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Significance

 Noise is ubiquitous in the 
auditory world, and human 
hearing is remarkably robust to 
its presence. The standard 
explanation for this robustness 
involves adaptation to 
components of the auditory 
input that are stable over time, 
accentuating time-varying signals 
at the expense of static “noise” 
signals. Here, we show several 
properties of human noise 
robustness that are inconsistent 
with such a simple explanation. 
The results are instead consistent 
with the idea that the auditory 
system estimates the properties 
of noises it encounters and then 
stores them over time, using the 
resulting internal model to 
estimate other concurrent 
sounds.
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Human hearing is robust to noise, but the basis of this robustness is poorly under-
stood. Several lines of evidence are consistent with the idea that the auditory system 
adapts to sound components that are stable over time, potentially achieving noise 
robustness by suppressing noise-like signals. Yet background noise often provides 
behaviorally relevant information about the environment and thus seems unlikely 
to be completely discarded by the auditory system. Motivated by this observation, 
we explored whether noise robustness might instead be mediated by internal mod-
els of noise structure that could facilitate the separation of background noise from 
other sounds. We found that detection, recognition, and localization in real-world 
background noise were better for foreground sounds positioned later in a noise 
excerpt, with performance improving over the initial second of exposure to a noise. 
These results are consistent with both adaptation-based and model-based accounts 
(adaptation increases over time and online noise estimation should benefit from 
acquiring more samples). However, performance was also robust to interruptions in 
the background noise and was enhanced for intermittently recurring backgrounds, 
neither of which would be expected from known forms of adaptation. Additionally, 
the performance benefit observed for foreground sounds occurring later within a 
noise excerpt was reduced for recurring noises, suggesting that a noise representa-
tion is built up during exposure to a new background noise and then maintained 
in memory. These findings suggest that noise robustness is supported by internal 
models—“noise schemas”—that are rapidly estimated, stored over time, and used 
to estimate other concurrent sounds.

auditory scene analysis | hearing in noise | sound texture

 Much of the everyday listening experience is distorted by noise. Although noisy environ-
ments present a challenge for hearing, human listening abilities are remarkably robust to 
noise, enabling us to converse over the hum of a restaurant or recognize sounds on a windy 
day. However, the ability to hear in noise is vulnerable, declining with age ( 1 ,  2 ) and 
following hearing loss ( 1 ,  3 ). Understanding the basis of noise-robust hearing and its 
malfunction is thus a central goal of auditory research.

 Noise robustness has been well documented in humans. For instance, speech intelligi-
bility falls off gradually with signal-to-noise ratio (SNR), but remains high even when 
background noise has comparable power to a concurrent speech signal ( 4 ). Additionally, 
some types of sounds are easier to hear in noise than others ( 5 ), and hearing is more robust 
to some types of noise than others ( 6       – 10 ). Moreover, neural correlates to this robustness 
have been discovered along the ascending auditory pathway of multiple species ( 11                 – 20 ). 
Yet, despite recent interest in the factors that enable and constrain hearing in noise, the 
problem is not well understood in computational terms.

 A common view is that the auditory system filters out or suppresses noise in order to 
recognize sources of interest. One possibility is that the brain has internalized typical 
properties of noise and, by default, suppresses them relative to the properties of other 
sound sources ( 9 ,  12 ,  17 ). For instance, because noise is often approximately stationary 
(i.e., being defined by statistical properties that are relatively constant over time), the 
auditory system could preferentially suppress stationary sounds, which might enable more 
robust recognition of other sounds in noise. We refer to this hypothesis as “fixed noise 
suppression,” the idea being that there are fixed filters that attenuate noise-like sounds 
( Fig. 1A  ). Another possibility is that noise properties are implicitly detected and suppressed 
via local adaptation mechanisms that reduce the response to features that are relatively 
constant in the auditory input ( 13 ,  14 ,  16 ,  18 ,  21   – 23 ). We refer to this hypothesis as 
“adaptive noise suppression” ( Fig. 1B  ). While adaptive mechanisms can account for some 
of the observed neural responses to stimuli in noise, such proposals have primarily been 
evaluated with simple synthetic noise signals, leaving it unclear whether they explain 
robustness to noise sources containing the rich statistical structure present in natural 
environments ( 24 ).        
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 An alternative possibility is that the auditory system might 
actively model the statistical structure of noise ( Fig. 1C  ). This idea 
derives some a priori plausibility from the potential of background 
noise to convey useful information. Although laboratory studies 
of hearing in noise tend to use a single type of unstructured syn-
thetic noise (e.g., white noise or pink noise), “noise” in the world 
can vary dramatically from place to place, often providing behav-
iorally relevant information about the environment ( 25 ,  26 ), such 
as the intensity of rain or wind. Such real-world noises are com-
monly referred to as auditory textures ( 24 ,  27 ). Auditory textures 
are typically generated by superpositions of many similar acoustic 
events and can exhibit a diversity of statistical properties ( 24 ). 
Moreover, human listeners are sensitive to statistical regularities 
of textures ( 24 ,  28       – 32 ) and estimate and represent their properties 
even in the presence of other sounds ( 33 ,  34 ). These considerations 
raise the possibility that rather than simply suppressing noise, the 
auditory system might model its statistical structure, using the 
resulting model to aid the separation of noise from other sound 
sources akin to how “schemas” are thought to aid the segregation 
of familiar words and melodies ( 35   – 37 ). Thus, there are at least 
three potential explanations for noise-robust hearing: fixed noise 
suppression, adaptive noise suppression, and the internal modeling 
of noise schemas.

 We sought to test these three candidate explanations for 
noise-robust hearing and assess their role in everyday hearing. 
Adaptive suppression and internal noise modeling both predict 
that the ability to hear in noise should improve following the onset 
of a noise source: adaptation should grow over time, and a noise 
model should be more accurately estimated with larger samples. 
Such temporal effects have been documented in a few tasks ( 38 ) 
including pure tone detection (classically termed “overshoot”) ( 39 , 
 40 ), amplitude modulation detection ( 41 ), phoneme recognition 
( 18 ,  42 ), and word recognition ( 43 ,  44 ). However, because much 
of this work was conducted using relatively unstructured synthetic 
noise, it was unclear whether such temporal effects might be 

observed in more natural contexts (e.g., with realistic noise that 
is not fixed throughout a listening session). We thus began by 
characterizing listeners’ ability to detect, recognize, and localize 
natural foreground sounds embedded in real-world back-
ground noise.

 Although adaptive suppression and internal noise modeling are 
not necessarily mutually exclusive (Discussion ), they could be dif-
ferentiated via the time course of their effects. Specifically, neural 
adaptation in the auditory system typically dissipates fairly rapidly 
following a stimulus offset ( 18 ) such that its effects would be 
expected to wash out during an interruption to background noise. 
By contrast, an internal model of noise properties might be main-
tained over time, yielding more persistent effects. Thus, to distin-
guish these two hypotheses, we further investigated whether noise 
robustness would persist across interruptions in noise and whether 
it might improve following intermittent repeated exposure to par-
ticular background noises. Such improvement would be expected 
if listeners learn noise schemas akin to the schemas acquired for 
melodies ( 37 ), but not if they simply adapt to ongoing noise in 
the environment.

 We found that the ability to detect, recognize, and localize 
foreground sounds in noise improved over the initial second of 
exposure to the background, a timescale substantially longer than 
previously reported for synthetic noise and artificial tasks. We also 
found that foreground detection performance was robust to tem-
porary changes in the background, suggesting that listeners main-
tain a representation of noise properties across interruptions. 
Moreover, detection performance was enhanced for recurring 
background noises, suggesting that internal models of noise prop-
erties—noise schemas—are built up and maintained over time. 
Finally, we found that the pattern of human performance could 
be explained by an observer model that estimates the statistics of 
ongoing background noise and detects foreground sounds as out-
liers from this distribution. Taken together, the results suggest that 
the predictable statistical structure of real-world background noise 
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Fig. 1.   Potential explanations for noise-robust hearing and examples of experimental stimuli. (A) Fixed noise suppression hypothesis. A stimulus waveform 
(Left, background shown in gray, foreground shown in black) passes through a set of filters (Middle, transfer functions shown in shades of blue for an unspecified 
stimulus dimension), resulting in a set of filter responses over time (Right). Here and in (B and C), the filter tuning is unspecified and is not essential to the general 
predictions of the hypotheses. The filters could be nonlinear functions of the input and might measure higher-order properties of sound. In the fixed noise 
suppression hypothesis, the gain of a fixed set of filters is reduced to attenuate noise-like sounds (light gray responses show unattenuated filter response). 
(B) Adaptive noise suppression hypothesis. In the adaptive noise suppression hypothesis, responses to relatively constant features are suppressed over time 
via adaptation. (C) Noise modeling hypothesis. In the noise modeling hypothesis, estimation of background noise statistics allows foreground sounds to be 
detected as outliers from the associated distribution. (D) Example sounds used to generate experimental stimuli. Each panel shows the foreground (Left, black) 
and background (Right, gray) sound from an example trial, displayed as sound waveforms (Bottom), cochleagrams (Top), and mean excitation patterns (Right). 
Cochleagrams were generated from the envelopes of a set of bandpass filters with tuning modeled on the human ear. Darker gray denotes higher intensity. 
Mean excitation patterns were obtained by averaging the cochleagram over time. In our initial experiments, foreground–background pairs were selected to 
have similar long-term spectra to minimize differences in the spectrotemporal overlap that would otherwise cause large variation in detectability from across 
pairs. This design choice turned out not to be essential and was dropped in later experiments.
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is represented in an internal model that is used by the auditory 
system to aid hearing in noise. 

Results

 To characterize real-world hearing-in-noise abilities, we sourced 
a diverse set of 160 natural foreground sounds and background 
noises to create experimental stimuli. Each stimulus consisted of 
a brief foreground sound paired with an extended background 
noise. Foreground sounds were 0.5-s excerpts of recorded natural 
sounds ( 45 ,  46 ), and background noises were 3.25-s excerpts of 
sound textures synthesized ( 24 ) from the statistics of real-world 
textures drawn from a large set of YouTube soundtracks (AudioSet) 
( 47 ,  48 ). In our initial experiments, foreground–background pairs 
( Fig. 1D  ) were selected to have similar long-term spectra to avoid 
large differences in spectrotemporal overlap that would otherwise 
cause large variation in detectability across pairs. 

Experiment 1: Foreground Detection Improves with Exposure to 
Background Noise. We began by measuring the detection of natural 
sounds embedded in real-world background noises (Fig.  2A). 
On each trial, participants heard a continuous background noise 
presented either in isolation or with a brief “foreground” sound 
superimposed, then judged whether the stimulus contained one 
or two sound sources. Across trials, we manipulated both the 
temporal position and SNR of the foreground relative to the 
background. We chose the temporal positions so that there was 
always an onset asynchrony of at least 250 ms between foreground 
and background. Previously reported temporal dependencies of 
tone-in-noise detection (in which detection is better when tone and 
noise are asynchronous; "overshoot") are limited to asynchronies 
of less than a few hundred milliseconds (39, 40, 49). However, 
it seemed plausible that longer timescales might be evident with 
more naturalistic noise sources and foreground sounds.

 Because task performance might benefit from knowledge of 
the foreground sounds ( 35   – 37 ), it was important that listeners 
only heard each foreground sound once during the experiment. 
To achieve this goal, we used an experimental design in which 
each participant completed only one trial for each of the 160 
foreground–background pairings, with each pairing randomly 
assigned to one of the 20 experimental conditions (10 temporal 
positions crossed with 2 SNRs). Since this design necessitated a 
large sample size, we conducted this and other experiments 
online (with the exception of Experiment 3). Each of the 160 
background noises also occurred once without a foreground 
sound. We calculated a single false-alarm rate from these 
background-only trials along with a hit rate for each of the 20 
experimental conditions.

 We found that foreground detection performance (quantified 
as d′) improved with exposure to the background [ Fig. 2B  ; main 
effect of foreground onset time: F(9,828) = 22.85, P  < 0.001, 
﻿�2
partial

= 0.20 ]. As expected, we also saw better foreground detec-
tion performance at the higher SNR [main effect of SNR: F(1,92) 
= 769.15, P  < 0.001,  �2

partial
= 0.89 ], but the benefit of back-

ground exposure was evident at both SNRs [no significant inter-
action between foreground onset time and SNR: F(9,828) = 0.76, 
﻿P  = 0.65,  �2

partial
= 0.01 ]. In both cases, task performance 

increased as the foreground sound was positioned later in the 
noise, with performance rising over roughly the initial second of 
exposure to the background.

 This temporal dependence is consistent with the idea that lis-
teners use the background noise preceding the foreground in order 

to perform the task. The temporal dependence also rules out sev-
eral alternative possibilities. For example, if listeners performed 
the task entirely by detecting acoustic cues from the onset of the 
foreground sound, then task performance should be comparable 
at each temporal position of the foreground. Alternatively, if lis-
teners could also perform the task equally well by listening retro-
spectively (using the background noise following the foreground 
to make a decision about the foreground′s presence), then perfor-
mance should also be comparable across the different foreground 
positions since the total duration of background noise is the same 
for each condition.

 To better quantify the timescale of the effect, we fit an “elbow” 
function (a piecewise linear function consisting of two line seg-
ments; Materials and Methods ) to the results (averaged over SNRs). 
We bootstrapped over participants to obtain a CI around the 
location of the elbow point (i.e., the transition from rise to pla-
teau). This analysis indicated that foreground detection perfor-
mance improved with exposure to the background before reaching 
a plateau after 912 ms (95% CI: [812, 1,223] ms).  

Experiment 2: Exposure to Background Noise Benefits Sound 
Recognition. In Experiment 2, we asked whether the benefit of 
background exposure extends to a recognition task. On each 
trial, participants heard a foreground–background pairing from 
Experiment 1 and were asked to identify the foreground by 
selecting a text label from five options (Fig. 2C). One option was 
the correct label; the remaining options were chosen randomly 
from the labels of the other foreground sounds in the stimulus set.

 Recognition performance improved with exposure to the back-
ground in much the same way as did detection [ Fig. 2D  ; main 
effect of foreground onset time: F(9,2340) = 9.04, P  < 0.001, 
﻿�2
partial

= 0.03 ; no significant interaction between foreground 
onset time and SNR: F(9,2340) = 0.84, P  = 0.58,  �2

partial
= 0.00 ]. 

The elbow function fit to these results indicated a timescale of 
improvement similar to that in the detection task from Experiment 
1, with a plateau in performance after 905 ms (95% CI: [726, 
1,242] ms) of exposure to the background.  

Experiment 3: Exposure to Background Noise Benefits Sound 
Localization. We next asked whether the ability to localize sounds 
in noise similarly benefits from exposure to the background. We 
conducted this experiment in-lab using an array of speakers (Fig. 2E). 
On each trial, participants heard a scene composed of a foreground 
sound superimposed on spatially diffuse background noise, with the 
foreground occurring at one of five temporal positions within the 
background. Participants sat facing the array, holding their head 
still, and localized the foreground sound, entering the label of the 
corresponding speaker as their response. Because this experiment 
had to be run in person (rather than online), we chose to use only 
five temporal positions at a single SNR in order to reduce the total 
number of conditions, thereby increasing power and allowing us 
to collect data from a modest number of participants. Additionally, 
we lowered the SNR to account for the likelihood that spatial cues 
would reduce detection thresholds (50). It turned out that at the 
tested SNR, localization in elevation was close to chance. Thus, 
we quantified sound localization performance using the absolute 
localization error in azimuth only.

 Sound localization improved with exposure to the background 
in a manner similar to that observed for detection and recognition 
tasks [ Fig. 2F  ; main effect of foreground onset time: F(4,84) = 
6.09, P  < 0.001,  �2

partial
= 0.22 ], with performance plateauing 

after 962 ms (95% CI: [750, 1,954] ms) of exposure to the back-
ground. Overall, the results point to a consistent benefit from 
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noise exposure, spanning detection, recognition, and localization 
of natural sounds in noise.  

Experiment 4: Benefit of Background Exposure Persists Despite 
Knowing What to Listen for. In real-world conditions, we often 
listen for particular sounds in an auditory scene. For example, 
when crossing the street, one might listen out for crosswalk 
signals, bike bells, or accelerating engines. Because expectations 
about a source can aid its segregation from a scene (35–37), and 
might also benefit hearing in noise, it was unclear whether the 
benefit of background exposure would persist if participants 
knew what to listen for. To address this issue, we conducted a 
variant of Experiment 1 in which participants were cued to listen 
for a particular foreground sound on each trial (SI  Appendix, 
Fig.  S1A). On each trial, participants first heard a foreground 
sound in isolation (the “cue”), followed by continuous background 
noise. Half of the trials contained the cued foreground sound 
superimposed somewhere on the background, and participants 
judged whether the cued sound was present. We again found that 
foreground detection performance improved with exposure to the 

background [SI Appendix, Fig. S1B; main effect of foreground 
onset time: F(9,1215) = 19.91, P < 0.001, �2

partial
= 0.13 ]. The 

timescale of improvement was similar to that in the detection 
task from Experiment 1, with a plateau in performance after 885 
ms (95% CI: [582, 1,766] ms) of exposure to the background 
(not significantly different from the elbow point in Experiment 
1; P = 0.52 via permutation test, elbow point difference: 68 
ms). These results demonstrate that the benefit of background 
exposure persists even when participants know what to listen for, 
highlighting the relevance of this phenomenon for a range of 
real-world contexts.

An Observer Model Based on Background Noise Estimation 
Replicates Human Results. The results from Experiments 1 to 4 
demonstrate a benefit of background noise exposure that provides 
evidence against the fixed noise suppression hypothesis, but that 
is conceptually consistent with both the adaptive suppression 
and internal noise modeling hypotheses. To first establish the 
plausibility of background noise estimation as an account of 
human hearing in noise, we built a signal-computable observer 

A

B

C

D

E

F

Fig. 2.   Experiments 1 to 3: Foreground detection, recognition, and localization improve with exposure to background noise. (A) Experiment 1 task. On each 
trial, participants heard a continuous background noise (gray) presented either in isolation (e.g., trial 1) or with a brief additional foreground sound (black) 
superimposed (e.g., trial 2). We manipulated the onset time and SNR of the foreground relative to the background. Participants judged whether the stimulus 
contained one or two sound sources. (B) Experiment 1 results. Average foreground detection performance (quantified as d′; blue circles) is plotted as a function 
of SNR and foreground onset time. Shaded regions plot SE. Dashed lines plot elbow function fit. The solid line below the main axis plots one SD above and below 
the median elbow point, obtained by fitting elbow functions to the results averaged over SNR and bootstrapping over participants; the dot on this line plots the 
fitted elbow point from the complete participant sample. (C) Experiment 2 task. On each trial, participants heard background noise (gray) containing a foreground 
sound (black) and were asked to identify the foreground by selecting a text label from five options. (D) Experiment 2 results. Foreground recognition performance 
(quantified as percent correct; blue circles) is plotted as a function of SNR and foreground onset time. Chance performance was 20%. Data are plotted using 
the same conventions as (B). (E) Experiment 3 task. Stimuli were presented via an array of 133 speakers spanning −90° to +90° in azimuth and −20° to +40° in 
elevation. On each trial, participants heard a scene composed of diffuse background noise (different samples of a texture played from 10 randomly selected 
speakers, shown in gray in the diagram) and a foreground sound (played from a randomly selected speaker, show in black in the diagram) occurring at one of 
five temporal positions within the noise. Participants judged the location of the foreground sound. (F) Experiment 3 results. Average foreground localization 
performance (quantified as absolute localization error in azimuth, in degrees; green circles) is plotted as a function of foreground onset time. The y axis is oriented 
to match conventions in other panels where higher positions along the ordinate indicate better performance. Data are plotted using the same conventions as (B).

http://www.pnas.org/lookup/doi/10.1073/pnas.2408995121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2408995121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2408995121#supplementary-materials
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model to perform the foreground detection task from Experiment 
1. The model evaluates the likelihood of incoming samples under 
a distribution whose parameters are estimated from past samples. 
The key idea is that samples not belonging to the background 
distribution (i.e., samples from the foreground sound) will tend to 
have low likelihood under a model of the background. Thus, the 
model can detect a foreground sound via samples that it assigns 
low likelihood. Intuitively, the fitted noise distribution should 
become more accurate with more samples, making it easier to 
detect outliers. However, it was not obvious that this type of model 
would achieve variation in performance with onset time that was 
on par with that observed in humans. We asked whether such a 
model could replicate the temporal dependence of foreground 
detection in noise observed in our human participants.

 A schematic of the model is shown in  Fig. 3A  . First, an input 
sound waveform is passed through a standard model of auditory 
processing consisting of two stages: a peripheral stage modeled 
after the cochlea (yielding a “cochleagram”), followed by a set of 
spectrotemporal filters inspired by the auditory cortex that operate 
on the cochleagram, yielding time-varying activations of different 
spectrotemporal features. Next, a probability distribution is esti-
mated from these activations over a past time window and used to 
evaluate the negative log-likelihood of samples in a “present” time 
window. This quantity (“surprisal”) measures how unexpected the 
present samples are given the learned background distribution. The 
process is then stepped forward in time and repeated, resulting in 
a set of surprisal values for each spectrotemporal filter at each time 
point within the stimulus. The surprisal is then averaged across 
filter channels and compared to a decision threshold to decide 
whether a foreground sound is present. The decision threshold was 
determined empirically as a value of surprisal substantially greater 
than would be expected by chance (Materials and Methods ).        

 For simplicity, we implemented the model with univariate nor-
mal distributions fit to each filter output as these were sufficient 
to account for the qualitative effects seen in human judgments. 
We note that this choice results in an impoverished model of 
sound texture. In particular, the distribution only models the mean 
and variance of filter activations while ignoring other higher-order 
statistics (e.g., correlations across filters) known to be important 
for sound texture perception ( 24 ). It also ignores temporal struc-
ture in the signal that exceeds the width of the filter kernels, treat-
ing all filter activations as independent. Although natural textures 
sometimes contain such high-order structure, it is at present 
unclear how this structure should be captured in a probabilistic 
model [existing models of texture ( 24 ) are based on a set of sta-
tistics rather than explicit probability distributions as are needed 
to evaluate outliers], and so we chose to sidestep this question to 
obtain a proof of concept for the general approach. The resulting 
simplifications would be expected to lower performance relative 
to what would be obtained with a distribution that more com-
pletely accounts for the statistical structure of natural textures. 
That said, the model captured some of the spectrotemporal struc-
ture of natural textures that differentiates them from traditional 
synthetic noise, and so seemed a reasonable choice with which to 
explore the general hypothesis of noise modeling.

 The model was additionally defined by two hyperparameters: 
the width of the past window over which noise distribution param-
eters were estimated and the width of the present window over 
which surprisal was averaged. We tested a range of past and present 
window sizes and found that the best match to human data 
occurred with a past window size of 1,000 ms and a present win-
dow size of 500 ms. These results are presented here (see 
﻿SI Appendix, Fig. S2  for the human-model correlation for different 
window sizes).

A

B C

Fig. 3.   An observer model based on background noise estimation replicates human results. (A) Model schematic. First, an input sound waveform is passed 
through a standard model of auditory processing. This model consists of two stages: a peripheral stage modeled after the cochlea (yielding a cochleagram, 
first panel), followed by a set of spectrotemporal filters inspired by the auditory cortex that operate on the cochleagram, yielding time-varying activations of 
different spectrotemporal features (second panel). A sliding window is used to evaluate the negative log-likelihood (surprisal) within each filter channel over time 
(third panel). Finally, the resulting filter surprisal curves are averaged across channels and compared to a time-varying decision threshold to decide whether a 
foreground sound is present (fourth panel; yaxis is scaled differently in third and fourth panels to accommodate the surprisal plots for multiple individual filters). 
(B) Model results. Model foreground detection performance (quantified as d′) is plotted as a function of SNR and foreground onset time. Shaded regions plot 
SD of performance obtained by bootstrapping over stimuli. (C) Human-model comparison. Model performance is highly correlated with human performance 
on the foreground detection task (Experiment 1) for both the −2 dB (black circles) and −6 dB (gray circles) SNR conditions.

http://www.pnas.org/lookup/doi/10.1073/pnas.2408995121#supplementary-materials
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 Despite its simplicity, the model qualitatively replicated the 
results from Experiment 1, showing a similar pattern of improve-
ment with exposure to the background ( Fig. 3B  ; see SI Appendix, 
Fig. S2  for model results with alternative window sizes, which 
remained qualitatively consistent with human results). Although 
model performance was below that of humans, the overall pattern 
of model performance across conditions was highly correlated 
with human performance (−2 dB SNR:  � = 0.95 , P  < 0.001; −6 
dB SNR:  � = 0.88 , P  = 0.002). Overall, these results support 
background noise estimation as a plausible account of human 
hearing in noise by demonstrating that the qualitative trends evi-
dent in human behavioral performance can be explained by a 
model that estimates the statistics of ongoing background noise.  

Experiments 5a and 5b: Foreground Detection Is Robust to 
Background Interruptions. Experiments 5a and 5b aimed 
to distinguish the adaptive suppression and noise modeling 
hypotheses by testing the effect of interruptions to the background. 
We modified the stimuli from Experiment 1, temporarily 
interrupting the background noise with either silence or white 
noise, initially using a 500 ms interruption (Experiment 5a; 
Fig. 4A). The rationale was that this change to the background 
might cause adaptation to “reset,” leading to a decrement in 
foreground detection performance following the interruption. By 
contrast, the noise modeling hypothesis could allow for a benefit 
from background exposure despite the interruption, because the 
estimated noise parameters could be stored across the interruption.

 Consistent with this latter possibility, foreground detection 
performance was greater for foregrounds following the interrup-
tion compared to those preceding the interruption [ Fig. 4B  ; main 
effect of foreground position relative to interrupter: F(1,77) = 
172.86, P  < 0.001,  �2

partial
= 0.69 ]. The pattern of results was 

similar for silent and noise interruptions [no significant interaction 
between interrupter type and foreground position relative to inter-
rupter: F(1,77) = 0.12, P  = 0.73,  �2

partial
= 0.00   ].

 To address the possibility that a 500 ms interruption was insuf-
ficient to trigger a complete release of adaptation ( 51 ), we ran an 

additional experiment (Experiment 5b) in which we increased the 
duration of the interrupter to 1,500 ms and asked whether the 
benefit of background exposure persisted. Despite the longer inter-
ruption, we again found that detection performance was greater for 
foregrounds following the interruption compared to those preceding 
the interruption [ Fig. 4C  ; main effect of foreground position relative 
to interrupter: F(1,70) = 134.48, P  < 0.001, ﻿�2

partial
= 0.66 ]. The 

pattern of results was again comparable for noise and silent inter-
ruptions [no significant interaction between interrupter type and 
foreground position: F(1,70) = 0.01, P  = 0.92,  �2

partial
= 0.00   ].

 Perhaps the clearest evidence against an adaptation explanation 
is the fact that the results appear to not be affected by the duration 
of the interruption [500 versus 1,500 ms; no significant effect of 
interrupter duration when comparing performance for onset times 
after the interruption: F(1,147) = 0.08, P  = 0.77,  �2

partial
= 0.00 ]. 

Although the parameters of any adaptive processes that might be 
at play are not definitively established, one would almost surely 
expect a difference in release from adaptation for differences in 
interruption durations of this magnitude. Taken together, the 
results of Experiments 5a and 5b indicate that the benefit of back-
ground exposure is unlikely to reflect adaptation alone. Instead, 
listeners appear to maintain an internal representation of noise 
properties across temporary interruptions.  

Experiments 6 and 7: Repetition of Background Noise Enhances 
Foreground Detection. We next investigated whether internal models 
of noise are built up over time, akin to the schemas that can be 
learned for recurring patterns in speech and music (36, 37). If listeners 
learn noise schemas and use them to aid hearing in noise, foreground 
detection should be enhanced for frequently recurring background 
noises. It also seemed plausible that the learning of a schema might 
reduce the “delay benefit”—the improvement in performance as the 
foreground onset is delayed relative to the noise onset—since listeners 
could use a stored representation of the noise properties, rather than 
having to estimate them online. We thus also tested whether the delay 
benefit would be altered if the noise repeated across trials.

A

B C

Fig. 4.   Experiments 5a and 5b: Foreground detection is robust to background interruptions. (A) Experimental task. Stimuli were like those from Experiment 1 
but were modified by replacing the Middle 500 ms (Experiment 5a) or 1,500 ms (Experiment 5b) of background noise with either silence (orange) or white noise 
(yellow). Participants were asked to ignore this interruption and judge whether the stimulus contained one or two sound sources. (B) Experiment 5a results. 
Average foreground detection performance (quantified as d′) is plotted as a function of interrupter type and foreground onset time. Shaded regions plot SE. 
The gray region denotes the temporal position of interruption in background noise. * indicates statistical significance, P < 0.001. (C) Experiment 5b results. 
Same conventions as (B).

http://www.pnas.org/lookup/doi/10.1073/pnas.2408995121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2408995121#supplementary-materials
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 We first ran a variant of Experiment 1 in which a subset of the 
background noises (selected randomly for each participant) 
occurred repeatedly over the course of the experiment ( Fig. 5A  ). 
A background noise was repeated on every trial in blocks of 40 
trials, with each block containing a different repeating noise. We 
used unique noise exemplars for each repetition so that listeners 
would have to learn the statistical properties of the noise ( 28 ) 
rather than the specific exemplar ( 52 ,  53 ). We note that adaptation 
could, in principle, be expected to build up over the course of the 
block of repeated noise, potentially also accounting for altered 
performance. This experiment was thus not intended to distin-
guish noise schemas from adaptation, but rather to test a predic-
tion of noise schemas in a simple setting before probing for 
benefits of repeated noises that might be less likely to be produced 
by adaptation (Experiment 8).        

 Each foreground sound occurred only once throughout the 
experiment to avoid the possibility that listeners might instead 
benefit from learning the structure of the foreground. As a result, 
we had to forego the controlled foreground–background pairings 
used in Experiments 1 to 5 and instead allowed foregrounds and 
backgrounds to be paired randomly across participants, while 
lowering the SNR to partially compensate for the decreased aver-
age spectral overlap between foreground and background. This 
design constraint necessitated a companion experiment 
(Experiment 7) with similarly uncontrolled foreground–back-
ground pairings in which the backgrounds varied across trials, 
with each of the 160 background noises occurring once with a 
foreground and once without a foreground, as in Experiment 1.

 In the main analysis of interest, we found that performance was 
enhanced for repeating compared to nonrepeating background 
noises [ Fig. 5B  ; main effect of background type: F(1,395) = 90.82, 
﻿P  < 0.001,  �2

partial
= 0.19  ]. This enhancement developed over the 

course of a block in which the noises were repeated [SI Appendix, 
Fig. S3 , main effect of first versus second half of trials within a 
block: F(1,195) = 17.44, P  < 0.001,  �2

partial
= 0.08  ]. Although 

an effect of foreground onset time remained evident when the 
noise was repeated [main effect of foreground onset time for 
Experiment 6: F(9,1755) = 10.75, P  < 0.001,  �2

partial
= 0.05  ], 

there was a significant interaction between foreground onset time 
and background repetition [F(9,3555) = 2.52, P  = 0.01, 
﻿�2
partial

= 0.01  ]. Specifically, the delay benefit was smaller for 
repeated backgrounds compared to nonrepeated backgrounds 
(significant difference in the delay benefit; P  < 0.001 via permu-
tation test, delay benefit difference: 0.15 in units of d′). To ensure 
the reduced delay benefit for repeating backgrounds was not 
driven by participants with near-ceiling performance, we ran a 
control analysis in which we selected groups of participants to 
have similar asymptotic performance using data from foreground 
onset times of 1,500, 2,000, and 2,500 ms (Materials and 
Methods ), then measured the delay benefit using the data from the 
remaining foreground onset times for these participants. After 
matching asymptotic performance across groups of participants, 
the reduction in delay benefit persisted for repeated compared to 
nonrepeated backgrounds ( Fig. 5 B  , Inset , significant difference 
in delay benefit; P  = 0.01 via permutation test, delay benefit dif-
ference: 0.17 in units of d′).

 Overall, these results confirm one prediction of the schema-based 
account of noise robustness: Detection performance is improved 
for recurring backgrounds and less dependent on online noise 
estimation. We also note that these findings help reconcile the 
results in this paper with those of more traditional experimental 
paradigms, which repeat the same type of background noise 

throughout an experiment and find less pronounced temporal 
effects than those shown here.

 We additionally note that the results seem to be qualitatively 
unaffected by whether the foreground–background pairings were 
controlled. The effect of foreground onset time was similar in 
Experiment 7 (uncontrolled pairings) compared to Experiment 1 
(controlled pairings), with no significant interaction between the 
experiment and the effect of foreground onset time [SI Appendix, 
Fig. S4 ; F(9,2628) = 0.65, P  = 0.75,  �2

partial
= 0.00 ]. Both the 

timescale of improvement and the delay benefit were similar 
between the two experiments (no significant difference in elbow 
point: P  = 0.72 via permutation test, elbow point difference: 41 
ms; no significant difference in delay benefit: P  = 0.50 via permu-
tation test, delay benefit difference: 0.03 in units of d′).  

Experiment 8: Foreground Detection Is Enhanced for 
Intermittently Repeated Background Noises. We next asked 
whether the benefit from recurring noises would be preserved 
across intervening stimuli, as might be expected if noise schemas 
are retained in memory, but not if the benefit reflects standard 
adaptation. In Experiment 8, the same type of background noise 
occurred on every other trial within a block (Experiment 8; 
Fig. 5C). As in Experiment 6, each block contained a different 
repeating background noise with unique noise exemplars for each 
repetition and each foreground sound was presented once with 
foregrounds and backgrounds paired randomly across participants.

 We again found that performance was enhanced for repeating 
compared to nonrepeating background noises [ Fig. 5D  ; main 
effect of background type: F(1,367) = 63.03, P  < 0.001, 
﻿�2
partial

= 0.15  ]. Additionally, there was again a significant inter-
action between the effect of foreground onset time and whether 
the background was repeated or not [F(9,3303) = 4.38, P  < 0.001, 
﻿�2
partial

= 0.01  ], such that the delay benefit was smaller for repeat-
ing compared to nonrepeating backgrounds (significant difference 
in delay benefit: P  = 0.002 via permutation test, delay benefit 
difference: 0.17 in units of d′). This difference persisted after 
matching asymptotic performance across subsets of participants 
( Fig. 5 D  , Inset , significant difference in delay benefit; P  = 0.03 
via permutation test, delay benefit difference: 0.13 in units of d′). 
These results suggest that noise schemas—representations of noise 
statistics that aid foreground detection—are built up over time, 
maintained across intervening stimuli, and lessen the dependence 
on online noise estimation.  

Experiment 9: Benefit of Background Exposure Is Reduced for 
Stationary Noise. Across multiple tasks, we consistently found an 
improvement in performance over the initial second of exposure 
to the background. What factors might govern the timescale of 
this effect? A model that estimates statistics within an integration 
window (as in the model of Fig.  3) should exhibit improved 
performance up to the window width. One intuitive possibility 
is that the window width reflects a tradeoff between obtaining a 
good estimate of the background noise statistics (better for longer 
windows) and being able to resolve changes in these statistics 
(better for shorter windows). However, the accuracy with which 
statistics can be estimated for a given window size depends on the 
stability of the noise statistics over time (i.e., the stationarity of 
the noise). This observation raises the possibility that the optimal 
estimation window could be shorter for more stationary noise. 
To test whether these considerations might influence hearing in 
noise, we modified the stimuli from Experiment 1, replacing the 
real-world texture backgrounds with spectrally matched noises 
(Fig. 6A) to create noise backgrounds with increased stationarity. 

http://www.pnas.org/lookup/doi/10.1073/pnas.2408995121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2408995121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2408995121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2408995121#supplementary-materials
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We quantified stationarity with a measure of the SD of texture 
statistics across time windows (17, 33, 34, 48) (Materials and 
Methods) and confirmed the increase in stationarity for spectrally 
matched noise backgrounds (Fig.  6B). Because the detection 
task is easier with more stationary noise, we reduced the SNRs 
of the foreground relative to the background to avoid ceiling 
performance.

 As in our previous experiments, foreground detection perfor-
mance improved with exposure to the background [ Fig. 6C  ; main 
effect of foreground onset time: F(9,1836) = 25.99, P  < 0.001, 
﻿�2
partial

= 0.11  ]. However, the effect was more modest than that 
observed with more naturalistic noise [significant interaction 
between foreground onset time and stationarity: F(9,3636) = 2.69, 
﻿P  = 0.004,  �2

partial
= 0.01  ]. In particular, the timescale of improve-

ment was shorter for stationary noise backgrounds compared to 
texture backgrounds (significant difference in elbow point for 
Experiment 9 compared to pooled results from Experiments 1 
and 7: P  = 0.01 via permutation test, elbow point difference: 319 
ms), and the delay benefit was reduced (significant difference in 

delay benefit: P  = 0.01 via permutation test, delay benefit differ-
ence: 0.10 in units of d′). This reduction in delay benefit remained 
after matching asymptotic performance across groups of partici-
pants ( Fig. 6 C  , Inset , significant difference in delay benefit; P  = 
0.03 via permutation test, delay benefit difference: 0.11 in units 
of d′). These findings help to further reconcile the results of this 
paper with prior work that has predominantly used highly sta-
tionary synthetic noise and has found weaker effects of onset time. 
The temporal effects we nonetheless observed could reflect the fact 
that the background noise spectrum varied from trial to trial in 
our experiments (unlike most experiments in prior work).

 As with other effects of stationarity on integration timescales 
( 33 ), there are at least two computational accounts of these results. 
One is that there is a single statistical estimation window that 
changes in temporal extent depending on the input stationarity. 
Another is that there are multiple estimation windows operating 
concurrently (potentially estimating different statistical proper-
ties), with a decision stage that selects a window (or combination 
of windows) on which to base responses. For instance, by selecting 
the shortest window that enables a confident decision, a decision 

A

C
D

B

Fig. 5.   Experiments 6 to 8: Repetition of background noise enhances foreground detection. (A) Experiment 6 design. A background noise was repeated (red 
waveforms) on every trial in blocks of 40 trials, with each block containing a different repeating background noise (denoted by different shades of red). Participants 
judged whether the stimulus contained one or two sound sources. To ensure listeners would not benefit from learning the structure of the foregrounds, each 
foreground occurred only once with foregrounds and backgrounds paired randomly across participants. This design necessitated a companion experiment with 
similarly uncontrolled foreground–background pairings in which the backgrounds were not repeated across trials (Experiment 7; not shown). (B) Experiment 6 
and 7 results. Average foreground detection performance (quantified as d′) is plotted as a function of foreground onset time for repeated (red circles) versus 
nonrepeated (gray circles) backgrounds. Shaded regions plot SE. Dashed lines plot elbow function fit. Vertical brackets denote the delay benefit. The Inset shows 
results after matching asymptotic performance across groups of participants. (C) Experiment 8 design. The experiment was identical to Experiment 6 except 
that background noises were repeated (red waveforms) on every other trial within a block with intervening trials containing nonrepeating backgrounds (gray 
waveforms). (D) Experiment 8 results. Same conventions as (B).
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stage might determine that a shorter estimation window is most 
appropriate for stationary noise.  

Effect of Background Exposure Depends on Foreground–
Background Similarity. The possibility of concurrent estimation 
windows of different extents raised the question of whether the 
similarity of the foreground to the background could also influence 
the timescale of the effect of background exposure. Specifically, 
foregrounds that differ more noticeably from a background might 
be detectable with a less accurate model of the background that 

could be estimated with fewer samples (via a shorter estimation 
window). As one test of this possibility, we reanalyzed the results of 
Experiment 7, dividing trials into two groups whose foreground–
background pairings differed in spectrotemporal similarity. We 
found a significant interaction between foreground onset time 
and spectrotemporal similarity [SI Appendix, Fig. S5; F(9,1791) 
= 3.90, P < 0.001, �2

partial
= 0.02 ], whereby the timescale of the 

noise exposure benefit was shorter for foreground–background 
pairs with lower spectrotemporal similarity (significant difference 

A

B

D

F

E

C

Fig. 6.   Experiments 9 and 10: Benefit of background exposure is reduced for stationary noise and harmonic foregrounds. (A) Example background noises 
from Experiment 9. The real-world texture backgrounds (Left, blue) used in Experiments 1 to 8 were replaced with spectrally matched noise (Middle, pink) to 
increase the noise stationarity. Backgrounds are displayed as cochleagrams (with darker gray indicating higher intensity) and mean excitation patterns (Right). 
(B) Stationarity of background noises. Shaded circles indicate a measure of stationarity (SD of texture statistics over time, normalized to account for increased 
variability of some statistics relative to others; Materials and Methods) for the texture backgrounds used in Experiments 1 to 8 (shown in blue) and the spectrally 
matched noise backgrounds used in Experiment 9 (shown in pink). Gray lines connect textures to their spectrally matched counterparts, illustrating that the 
spectrally matched noise is generally more stationary than its texture counterpart. Vertical lines indicate mean stationarity of background noises in each stimulus 
set. For comparison, a histogram of stationarity scores calculated from a large set of YouTube soundtracks (AudioSet; Materials and Methods) is shown in dark 
gray. Both sets of background noises are more stationary than the average soundtrack. (C) Experiment 9 results. Average foreground detection performance 
(quantified as d′) is plotted as a function of foreground onset time for more stationary (pink circles) versus less stationary (blue circles; obtained from pooled 
results of Experiments 1 and 7) backgrounds. Shaded regions plot SE. Dashed lines plot elbow function fit. Vertical brackets denote the delay benefit. Solid lines 
below the main axis plot one SD above and below the median elbow points, obtained by bootstrapping over participants; dots on these lines plot the fitted 
elbow points from the complete participant samples. The Inset shows results after matching asymptotic performance across groups of participants. (D) Example 
foreground sounds from Experiment 10. The foreground sounds used in Experiments 1 to 9 (Bottom, blue) were replaced with human vocalizations and musical 
instrument sounds (Top, purple). Foregrounds are displayed as cochleagrams. (E) Harmonicity of foregrounds. Harmonicity was quantified with a measure of 
waveform periodicity (Materials and Methods). Histograms of periodicity are shown for the set of human vocalizations and instrument sounds used in Experiment 
10 (purple) and for the set of foregrounds used in Experiments 1 to 9 (blue). (F) Experiment 10 results. Average foreground detection performance (quantified 
as d′) is plotted as a function of foreground onset time for more harmonic (purple circles) versus less harmonic (blue circles; obtained from pooled results of 
Experiments 1 and 7) foregrounds. Conventions same as (C).

http://www.pnas.org/lookup/doi/10.1073/pnas.2408995121#supplementary-materials
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in elbow point: P = 0.003 via permutation test, elbow point 
difference: 526 ms). This result is consistent with the idea that 
there are multiple concurrent windows for estimating noise 
statistics, with shorter windows being used when they are sufficient 
for a decision. The result also provides further evidence that the 
estimation of noise properties aids the detection of the foreground. 
In particular, the result helps rule out the possibility that the effect 
of onset time reflects interference between the processing of the 
background and the detection of the foreground (as could in 
principle happen if the noise onset initiated some involuntary 
process that was not used to detect the foreground and that instead 
initially impaired processing of concurrent sounds).

Experiment 10: Benefit of Background Exposure Is Reduced for 
Harmonic Foregrounds. Motivated by the effect of foreground–
background similarity shown in the preceding section, in the final 
experiment, we tested the effect of background exposure on the 
detection of approximately harmonic foregrounds. We avoided 
human vocalizations and music instrument sounds in our initial 
experiments on the grounds that they are more detectable in noise 
(5) compared to other sounds and so could have introduced another 
source of variation in detection performance. However, the analysis 
of foreground–background similarity suggested that harmonic 
sounds might produce weaker effects of background exposure; 
given their prevalence in both everyday life and prior auditory 
experiments, this seemed important to test. The experiment was 
identical to Experiment 7 except that the foreground sounds 
used in previous experiments were replaced with excerpts from 
human vocalizations and musical instrument sounds (Fig. 6D). 
We confirmed that these sounds were more harmonic than those 
used in the previous experiments, using a measure of waveform 
periodicity (54) (Fig. 6E; Materials and Methods).

 A benefit of background exposure was evident for these (approx-
imately) harmonic sounds [ Fig. 6F  ; main effect of foreground 
onset time: F(9,2574) = 13.66, P  < 0.001,  �2

partial
= 0.05  ], but it 

was weaker than that observed for less harmonic sounds [signifi-
cant interaction between foreground onset time and harmonicity: 
F(9,4374) = 4.25, P  < 0.001,  �2

partial
= 0.01  ]. Compared to the 

pooled results from Experiments 1 and 7, the elbow point was 
earlier (significant difference in elbow point: P  = 0.03 via permu-
tation test, elbow point difference: 317 ms) and the delay benefit 
was smaller (significant difference in delay benefit: P  < 0.001 via 
permutation test, delay benefit difference: 0.19 in units of d′). 
This difference persisted after matching performance across exper-
iments ( Fig. 6 F  , Inset ; significant difference in delay benefit: P  < 
0.001 via permutation test, delay benefit difference: 0.20 in units 
of d′). The results again help to reconcile our findings with pre-
vious work using speech or tones that have found smaller effects, 
while also showing that the qualitative effects of background expo-
sure remain evident with harmonic foregrounds.   

Discussion

 We investigated whether internal models of environmental noise 
are used by the auditory system to aid the perception of natural 
foreground sounds in background noise. We found that the ability 
to detect, recognize, and localize foreground sounds in noise 
improved over the initial second of exposure to the background. 
This benefit of background exposure persisted even when partic-
ipants knew the foreground sound they had to listen for. The 
benefit of prior noise exposure was robust to temporary changes 
in the background and was enhanced for recurring backgrounds, 
suggesting that noise schemas are built up and maintained over 

time. We found that an observer model designed to capture the 
statistics of ongoing background noise could account for the pat-
tern of human behavioral performance observed in the foreground 
detection task. Finally, we found evidence for a window of noise 
estimation that varies depending on the stimulus characteristics, 
appearing shorter both for more stationary noise and when fore-
ground sounds are sufficiently distinct (e.g., by virtue of being 
harmonic) from the background so as to not require a detailed 
model of the background properties. Overall, the results suggest 
that the auditory system leverages internal models of noise prop-
erties—noise schemas—to facilitate the estimation of other con-
current sounds and support noise-robust hearing. 

Relation to Prior Work. We sought to distinguish between three 
candidate explanations for noise-robust hearing: fixed noise 
suppression, adaptive noise suppression, and internal modeling 
of noise schemas. Two lines of evidence have previously been 
presented in support of adaptive suppression (and contra fixed 
suppression). The first involves behavioral improvements in 
hearing abilities following exposure to a noise source (see ref. 38 
for a review), with improvements occurring over approximately 
500 ms. A second body of research involves evidence of neural 
adaptation to noise (13, 14, 16, 18, 23), with related modeling 
work suggesting that these adaptive responses could be explained 
by a mechanism that dynamically suppresses noise (23).

 We built on this prior work in three respects. First, we found that 
foreground detection performance was robust to interruptions in 
the background and was enhanced for frequently recurring back-
grounds. These findings are inconsistent with conventional adap-
tation to ongoing noise and instead suggest that noise properties 
are estimated and maintained over time. Second, we demonstrated 
that the benefits of noise exposure on behavior generalize to natural 
stimuli and everyday listening contexts. In these conditions, behav-
ioral performance improved over a period roughly twice as long as 
previously reported, with performance plateauing around 1 s. These 
large effects appear to partly reflect the use of stimuli that vary across 
trials, realistic sources of noise, and diverse foreground sounds. We 
found smaller effects when noises repeated within an experiment 
(Experiments 6 and 8), when noise was more stationary (Experiment 
9), and when foregrounds were harmonic (Experiment 10). These 
results reconcile our findings with previous work, which has tended 
to use a single type of highly stationary synthetic noise and har-
monic foreground sounds, and which has seen smaller effects of 
time. Our results highlight the utility of assessing perception using 
natural stimuli, as it can reveal effects not fully evident with simpler 
traditional stimuli ( 55   – 57 ). Third, our experiments show that the 
temporal effects of exposure to background noise occur across mul-
tiple auditory tasks: detection, recognition, and localization.

 The temporal dynamics of human task performance in noise 
could be explained by an observer model that estimates the statistics 
of ongoing background noise and detects foreground sounds as 
outliers from this distribution. This finding demonstrates that the 
observed improvement in task performance following noise expo-
sure can result directly from a model of noise properties, and raises 
the question of how to reconcile our results with neurophysiological 
findings of noise suppression in the auditory system. We suggest 
that noise modeling and noise suppression are not mutually exclu-
sive. One possibility is that the auditory system maintains parallel 
representations of sound: one in which noise properties are esti-
mated and maintained and another in which noise is suppressed 
to yield a relatively invariant representation of the foreground. The 
first representation could be used to derive the second, such that 
as noise becomes more accurately estimated (e.g., with more expo-
sure to the background), the foreground representation becomes 
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enhanced, as we found here. The existence of such parallel rep-
resentations is consistent with neurophysiological findings that 
noise stimuli are represented subcortically ( 58 ,  59 ) and preferen-
tially drive neurons in the primary auditory cortex ( 60   – 62 ) but 
appear to be suppressed in the nonprimary auditory cortex ( 17 ,  63 ).  

Limitations. The model presented here provides evidence that 
estimation of noise statistics could underlie aspects of hearing in 
noise, but in its present form is not a complete account of human 
perception in this setting. As noted earlier, we modeled noise with 
relatively simple distributions that do not completely capture 
the structure known to be present in real-world noise. Although 
the approach was sufficient for our purposes, more sophisticated 
models will be required to fully account for human performance. A 
complete model would also estimate the properties of any foreground 
sounds in addition to detecting their presence. Intuitively, one 
might adopt an “old plus new” (64) approach in which samples 
that deviate from the distribution of ongoing background noise 
are interpreted as a (“new”) foreground sound whose features can 
be estimated as the “residual” after accounting for the background 
noise properties. The model as implemented here also does not 
account for the enhanced foreground detection observed for 
interrupted or frequently recurring backgrounds (Experiments 5 
to 8). However, some of these effects could potentially be modeled 
by incorporating a prior over noise properties that is continually 
updated over the course of the experiment.

The Role of Texture in Auditory Scene Analysis. Using real-world 
noise signals, we found that the ability to hear in noise improves 
over the initial second of exposure to the background noise—
substantially longer than the timescale previously reported for 
analogous tasks with simpler experimental stimuli. This relatively 
long timescale is broadly consistent with the growing literature 
on sound texture perception. Sound textures are thought to be 
perceptually represented in the form of time-averaged summary 
statistics (28) computed using averaging mechanisms with a 
temporal extent that depends on the texture stationarity (33) 
but is generally on the order of seconds. Moreover, the detection 
of changes in texture statistics documented in previous studies 
improves across a temporal scale similar to that observed in our 
work (29, 30). Other experiments have indicated that texture 
properties are estimated separately from other sound sources (33) 
and are filled in when masked by other sounds (34). Our results 
provide further evidence that sound texture plays a critical role 
in auditory scene analysis, as its estimation benefits the detection, 
recognition, and localization of other concurrent sounds. This 
growing literature supports the idea that background noise 
properties are actively estimated by the auditory system even in 
the presence of other sound sources.

Reconsidering the Role of Noise. Sound textures are ubiquitous 
in everyday listening, constituting the background noise of many 
real-world auditory scenes. Yet research on hearing in noise has 
devoted relatively little attention to the role of noise itself. We 
consider hearing in noise as a form of auditory scene analysis 
in which listeners must segregate concurrent foreground and 

background sources from one another. From this perspective, 
noise is another source to be estimated rather than suppressed 
(65). However, the segregation of multiple sound sources is only 
possible because of the statistical regularities of natural sounds. 
Previous work has shown that human listeners can quickly detect 
repeating patterns in the acoustic input and use this structure to 
facilitate source segregation in artificial auditory scenes (66–68). 
The present results complement these findings by showing that 
the predictable statistical structure of noise is used to aid source 
segregation in natural auditory scenes.

Future Directions. Reverberation is another element of sound 
often thought of as a distortion that the auditory system 
must suppress to improve hearing in acoustic environments 
characteristically encountered in daily life (15, 69–71). It is 
analogously possible that the estimation, rather than suppression, 
of reverberation might help to recover the underlying sound 
source (72, 73). Thus, robustness to reverberation may be 
aided by an internal model of the statistical regularities that 
characterize real-world reverberation (72). Schemas of room 
reverberation may also be built up through short-term exposure 
to room-specific reverberation (74–77).

 The computational principles described here are equally relevant 
to other sensory modalities. For instance, the detection or recog-
nition of an object amid a cluttered visual scene can be viewed as 
a visual analogue of our hearing-in-noise experiments. As in hear-
ing, the ability to visually recognize objects is impaired by clut-
ter—a widely studied phenomenon known as visual crowding 
( 78 ). Given that visual textures are thought to be represented by 
summary statistics averaged over space ( 79 ,  80 ), visual object rec-
ognition might be expected to improve with the size of a back-
ground texture region as background properties should be better 
estimated across larger spatial extents. Some preliminary evidence 
supports this hypothesis. Several studies from the visual crowding 
literature demonstrate a release from crowding when additional 
distractors or flankers are added to a display ( 81 ,  82 ). However, 
these studies are limited to relatively simple displays, and it 
remains to be seen whether such effects may be observed in more 
naturalistic settings.   

Materials and Methods

Methods are described in full detail in SI Appendix, SI Materials and Methods. The 
full methods section includes descriptions of experimental participants and pro-
cedures, stimulus generation, data analysis, statistical tests, and power analyses. 
All participants provided informed consent, and the Massachusetts Institute of 
Technology Committee on the Use of Humans as Experimental Subjects approved 
all experiments.

Data, Materials, and Software Availability. All code and data are available 
at https://github.com/mcdermottLab/NoiseSchemas (83).
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