50-based 
subtyping of tumours demonstrated a dominance of the 
luminal subtype (luminal A 34% and luminal B 18%), 
while the HER2-enriched and basal subtypes were 
observed with a frequency of 23% and 24.3%, respectively 
(Table 1). While the majority of molecular subtypes cor-
related to the IHC groups, some BC samples showed dis-
cordant results (Table 1; Fig. 1).

Identification of BC immune phenotypes
Hierarchical clustering of the gene expression profiles of 
54 immune-related genes was performed for 83 samples 
consisting of 82 BC samples and one sample of normal 
breast tissue pooled from two healthy donors. Four dis-
crete clusters with distinct gene expression patterns in 
the TME corresponding to immune phenotypes (IP) 1–4 
were identified according to their appearance on the clus-
tering tree (Fig. 1). IP1 consists of 9 samples, IP2 of 31, 
IP3 of 19 and IP4 of 24 samples, respectively.

DEG analysis of immune-activating and immune-inhib-
itory genes demonstrated a different extent of immune 
activation in the TME between the four IPs (Figs. 1 and 
2). IP2 represents an immunologically inert phenotype 

with a consistent downregulation of immune suppres-
sive as well as immune activating genes. Immune genes 
encoding effectors cells (CD4, CD8A, CD8B, and CD20), 
T cell receptor (TCR) signalling pathway (CD3E, CD3G, 
CD28, ICOS and CD2), immune modulatory molecules 
(TIGIT, CTLA4, CD274, HLA-E, IDO1, CCR2), anti-
gen processing and presentation (KLRD1, TAP1, TAP2, 
CD1A), immune activating molecules or receptors 
(KLRK1, CXCL8, CXCR6), tumour associated macro-
phage (TAM) markers (CD68, CD163) and the regulatory 
T cell (Treg) marker (FOXP3) were suppressed in this 
phenotype (Fig. 2). In contrast, IP4 tumours were marked 
by highest immune gene expression representing an 
immunologically active microenvironment, characterized 
by an up-regulated expression of genes associated with 
anti-tumoural functions. Genes related to effectors cells 
(CD4, CD8A, CD8B, CD20), T cell activation (CD69), 
TCR signalling components (CD3E, CD3G, CD28, ICOS, 
CD2), antigen processing and presentation (KLRD1, 
TAP1, TAP2, CD1A) and activating molecules or recep-
tors (KLRK1, CXCR6, FLT3LG) were significantly upreg-
ulated in this phenotype compared to the others (IP1-3). 
Interestingly, next to immune-stimulating molecules, 
some immune inhibitory molecules, like TIGIT, CTLA4 
and CCR2 as well as the Treg marker FOXP3, were also 
highly expressed in this phenotype.

In addition, two phenotypes with an intermediate level 
of immune activation were characterized. In IP1, the 
immune activation genes CD4, NCAM1, CD3G, KLRD1 
and the counter-regulatory molecules FOXP3, IDO and 
HLA-G were differentially suppressed when compared 
to the other phenotypes. In addition, NTAN1, FURIN 
and CD276 were upregulated in this phenotype. In the 
IP3, the majority of the immune genes were normally 
expressed; genes related with antigen processing and pre-
sentation (CD1A, TAP2), inflammation (CXCL8), TCR 
signalling pathway (CD28) and immune suppression 
(HLA-G, IDO1) were particularly upregulated in IP3, 
FGFR4, FLT3LG and CTBS were downregulated.

Immune cell infiltration of the IPs
The extent of immune infiltration was analyzed in the 
different IPs using cell type-specific profiling and TIL 
from H&E staining (Fig.  3). In comparison to the other 
phenotypes, the immune inflamed phenotype (IP4) had 
the highest log2 abundance score of cytotoxic cells, Treg 
as well as exhausted phenotypes of immune effector cells 
(Fig.  3A) with a significantly high TIL counts (H = 8.19, 
p-value < 0.01) (Fig. 3B). Conversely, the log2 abundance 
score of infiltrating immune cells was the lowest in IP2 
with the lowest TIL count (H = 14.56, p-value < 0.001), 
whereas IP1 and IP3 exhibit an intermediate level of 
immune cell infiltration.

Table 1  Clinico-pathologic data of participants
Features N (%)
Age
younger (< 50) 50 (61%)
older (≥ 50) 19 (23%)
Unknown 13 (16%)
Pathologic Stage
Early (stage I & II) 40 (48.8%)
Advanced (stage I & II) 27 (33%)
Unknown 15 (18.2%)
Histological grade
G1 or G2 28 (34.1%)
G3 54 (65.9%)
Intrinsic subtype
luminal A 28 (34.1%)
luminal B 15 (18.3%)
HER2-enriched 19 (23.2%)
basal-like 20 (24.4%)
IHC Group
HR+ HER2− (luA-like)
HR+ HER2+ (luB-like)

41 (50.0)
22 (26.8)

HR− HER2+ (HER2+)
HR− HER2− (TNBC)

7 (8.5)
12 (14.6)
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Immune phenotypes and prognosis
Since the distinct IPs differ in the activation status of 
the immune cells, we assessed whether the IPs can pre-
dict survival probability. Due to the low number of BC 
patients the IP1 subgroup was excluded from the analy-
sis. Patients with the IP4 type had a longer, but not statis-
tically significant overall survival (OS) than patients with 
IP2 and IP3 (Fig. 4A). The DEGs from IP4; CD2, CD3E, 
CD8A, CD8B, CD28, CD69, TAP1, CXCR6, KLRK1 and 
TIGIT correlated with a higher probability of a longer 
OS, but due to the limited number of patients involved 
in each group the difference was not statistically signifi-
cant. In contrast, among the DEGs a lower expression of 
CD1A was significantly associated with higher OS (Sup-
plementary Fig. 1).

Validation data set
To further validate our findings, the publicly available 
BRCA data set from TCGA comprising 177 primary 
invasive BC cases from African American patients was 
analysed for the expression of 50 out of 54 genes evalu-
ated in our cohort. Hierarchical clustering of these genes 
revealed a similar pattern with four distinct IPs, each rep-
resenting a different immune activation status within the 
TME (Supplementary Fig. 2).

Differential expression analysis (DEA) revealed that IP1 
and IP2 exhibited a significantly immunologically active 
TME with 28 and 35 immune genes, respectively, being 
upregulated when compared to the other IPs. In con-
trast, IP3 and IP4 were characterized by a “cold” immune 
microenvironment with 26 and 29 immune genes 

Fig. 1  Heatmap of the expression levels of 54 immune-related genes in 82 BC samples. Unsupervised hierarchical clustering of log-transformed expres-
sion levels of immune genes identified the four immunophenotype groups IP1 to IP4. Red marks indicate upregulation, blue marks indicate downregula-
tion of immue relatetd genes. Sample annotations are included at the top of the heatmap. HER2: human epidermal growth factor 2. HR: hormone receptor
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downregulated, respectively (DEG heatmaps shown in 
supplementary Fig. 3).

We further investigated the prognostic potential of 
these IPs. The results demonstrated that IPs with an 
immune-activated microenvironment (IP1 and IP2) were 
associated with a significantly improved overall survival 
(OS) compared to the “cold” immune microenvironment 
IPs (P = 0.0143) (Fig.  4B). Although IP1 and IP2 showed 
a trend towards a better OS when stratified by hormone 
receptor (HR) status (ER or PR), this difference did not 
reach statistical significance (Fig. 4C & D).

To refine our analysis, IP1 and IP2 were combined into 
a single “immune-activated” phenotype, while IP3 and 
IP4 were classified as “immune-suppressed.” This reclas-
sification revealed a significantly higher OS in patients 
with the immune-activated phenotype compared to those 
with the immune-suppressed phenotype (P = 0.04). Nota-
bly, when stratified by HR status, the immune-activated 
phenotype was associated with significantly better OS in 
HR-negative cases (P = 0.0274), but not in HR-positive 
cases (P = 0.126) (Fig. 4D, E & G).

Clinico-pathologic characteristics and PIK3CA mutation 
within IPs
The different IPs were analysed in relation to the well-
known clinico-pathologic features demonstrating the 
highest frequency of HER2 + tumours in IP4 (50%) and 
the lowest in IP3 (15.7%) (p < 0.05). IP4 and IP2 with 
87.5% and 86.6% have the highest proportion of HR+ 
tumours, respectively, whereas IP3 has the lowest pro-
portion of HR+ tumours (47.4%). TNBC were dominant 
in IP3 (47.4%) (Fig. 5A). The analysis of intrinsic BC sub-
types revealed that IP1 and IP2 were mainly enriched 
in luminal subtypes (66.7% and 76.5%, respectively), 
whereas in IP3 the non-luminal subtypes were dominant 

with a frequency of 94.7%. Concerning the distribution 
of intrinsic subtypes, luminal A tumours were the major 
constituents of IP2 (56.7%), while the basal subtype was 
predominant in IP3 (84.2%) (Fig. 5B). In IP4, the intrinsic 
subtypes were equally distributed.

Neither the age nor the pathologic stage was related 
to different IPs (p = 0.5643 and 0.199, respectively). In 
contrast, a higher proportion of high grade tumours 
were found in IP1, IP3 and IP4, whereas IP2 had a sim-
ilar frequency of high and low grade tumours (P < 0.05) 
(Fig. 5C). The Ki-67 proliferation index indicated a dor-
mancy of the IP2 subtype, while IP3 had the highest pro-
liferation index (P < 0.05) (Fig. 5D).

Since mutations can generate immunogenic neoanti-
gens leading to immune activation [22], it was analyzed 
whether mutations in the phosphoinositide 3-kinase CA 
(PIK3CA) gene are more frequent in the immunologically 
active phenotype. Analysis of 70/82 BC cases revealed the 
highest frequencies of PIK3CA-mutated tumors in IP4 
(33.3%) and IP2 (31%), respectively without a significant 
difference between these two extreme IPs. IP3 had a sig-
nificantly lower proportion of PIK3CA-mutated tumours 
(6.25%). Interestingly, 75% of the mutations in IP4 
occurred within luminal tumours. Mutated tumours have 
a significantly lower expression of CD8 genes than the 
wild type BC (Wt mean = 6.3 versus mutated mean = 5.6; 
p = 0.04), but there was no association with CD4 (Fig. 5E, 
F).

Differential expression of immune genes across breast 
cancer subtypes and clinicopathologic features
Immune gene expression of normal breast tissue 
obtained from 2 pooled samples in different BC subtypes 
was analysed and compared to that of BCs. Interestingly, 
no significant differential expression of immune genes 

Fig. 2  DEG heat map of the distinct immune phenotypes A: IP1 versus IP2, IP3 and IP4; B: IP2 versus IP1, IP3 and IP4; C: IP3 versus IP1, IP2 and IP4; D: IP4 
versus IP1, IP2 and IP3. Differentially expressed immune genes between the immune phenotypes were shown. Genes with log2 fold change (FC) ≥ 1.5 and 
false discovery rate (FDR)-corrected p value < 0.05 were presented. Green: downregulated genes, red: upregulated genes
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Fig. 3  Distinct distribution of the immune cell subpopulations in the distinct immune phenotypes A: Log2 abundance score of immune cell subpopula-
tions in IP1-4. Nanostring cell type profiling module was used to assess the immune composition of IPs. B: Frequency of TILs. TILs were counted from H&E 
stained slides. Data are presented as % of TIL in the different IPs
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(DEIGs) in the 54 immune genes analysed could be iden-
tified between control and BC tissues. The control with 
the breast tissue clustered within IP2 (Fig. 1).

In order to get better insights whether the TME 
changes with age in BC, the DEIG signatures between the 
age groups < 50 (younger) versus ≥ 50 (older) were inves-
tigated. However, no age-dependent significant DEIGs 
were detected. Furthermore, analysis of the impact of the 
expression of immune genes in the TME on prognostic 
parameters and pathologic features demonstrated that 
CD20 and GZMB were significantly downregulated in 
advanced pathologic stages when compared with early 
BC stages suggesting their use as biomarkers (Fig. 6A). In 

contrast, no significant DEIGs were found between high 
grade and low grade tumours.

Since distinct immune responses have been reported 
in BC intrinsic subtypes [23, 24], the expression of 
immune-relevant genes was analysed in the intrin-
sic subtypes by comparing luminal with non-luminal 
tumours. Genes associated with antigen processing and 
presentation (TAP1, TAP2, and CD1A), CTL- and NK 
cell-mediated cytotoxicity (GZMB, perforin), immune 
checkpoints (CD274, LAG-3), chemokines, e.g. CXCL8, 
as well as the immunoregulatory metabolite IDO1 
implicated in T cell inhibition [25] were upregulated in 
non-luminal tumours versus luminal tumours (Fig.  6B). 

Fig. 4  Association of the immune phenotypes with the patients’ survival. A: Kaplan-Meier survival curves between IP4 versus IP2 and IP3. Patients were 
followed for 60 months and survival probabilities were determined by calculating p values from log rank test. B-G: Kaplan-Meier survival curves derived 
from TCGA data set of 177 African American BC cases. B: Survival probabilities across the four IPS. C: HR + BC survival within the four IPs. D: HR- BC survival 
within the four IPs. E: survival between the two IP groups F: HR- BC survival within the two IP groups. G: HR + BC survival within the two IP groups. IP1 & 
IP2 were categorized as “Immune Activated” while IP3 and IP4 were categorized as “Immune Suppressed”
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Whereas a comparison of luminal versus basal-like and 
HER2 + tumors separately revealed downregulation of 
IDO1, CD1A, CXCL8, GZMB, TAP2, HLA-G, NCR1, 
LAG3, TAP1, CTLA4, HLA-A, CD274 and CD163 in 
luminal compared to basal-like tumours, CXCL8 was the 
only gene that remained downregulated when compared 
to HER2 + tumours (Fig. 6C). Analysis of the differences 
in the gene expression patterns between luminal A and 
luminal B tumours demonstrated that IFITM3 was the 
only significantly differentially expressed gene (FC = 2.1; 
p = 0.00095). In non-luminal tumours, a comparatively 
higher variation in the gene expression profile was found 
with an upregulation of CD1A, IDO1, HLA-G and TAP2 
and a down regulation of NTAN in basal subtypes when 
compared to HER-2-enriched tumours.

Immune gene expression analysis across the IHC 
groups showed minimal variation between the sub-
types. Only CD1A was downregulated, while CTBS was 
upregulated in HR + BC compared to TNBC. No signifi-
cant DEIGs were observed when comparing HR + BC to 
HER2 + BC (Fig. 6D).

Discussion
In this study four distinct immune subgroups were iden-
tified. Similar distinct immune subgroups of BC strati-
fied by the TME immune transcriptome profile was also 
reported in many studies using different approches [12, 

26, 27]. Even though BC was primarily suggested as a 
general non-immunogenic tumour type, it has been dem-
onstrated that the immune landscape of BC is dynamic 
and heterogeneous with significant variations observed 
across BC patients. This study is in line with many other 
reports demonstrating a spectrum of immune activation 
status of breast immune microenvironment, in which a 
subset of BC patients exhibited a T cell-inflamed TME, 
while the remaining bear an immune intermediate, 
excluded or desert microenvironment [26–29]. Despite 
very limited information available about the DEIGs in BC 
from African women, a recent report on African Ameri-
can women from Carolina Breast Cancer Study also 
described three immune clusters with gradual immune 
activation [30].

Interestingly, the immune-activated phenotype (IP4) 
harboured immune suppressive features with higher 
proportion of exhausted T cells and increased expres-
sion of immune inhibitory molecules compared to other 
IPs. These results confirm the data of Spranger and co-
authors as well as others demonstrating an increased 
expression of immune inhibitory molecules in a T cell-
inflamed melanoma phenotype [31]. The increased 
expression of these inhibitory pathways in the immune 
activated phenotype might be a negative feedback mech-
anism to counterbalance the enhanced immune reaction 
[31, 32]. In these tumours, anti-tumour immunity was 

Fig. 5  Immune phenotypes and clinic-pathologic features of BC. A: Proportion of HR+, HER2 + and TNBC tumours. B: Distribution of the intrinsic subtypes 
within IPs; C: Frequency of high grade tumours; D: Ki-67 proliferation index; E. Proportion of PIK3CA-mutated tumours: Only 9 tumours were grouped in 
IP1 and the mutation status could not be determined for the majority of samples (proportion not shown in the figure); F: A box and Whisker plot showing 
log2 expression value of CD8 in the wt and PIK3CA-mutated tumours
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mounted, but the response was not efficient enough to 
eliminate the tumour. For these tumour types, the thera-
peutic modulation of the immune response might help to 
improve the patients’ outcome.

In the current study, a subset of BCs was marked by the 
absence of immune responses (IP2) in the TME, where 
both immune effector and immune regulatory genes 
were repressed, and thus designated as an immune inert 
phenotype. This subgroup was predominantly composed 
of luminal tumours, mainly luminal A breast cancer, and 
had the lowest Ki-67 proliferation index. In accordance 
with the present result, lower immune gene expression 
levels were identified with a higher frequency in BC 
with ER + and luminal A subtypes by conventional or 
the Sorlie-Perou intrinsic molecular subtyping methods, 

respectively [23, 24, 33]. Furthermore, these tumours 
were characterized by low expression of proliferating 
genes and low histological grade [34].

Mechanistic studies have shown that T cell-excluded 
tumours could arise upon disruption of one feature of 
the cancer-immunity cycle, which extends from antigen 
recognition by antigen presenting cells, presentation 
of captured antigen to T cells to homing of activated T 
cells to the tumour site [35]. Despite the determinants of 
immune responses are complex, the lower proliferation 
of such tumours may account in part to their reduced 
immunogenicity and less immune reaction as described 
in our study. Higher tumour proliferation might be fol-
lowed by an enhanced immune response by increas-
ing immunogenic antigens from apoptotic tumour cells 

Fig. 6  Differentially expressed immune genes in BC subtypes. A: Box and whisker plot showing a differential expression of CD20 and GZMB between 
early and advanced pathologic stages. B: Volcano plot of DEGs between luminal and non-luminal tumours. Volcano plot is plotted using Graph Pad Prism 
to show differentially expressed immune genes; FC > 1.5, adjusted P values < 0.05. Each dot represents an immune gene. C: DEG heat map of luminal 
versus basal like tumours, green shows downregulation and red shows upregulation. D: Box and whisker plot showing a differential expression of CD1A 
and CTBS between HR + and TNBC. DEG: Differentially expressed genes
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[36, 37]. Even though the role of apoptosis in the induc-
tion of CD8+ T cell activation was controversially dis-
cussed, emerging studies are proving its essential role in 
immune stimulation. Nowak and co-authors stated an 
induced apoptosis in tumour bearing mice associated 
with a tumour regression. This effect was attributed to an 
enhanced immune response due to the induction of anti-
gen-specific CD8+ T cell proliferation [38]. These results 
were further confirmed in BC patients from TCGA and 
METABRIC cohorts by showing a correlation of high 
apoptotic tumours with a significantly high infiltration of 
CD8+, CD4+ memory T cells, M1 macrophages and DC 
[39]. In contrast, in slowly proliferating tumours with less 
apoptotic cells available antigens capable of priming the 
adaptive immune response are low resulting in an inert 
microenvironment.

Another intriguing result was the clustering of the 
normal breast tissue from healthy donors (used as con-
trol) with the immune inert phenotype. Certain level of 
immune activity is expected in healthy breast as stud-
ies had shown the presence immune cells of innate and 
adaptive immunity with a potential role in immune 
surveillance. Lymphocytes were the predominant cells 
with CD8+ T cells being the most common of the lym-
phocytes. These CD8+ T cells primarily represent effec-
tor memory T cells bearing CD45RO+/CD27− phenotype 
[40–42]. Mammary microbiota might be the source of 
these antigens for activation [43]. However, during cell 
transformation, malignant cells release pro-inflammatory 
mediators and chemoattractants enhancing immune cell 
infiltration [44]. Consequently, the immune cell con-
tent of breast tissue progressively increases from normal 
breast tissue to BC [40]. However, in our case, no dif-
ference was observed in IP2 further signifying the non-
immunogenicity of tumours clustered in IP2.

There exists increasing evidence that immune-based 
subtyping in BC has clinical relevance. For example, 
Hendrickx and co-authors reported an immune pheno-
type characterised by the highest levels of immune gene 
expression, which correlated with an increased overall 
survival compared to the other immune phenotypes [27]. 
Similarly, Yao and colleagues identified three immune 
subsets validated in five BC data sets. The immune-active 
subtype was consistently associated with a better sur-
vival in all data sets [28]. Similarly, the TCGA validation 
cohort in our study demonstrated an improved overall 
survival for the immune-activated phenotypes in both 
the entire patient population and in HR-negative cases 
when stratified by the hormone receptor (HR) status.

This study enhances our understanding of BC biology 
among Ethiopian patients, aiding in the stratification of 
individuals into distinct treatment and prognostic groups. 
A significant limitation is the small sample size, which 
affects the robustness of our survival analysis. However, 

this is an ongoing research effort and currently additional 
BC patients were recruited to prospectively investigate 
the prognostic and predictive impact of immune genes 
expressed in the tumor microenvironment.

Conclusion
Expression profiling has resulted in distinct immune sub-
groups with a unique gene expression pattern, which pro-
vide important prognostic and predictive information for 
conventional treatments as well as immunotherapy in the 
management of BC in Ethiopia.
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Differentially expressed immune genes between the immune phenotypes 
were shown. Genes with log2 fold change (FC) ≥ 1.5 and false discovery 
rate (FDR)-corrected p value < 0.05 were presented. Green: downregulated 
genes, red: upregulated genes
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