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Abstract
Introduction ‒ Depression, the leading cause of disability
worldwide, is known to be exacerbated by severe acute
respiratory syndrome coronavirus 2 infection, worsening
coronavirus disease 2019 (COVID-19) outcomes. However,
the mechanisms and treatments for this comorbidity are
not well understood.
Methods ‒ This study utilized Gene Expression Omnibus
datasets for COVID-19 and depression, combined with protein–
protein interaction networks, to identify key genes. Gene
ontology and Kyoto Encyclopedia of Genes and Genomes ana-
lyses were performed to understand gene functions. The CIB-
ERSORT algorithm and NetworkAnalyst were used to examine
the relationship of immune cell infiltration with gene expres-
sion and to predict transcription factors (TFs) and microRNAs

(miRNAs) interactions. The Connectivity Map database was
used to predict drug interactions with these genes.
Results ‒ TRUB1, PLEKHA7, and FABP6were identified as
key genes enriched in pathways related to immune cell
function and signaling. Seven TFs and nineteen miRNAs
were found to interact with these genes. Nineteen drugs,
including atorvastatin and paroxetine, were predicted to
be significantly associated with these genes and potential
therapeutic agents for COVID-19 and depression.
Conclusions ‒ This research provides new insights into
the molecular mechanisms of post-COVID-19 depression
and suggests potential therapeutic strategies, marking a
step forward in understanding and treating this complex
comorbidity.

Keywords: COVID-19, major depressive disorder, neuroin-
flammation, neuroimmune response, transcriptional and
posttranscriptional regulation

1 Introduction

Depression, a leading cause of global disability, has experi-
enced a significant increase in prevalence in the wake of
the coronavirus disease 2019 (COVID-19) pandemic [1]. The
swift spread of the virus, societal dread, and physical toll of
the infection synergistically increased the incidence of
depressive symptoms among COVID-19 patients, with preva-
lence estimates ranging from 11 to 28%. Strikingly, a subset
of 3–12% of these individuals endures severe depressive
disorders [2]. The interplay between severe acute respira-
tory syndrome coronavirus-2 (SARS-CoV-2) infection and
depression is particularly concerning, as it has been demon-
strated to markedly worsen the prognosis of patients with
COVID-19 [3].

Previous research has indicated that individuals with pre-
existing respiratory conditions are more susceptible to con-
current depression, highlighting the intricate link between
respiratory health andmental well-being [4]. The psychological
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aftermath of SARS-CoV-2 infection, characterized by persistent
inflammation and the body’s immune response, is believed to
be a key driver of post-COVID-19 depression [5,6]. The invasion
of host cells via the angiotensin-converting enzyme (ACE2)
receptor triggers a cascade of events, including the activation
of lymphocytes and the subsequent release of proinflamma-
tory cytokines and chemokines [7–9]. This immune response,
coupled with the stress-induced activation of immune cells,
sets the stage for depressive symptoms [5,10].

Interestingly, a decrease in ACE2 levels has been observed
in individuals with depression, suggesting a shared pathophy-
siological mechanism between depression and the inflamma-
tory response elicited by COVID-19 [11,12]. The presence of
ACE2 on the cell surface and the production of inflammatory
cytokines are thus considered pivotal in the co-development of
these conditions.

While existing research has delved into the origins of
COVID-19-associated depression, the precise molecular mechan-
isms involved remain largely elusive [13]. To address this gap,
our study leverages publicly available gene expression and clin-
ical data from individuals with COVID-19 and depression,
employing sophisticated bioinformatics tools to identify key
genes and explore their underlying mechanisms.

We constructed a network of transcription factors (TFs)
and microRNAs (miRNAs) that interact with these pivotal
genes, revealing a complex regulatory system. Furthermore,
our analysis identified a series of molecular drugs that may
serve as potential treatments for both COVID-19 and depres-
sion. By uncovering these core biomarkers and their asso-
ciated mechanisms, this research paves the way for a more
targeted and effective therapeutic approach to managing the
dual burden of COVID-19 and depression.

2 Materials and methods

2.1 Data acquisition, processing, and
identification of differentially expressed
genes (DEGs) common to COVID-19/
depression

We sourced raw expression profile data from four datasets:
two focused on COVID-19 (GSE164805 and GSE171110) and two
focused on depression (GSE201332 and GSE135524). All data-
sets included samples from peripheral blood, with detailed
sample compositions, including both healthy control samples
and patient samples, as summarized in Table 1. To mitigate
the impact of batch effects across the integrated datasets, we
strategically employed the “combat” algorithm. This method,

which is part of the robust sva package in R, is designed to
adjust for batch effects, thereby ensuring the comparability of
gene expression data across different experimental condi-
tions. We subsequently utilized the “Limma” package, a
widely recognized tool in bioinformatics, for the identifica-
tion of DEGs. This package facilitated a comparative analysis
between the COVID-19 and moderate depression groups and
the healthy control andmild depression groups. We applied a
stringent threshold of |log2 (fold-change)| ≥0.58 and P < 0.05
to ensure that only the most significantly altered genes were
considered, enhancing the reliability of our findings. To further
refine our data, the “normalizeBetweenArrays” method was
employed to standardize the expression data across all sam-
ples. This normalization step is crucial, as it adjusts for tech-
nical variability, allowing for more accurate comparisons and
reducing the risk of false positives in DEG identification. Fol-
lowing this, the “lmFit” function was applied to perform a
nonlinear least squares analysis of the data. This statistical
approach is valuable for modeling the relationship between
gene expression and conditions, providing a robust framework
for the analysis of complex gene expression data. Finally, the
“eBayes” function was implemented to adjust the variance
estimates, which is essential for improving the accuracy of
statistical inference. This function employs Bayesian methods
to moderate the standard errors, enhancing the reliability of
the statistical significance testing. By intersecting the upregu-
lated and downregulated DEGs across the three conditions, we
identified genes commonly associated with COVID-19 and
depression.

2.2 Assessment of the diagnostic efficacy of
key genes

To evaluate the diagnostic potential of the identified DEGs
for COVID-19 and depression, we constructed receiver
operating characteristic (ROC) curves and calculated the
area under the curve (AUC) via the “pROC” R package.

2.3 Functional enrichment analysis and
protein–protein interaction (PPI)
network analysis were used to identify
hub genes

We conducted gene ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment ana-
lyses of the key DEGs via the “clusterProfiler” package.
The “ggplot2” package facilitated the visualization of these
enrichment results. We subsequently utilized the STRING
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database within the NetworkAnalyst platform (https://www.
networkanalyst.ca) to perform PPI network analysis, setting
a medium confidence score cutoff at greater than 400. The
resulting network was visualized via Cytoscape software, and
genes with a high degree of centrality and betweenness cen-
trality, indicative of their roles as pivotal signaling nodes,
were selected as hub genes.

2.4 Functional enrichment analysis of the
hub genes

COVID-19 samples were stratified based on median expres-
sion levels of the identified hub genes. We then isolated the
corresponding DEGs via the “Limma” package, applying the
same thresholds as previously mentioned. The “clusterProfiler”
package was again employed to conduct GO and KEGG enrich-
ment analyses for these DEGs in relation to the hub genes.

2.5 Correlation analysis between immune
cell infiltration and hub gene expression

The CIBERSORT algorithm was used to investigate the rela-
tionship between the infiltration levels of immune cells and
the expression of hub genes. Pearson correlation analysis
was used to quantify the associations between hub gene
expression and immune checkpoint levels, with a P-value
<0.05 considered indicative of a significant correlation.

2.6 TF–miRNA–hub gene coregulatory
network construction

NetworkAnalyst was used to predict potential TFs and
miRNAs that may regulate the hub genes via linked data-
bases such as JASPAR, TarBase, and RegNetwork. The

resulting TF–miRNA–gene interaction network was visua-
lized via Cytoscape software.

2.7 Candidate drug identification

Utilizing the CMAP online database (https://clue.io/), we
analyzed the potential interactions between the hub genes
and associated drugs. We filtered for candidate therapeutic
compounds with a connective score absolute value exceeding
90, which may have significant implications for treatment.

3 Results

3.1 Identification and analysis of
common DEGs

Our initial analysis yielded 4,718 DEGs from the comparison
between the COVID-19 and control groups, comprising 2,295
upregulated and 2,423 downregulated genes (Figure 1a). In the
context of depression, the GSE201332 and GSE135524 datasets
revealed a total of 11,586 and 981 DEGs, respectively, with
5,794 and 538 upregulated genes and 5,792 and 443 downre-
gulated genes (Figure 1b and c). By intersecting the DEGs from
the three conditions, we identified a set of five positively
correlated common DEGs, namely, COL10A1, FABP6, INSM2,
SPSB4, and SLC10A2, and four negatively correlated common
DEGs, namely, WDR89, CCDC102B, PLEKHA7, and TRUB1
(Figure 1d and e).

3.2 Validation of the expression and
diagnostic utility of key genes

The expression patterns of the common DEGs associated
with COVID-19 and depression are shown in Figure 2a and b,

Table 1: Information from the peripheral blood of all four datasets, including two COVID-19 datasets, GSE164805 and GSE171110, and two depression
datasets, GSE201332 and GSE135524

GSE135524 GSE201332 GSE171110 GSE164805

Mild depression Moderate depression Control MDD Control COVID-19 Control COVID-19

Sample number n = 33 n = 55 n = 20 n = 20 n = 10 n = 44 n = 5 n = 10
Sample type Peripheral blood Peripheral blood Peripheral blood Peripheral blood
Experimental technique RNA sequencing Microarray RNA sequencing Microarray
Patient population American Chinese France Chinese

Mechanisms and drugs of post-COVID-19 depression  3
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with the corresponding ROC curves depicted in Figure 2c
and d. Notably, COL10A1, FABP6, INSM2, SPSB4, and SLC10A2
presented increased expression in both conditions relative to
controls, whereas WDR89, CCDC102B, PLEKHA7, and TRUB1
presented decreased expression within the disease groups.
The AUC values for these genes in depression patients sur-
passed 0.8, and those in COVID-19 patients exceeded 0.7, with
the exception of COL10A1, SPSB4, and SLC10A2, whose AUC
values were less than 0.7. The heatmap in Figure 2e provides
a visual representation of the expression distribution of these
key genes across the mild and moderate depression cohorts.
Subsequent GO enrichment analysis of the common DEGs
revealed significant enrichment in processes such as T-cell
differentiation, lymphocyte differentiation, and positive regula-
tion of cytokine production (Figure 2f). KEGG pathway analysis
further revealed that these key genes are involved in pathways
such as Th1 and Th2 cell differentiation, Th17 cell differentia-
tion, and the T-cell receptor signaling pathway (Figure 2g).
These results showed that the immune response played a sig-
nificant mediating role in the pathogenesis of both pandemics.

3.3 Construction and analysis of the PPI
network to identify hub genes and their
functional enrichment

We constructed a PPI network for the identified genes via
the NetworkAnalyst platform, which facilitated the extrac-
tion of three pivotal hub genes, TRUB1, PLEKHA7, and
FABP6, on the basis of their degree and betweenness cen-
trality rankings (Figure 3a). We subsequently conducted GO
and KEGG enrichment analyses for DEGs corresponding to
each hub gene, stratifying COVID-19 samples into high- and
low-expression groups for each gene. TRUB1 gene expres-
sion was predominantly associated with biological processes
(BPs), such as mononuclear/lymphocyte/T-cell differentiation/
adhesion, T-cell activation, immune effector, and systemic
process regulation, as well as pathways involving cytokine–
cytokine receptor interactions, Th17/Th1/Th2 cell differentia-
tion, and Wnt/T-cell receptor/NF-κB/TGF-β signaling cascades
(Figure 3b and c). PLEKHA7 was associated with BPs and
pathways similar to those of TRUB1, with a particular

0

5

10

15

20

−5.0 −2.5 0.0 2.5
logFC

−l
og

10
(p

va
lu

e) Significant
Down

Not

Up

(a)

0

10

20

30

−4 −2 0 2 4 6
logFC

−l
og

10
(p

va
lu

e) Significant
Down

Not

Up

0

1

2

3

4

−3 0 3 6
logFC

−l
og

10
(p

va
lu

e) Significant
Down

Not

Up

(c)(b)

(d) (e)

up_Moderate Depression down_Moderate Depression

Figure 1: Identifying DEGs common to both COVID-19 and depression. (a) Volcano plot of the DEGs in COVID-19 patients from the GSE164805 and
GSE171110 datasets. (b) Volcano plot of the DEGs associated with depression from the GSE201332 dataset. (c) Volcano plot of the DEGs associated with
depression from the GSE135524 dataset, which included mild and moderate depression cohorts. (d) Intersection of upregulated DEGs in COVID-19
patients and upregulated DEGs in depression and moderate depression patients. (e) Intersection of downregulated DEGs in COVID-19 patients, with
downregulated DEGs associated with depression and mild depression.
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emphasis on mononuclear/lymphocyte/T-cell differentiation/
adhesion and T-cell activation (Figure 3d and e). FABP6 was
linked to processes such as mononuclear/lymphocyte/T-cell dif-
ferentiation, cell–cell adhesion, leukocyte/granulocyte migra-
tion, and pathways such as cytokine‒cytokine receptor
interaction, PI3K-AKT/JAK-STAT/T-cell receptor/IL-17 signaling,
Th17/Th1/Th2-cell differentiation, and phagosome function
(Figure 3f and g). These results underscore the close associa-
tions of the hub geneswith immune cell differentiation,migra-
tion, activation, immune process regulation, and multiple

signaling pathways, as well as their interactions with cytokine–
cytokine receptors.

3.4 Correlation analysis of hub genes with
immune cell characteristics

Given the enriched roles of the hub genes in immunolo-
gical regulation and inflammatory responses, we employed
the CIBERSORT algorithm to explore the relationships
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Figure 2: Elaborating the expression and diagnostic efficacy of key genes in COVID-19/depression prevention and functional enrichment analysis. (a)
Expression levels of the key DEGs in COVID-19. (b) Expression levels of the key DEGs associated with depression. (c) AUC values of the ROC curves of these
genes in patients with COVID-19. (d) AUC values of the ROC curves of these genes in patients with depression. (e) A heatmap illustrating the expression
distributions of key genes in the mild and moderate depression cohorts. (f) GO enrichment of key genes. (g) KEGG enrichment of key genes.
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Figure 3: PPI network construction to identify hub genes and functional enrichment analyses for hub genes. (a) The NetworkAnalyst platformwas used to
construct a PPI network for key genes, and three hub genes, TRUB1, PLEKHA7, and FABP6, were screened. (b)–(g) GO and KEGG enrichment analyses of
DEGs corresponding to TRUB1 (b and c), PLEKHA7 (d and e), and FABP6 (f and g) were performed by separating them into high/low single-hub gene groups.
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between the expression of these genes and the abundance
of infiltrating immune cells. The correlation between hub
gene expression and immune cell infiltration is depicted in
Figure 4a. TRUB1 was positively correlated with activated/
restingmemory CD4+ T cells, activated NK cells, andM1macro-
phages but negatively correlated with naive CD4+ T cells,
resting NK cells, M0 macrophages, activated mast cells, eosino-
phils, and neutrophils. PLEKHA7 was positively associated
with CD8+ T cells, activated memory CD4+ T cells, activated
NK cells, and M1 macrophages but negatively correlated with
naive CD4+ T cells, Tregs, monocytes, M0/M2 macrophages,
activated mast cells, eosinophils, and neutrophils. In contrast,
FABP6 was positively correlated with neutrophils and nega-
tively correlated with CD8+ T cells, activated memory CD4+ T
cells, and M1 macrophages, indicating an opposing pattern
compared with the other two hub genes.

Moreover, the correlations between the hub genes and
immune checkpoint markers indicated that TRUB1 and
PLEKHA7were positively related to these markers, whereas
FABP6 had the opposite relationship (Figure 4b).

3.5 Establishment of the TFs–miRNAs–hub
genes coregulation network

Gene expression is most commonly and significantly influ-
enced by two primary regulatory mechanisms, transcriptional

regulation mediated by TFs and posttranscriptional regulation
mediated by miRNAs [14]. To elucidate the intricate regulatory
mechanisms governing the expression of the identified hub
genes, we utilized NetworkAnalyst to construct a comprehen-
sive network of TFs and miRNAs. Our analysis revealed a com-
plex interplay, with 7 TFs and 19 miRNAs interacting with the
hub genes. Specifically, TRUB1 was found to be under the reg-
ulatory influence of four miRNAs and one TF, which also had a
concurrent effect on PLEKHA7. For PLEKHA7, 12 miRNAs and 4
TFs were identified as key regulators. FABP6 was predicted to
be influenced by two miRNAs and three TFs, as depicted in
Figure 5.

3.6 Target drug prediction

Employing the CMAP database, we identified a cohort of 19
molecular drugs that exhibited a strong correlation with the
hub genes, as indicated by a median tau score exceeding 90.
This selection included HG-5-113-01, DL-PDMP, wortmannin,
atorvastatin, BIBX-1382, cytochalasin-d, cucurbitacin-i,
apicidin, SCH-79797, paroxetine, tozasertib, doxorubicin, BMS-
754807, WT-171, neratinib, simvastatin, WZ-3146, perhexi-
line, and KIN001-127, as illustrated in Figure 6. These drugs
hold promise for the development of targeted molecular
therapies aimed at combating both COVID-19 and depres-
sion, offering a new frontier in treatment strategies.
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4 Discussion

A growing amount of evidence has highlighted a stark rise
in the prevalence of mental health disorders, including depres-
sion, anxiety, and insomnia, amidst the ongoing COVID-19 pan-
demic [15]. Studies have consistently reported increased
depressive and anxious symptoms in the early months of
the pandemic compared with pre-pandemic levels [16].
Furthermore, research from Italy revealed a sustained
increase in mental health symptoms, such as anxiety
and depression, even into the second year following the
pandemic’s onset [17].

Increasing research has suggested that alterations in
brain structure and function, neural activity, and network
connectivity may underpin the emergence of pandemic-
related depression [12,18]. These findings are complemented
by the role of the neuroimmune response, with factors such
as neuroinflammation, compromised blood–brain barrier

integrity, and the potential invasion of SARS-CoV-2 into the
central nervous system contributing to the etiology of depres-
sion during the pandemic [19]. Elevated cytokine levels and
disruptions in the gut microbiome have also been implicated,
with the latter potentially driving excessive proinflammatory
cytokine production and intestinal barrier damage, further
exacerbating the risk of depression [20,21].

Despite these insights, the molecular mechanisms that
link depression with COVID-19 remain to be fully eluci-
dated. This study delves into these complexities, identi-
fying key biomarkers, underlying functions, and pathways
that are central to the interplay between the virus and
mental health. By doing so, we have identified potential
therapeutic targets, offering hope for the development of
targeted interventions for COVID-19-induced depression.

In this study, the genes TRUB1, PLEKHA7, and FABP6
emerged as central hubs potentially contributing to the
pathogenesis of both depression and COVID-19. Our
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Figure 5: Construction of a TF–miRNA–hub gene coregulation network. A total of 7 TFs and 19 miRNAs were predicted to interact with the hub genes.

Figure 6: Candidate drugs were predicted. The use of CMAPs to predict 19 drugs closely correlated with COVID-19 and depression, with the limitation
of a median tau score >90.
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findings revealed that TRUB1 and PLEKHA7 expression
was decreased, whereas FABP6 expression was increased
in both the depression group and the COVID-19 patient
group compared with the control group. Previous research
by Zhang et al. revealed that low levels of TRUB1, a highly
conserved pseudouridine synthase, are associated with an
adverse prognosis in glioblastomamultiforme [22]. Disruptions
in PLEKHA7 expression have been shown to promote the dela-
mination of basal progenitors, subsequently increasing their
numbers and the neuronal population in the cortical plate [23].
Conversely, FABP6, which is upregulated in gliomas compared
with control brain tissue, has been implicated in reduced
invasion and angiogenesis upon FABP6 knockdown [24].
Additionally, urinary intestinal fatty acid binding protein
(urinary-FABP), recognized as a marker for gut injury, is
correlated with increased mortality in pneumonia patients
[25]. Heart fatty acid binding protein (heart-FABP) levels are
elevated in COVID-19 patients, with higher levels correlating
with disease severity [26]. Overall, this study highlights the
significant roles of TRUB1, PLEKHA7, and FABP6 in the devel-
opment of depression associated with COVID-19.

Functional and pathway enrichment analyses are cru-
cial for understanding the regulatory mechanisms of hub
genes in COVID-19-related depression. Our investigation
revealed the enrichment of processes such as mononuclear/
lymphocyte/T-cell differentiation/adhesion, T-cell activation,
immune regulation, and leukocyte/granulocyte migration.
COVID-19 is known to cause a significant decline in CD4+ T
cells, affect T-cell differentiation, and disrupt innate immune
antigen presentation, as well as monocyte population imbal-
ances [27,28]. T-cell activation is particularly important for
neuroprotection and anti-inflammatory effects in major
depressive disorder [29]. Furthermore, pathways involved
in cytokine signaling, Th17/Th1/Th2 cell differentiation, and
Wnt/T-cell receptor/NF-κB/TGF-β signaling are recognized as
key regulatory pathways. The increased levels of inflamma-
tory chemokines in ICU COVID-19 patients and the role of
NF-κB in SARS-CoV-2 infection are well-documented [30–32],
as is the involvement of TGF-β in pulmonary fibrosis caused
by COVID-19 [33]. Moreover, the NF-κB pathway also
plays a significant role in neuronal plasticity and neuro-
genesis related to depression, while the PI3K-Akt pathway is
implicated in antidepressant activity and neuroprotection
[34,35]. These biological functions and regulatory mechan-
isms are in accordance with those reported previously in
patients with COVID-19 or depression; however, these
mechanisms mediate depression in patients with COVID-
19 infection.

This study also highlighted the link between hub genes,
including T cells, NK cells, macrophages, eosinophils, neu-
trophils, Tregs, and immune cell activity. The associations

between immune response biomarkers and the risk of
depression in the context of COVID-19 remain an area of
ongoing research.

Finally, in this study, we explored the transcriptional
and posttranscriptional regulation of these key genes and
screened potential targeted drugs. For the first time, we
identified a series of TFs, miRNAs, and small molecule
compounds, charting a course for future research endea-
vors. The identification of 19 molecular drugs as potential
therapeutic candidates for COVID-19 and depression is
important. These include DL-PDMP, which inhibits ganglio-
side synthesis [36], and wortmannin, which reduces ACE2
levels in mast cells [37]. Statins, such as atorvastatin and
simvastatin, have been shown to alleviate depressive symp-
toms and provide protection against COVID-19 by modu-
lating cytokine release and T-cell activity [38–40]. BIBX
1382, an EGFR inhibitor, and paroxetine, a serotonin reup-
take inhibitor, are also among the potential therapeutic
agents, along with doxorubicin, which has been repurposed
as an anti-COVID-19 drug [41–43].

Certain limitations require attention. First, the dataset uti-
lized in this article encompasses individuals from Chinese,
French, and American patient populations, which introduces
potential ethnic variations that could influence the reliability of
our findings. Additionally, future research should aim to incor-
porate more nuanced data resources characterized by larger
sample sizes and comprehensive clinical details. Furthermore,
while this study is rooted primarily in computational biology,
experimental validation and clinical confirmation studies must
be conducted. Finally, it is imperative to elucidate the
underlying mechanisms, including molecular regulation,
pathway mediation, and target‒drug interactions, in sub-
sequent investigations.

5 Conclusion

In summary, this research highlights the roles of TRUB1,
PLEKHA7, and FABP6 as hub genes, the underlying path-
ways and TF–miRNA networks, and the potential impact of
these genes on immune cell activity in the development of
depression and COVID-19. The identification of candidate
drugs and potential regulatory mechanisms provides a
foundation for optimizing predictive and therapeutic stra-
tegies for these intertwined conditions.
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