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Lateral flow rapid diagnostic tests (RDTs, RTs) are cost-effective with low infrastructure
requirements for limited-resource settings, and in any setting can represent a bridge
between early disease monitoring at outbreak onset and fully-scaled molecular testing for
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Asia saw case numbers jump by 46% compared to 2015 [3], and globally it is estimated that
over 9.5 million people were infected with DENV from 2019-2022 [4]. These case numbers do
not account for the current unprecedented DENV outbreak in the Americas, which has
resulted in over 4.6 infections in 2023 and 9.7 million infections the first half of 2024 alone [5,
6]. The H5N1 highly pathogenic avian influenza virus, a single (-) stranded RNA virus belong-
ing to family Orthomyxoviridae, emerged in wild birds in 2020 and has since resulted in the
culling of over 130 million poultry [7, 8]. The H5N1 virus has also been shown to infect over
30 species of mammals including humans [9-11]. Fourthly, severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), a single (+) stranded RNA virus belonging to family Coronaviri-
dae, was first detected in December 2019 and has tragically caused the death of close to 7 mil-
lion people [12]. SARS-CoV-2 also infects dozens of mammalian species [13].

From an economic perspective, although comprehensive data on the global economic
impacts of these simultaneous outbreaks are not available, limited data indicate massive
impacts. For example, it is estimated that the ASFV outbreak in China has resulted in a 1.4% to
2.07% decline in the country’s GDP of $17tn [2]. In 2016 it was estimated that the total annual
global cost resulting from dengue illness was $8.9bn [14]. United States losses from the H5N1
outbreak in 2022 were estimated at over $2bn [15, 16]. These losses include the depopulation
of over 43 million egg-laying hens, resulting in a 210% year-over-year increase in egg prices by
the end of 2022 [17]. Finally, the most recent estimates indicate that at the end of 2023, the
COVID-19 pandemic resulted in $14tn worth of losses for the US economy [18-20].

For many countries, the COVID-19 pandemic was a stark reminder that management and
measurement of infectious disease outbreaks is entirely dependent on diagnostic testing [21].
Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) remains the gold
standard for infectious agent identification, and COVID-19 has fueled a next generation digital
PCR revolution [22]. However, 18 years ago Yager et al. insightfully remarked that these gold
standard tests, despite their usefulness, “were designed for air-conditioned laboratories, refrig-
erated storage of chemicals, a constant supply of calibrators and reagents, stable electrical
power, highly trained personnel and rapid transportation of samples” [23]. Ironically, the
countries and settings which stand to be the most impacted by infectious disease outbreaks are
often the same areas which possess the least resources to test for infectious disease [24]. While
each low diagnostic resource setting results from its own unique combination of contributing
factors including laboratory infrastructure, distance to laboratory, equipment, personnel, and
regulatory restrictions, the final measure of diagnostic efficacy in any setting can be described
in just eight words: turnaround time for a quality and affordable test [25].

Lateral flow rapid diagnostic tests (RDTs, RTs) are cost-effective with low infrastructure
requirements for low-resource settings, and in any setting can represent a bridge between out-
break onset and fully-scaled molecular testing for human or animal diseases. RTs are also uti-
lized for other applications including workplace testing [26], food safety [27, 28],
environmental testing [29-33], and defense applications [34]. However, the potential of RTs to
handle higher throughput testing is hampered by the need for manual processing. Here we
present a novel rtWIZARD protocol that employs an open-source fluid handler to automate
the execution of 42 RTs from blood samples in 1.1ml or 2ml tubes. To demonstrate the rele-
vance of the protocol to RTs in current utilization, we first review RTs for DENV and ASFV
evaluated by the World Health Organization and the World Organisation for Animal Health,
respectively. Protocol users download fluid handler scripts, printouts for correctly spacing cas-
settes, and optional printable QR-coded labels from a publicly accessible website, rtWIZARD.
lji.org. QR codes can ensure de-identified sample-to-result traceability and enable results to be
entered via a scanner. This work presents a model and protocol for automated performance of
RTs.
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Dengue virus rapid tests

Most RTs for DENV target IgM and IgG against DENV nonstructural protein 1 (NS1). It
should be noted that there are four serotypes of DENV, and that assay performance varies with
outbreak serotype [35-40]. In 2009 the World Health Organization (WHO) reviewed three
commercially available DENV antibody RTs [41], and a summary of these tests is provided in
Table 1 [42, 43]. A 2018 study indicates that the WHO has approved the use of a DENV NS1
antigen RT for diagnosis of DENV [44], but we are unable to confirm this statement [45]. No
RTs were listed in the 2024 update of the WHO Prequalified In Vitro Diagnostics test list [46].
In 2018 the US Food and Drug Administration (FDA) cleared the InBios DENV Detect™
NS1 ELISA Kit [45]. InBios also produces the Dengue NS1 Detect Rapid Test, but this strip
test (without cassette) is not FDA cleared. In 2021, the United States Centers for Disease Con-
trol and Prevention (USCDC) adopted the CTK BIOTECH OnSite Dengue IgG Rapid Test as
part of a two-test protocol to determine convalescence from prior DENV infection [47]; infor-
mation on this test is also provided in Table 1. It should be noted that the OnSite Dengue IgG
Rapid Test is a different test with differing performance characteristics from the OnSite Den-
gue IgG/IgM Combo Rapid Test. Overall, there is no RT for diagnosis of acute DENV infec-
tion authorized by the USCDC or the European Centre for Disease Prevention and Control.
While there are several conformité européenne(ce)-marked tests for DENV, ce marking is not
an indicator of regulatory approval or test quality.

African swine fever rapid tests

At the time of this publication, there is no RT for ASFV approved by the United States Depart-
ment of Agriculture or European Union Reference Laboratory for ASF. In 2022 the World
Organisation for Animal Health (OIE) reviewed three RTs for ASFV antigen testing and three
RTs for ASFV antibody testing [48]. While no RT's are listed for diagnostic use in OIE’s Terres-
trial Manual [49], the OIE review acknowledged that point of care tests “are a very useful
adjunct to, but not a replacement for, laboratory testing in ASFV disease control programmes”
[48]. A list of the ASFV antigen and antibody tests reviewed by OIE is provided in Table 2
[50-53].

Table 1. Select rapid tests for DENV infection [41].

Test name | Catalog | Manufacturer | Country Specimen | Storage | Testing | Sensitivity | Specificity Running | rtWIZARD | Refs.
type(s) buffer | compatible?
Panbio 01PF10 Abbott Australia IgM and Whole 2-30C  15min 77.80% 90.60% No  2drops Yes 41
Dengue Duo IgG blood,
Cassette against plasma,
NS1 serum
Bioline 11FK10 Abbott S.Korea | IgMand | Plasma, 1-30C 15- 60.90% 90.00% No | 4drops Yes 41
Dengue IgG/ IgG serum 20min
IgM against E
protein
antigen
Dengucheck- NA Zephyr India  IgMand  Whole 4-30C  15min  20.50% 86.70% No  5drops Yes 41
WB Biomedicals IgG blood,
against plasma,
NS1 serum
OnSite NA CTK USA IgG Whole 2-30C, | 15min 91.1- 92.8-98% | No 1 drop Yes 42,
Dengue IgG BIOTECH against blood, control 95.3% 43
Rapid Test envelope | plasma, | samples
antigens serum at2-8C
from
DENV1-4

https://doi.org/10.1371/journal.pgph.0002625.t001
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Materials and methods

The protocol described in this peer-reviewed article is published on protocols.io, https://dx.
doi.org/10.17504/protocols.io.6qpvr8813lmk/vl, and is included for printing as S1 Protocol
with this article.

Objective

To automate the sample and running buffer dispensing process for rapid tests using the Open-
trons OT-2 robotic liquid handler.

Application of the protocol

While the rtWIZARD protocol can be used to automate virtually any cassette-based rapid test
(RT), two specific use cases are RT's for dengue virus and African swine fever rapid tests. Den-
gue virus RTs include the Panbio Dengue Duo Cassette, Bioline Dengue IgG/IgM, Dengu-
check-WB, and OnSite Dengue IgG Rapid Test. African swine fever RTs include the Ingezim
ASF CROM Ag, Rapid ASFV Ag, Ingezim ASFV-CSFV CROM Ab, Ingezim PPA CROM and
GDX70-2 Herdscreen ASF Antibody.

Safety precautions

o Follow all safety and biohazard regulations in your jurisdiction.

» Handle samples with care, wearing appropriate PPE, including gloves, safety glasses, and lab
coats.

« Dispose of used pipette tips and cassettes in a biohazard waste bin.
o After procedures, disinfect all equipment surfaces.

« If using a combustion inverter generator, follow manufacturer’s instructions regarding ven-
tilation and safe operating distance.

Equipment

« Opentrons OT-2. Because RTs utilize relatively crude pipetting, these tests are robust enough
to tolerate small variations in micropipette performance. However, it should be noted that
Opentrons recommends the OT-2 be used within specific ambient parameters (16-24C,
humidity < 80%). If the OT-2 is used outside these parameters or in the field, the authors
recommend that in between usages the OT-2 be stored in a desiccant box utilizing one of the
solutions suggested in S5 Appendix, or in an air-conditioned environment.

Opentrons P300 GEN2 Pipette (attached to OT-2 in Opentrons App)
o Computer and operating system compatible with Opentrons App

o Office printer

Metric ruler or caliper

Masking or laboratory tape

o Board. Non-porous material is preferred for cleaning, but plywood will suffice. Length:
45.5-47.5cm or 18-18% inches. Width: should be 278mm or board should be cut to this
width (Fig 1A). Thickness: approximately 10mm or 3/8 inch.
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Fig 1. Preparation of rtWIZARD deck board, alignment of the cassette grid, and sample tube preparation. (a) The
board can be 45.5-47.5cm long but should be 278mm wide. (b) The deck printout download produces four separate
sheets for stitching. (c) Deck printout sheets stitched together into a grid with green tape. (d) The back edge of the grid
should align with the back edge of the board. (e) Arrows at the front edge of the grid align with edges of retainer bars
on the OT-2 deck. (f) Grid positions mirror well plate positions when the well plate is turned 90 degrees
counterclockwise. (g) Sample tubes are marked with a line 25mm above the tube bottom. (h) Diverse 1.1-2ml tubes
have bottom diameters of less than 11mm and thus will fit into wells of the 48 well plate.

https://doi.org/10.1371/journal.pgph.0002625.g001

« Scissors

o 2.5mm and 3.0mm hex screwdrivers (delivered with OT-2)

« Microcentrifuge for assays requiring plasma or serum

« Optional: inverter generator or power station rated for at least 500W
« Extension cord

« Optional: QR code scanner, laser printer

o Optional: The OT-2 ships with three locking brackets held in place by 3mm hex screws. For
transport/field scenarios, it is recommended that these brackets be re-installed and removed
at the testing location.
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Supplies

« Corning 48-well plate (Cat #3548) or any 48-well plate with well bottom diameter of 11mm
or greater [acting as a rack for 42 sample tubes and 6 running buffer tubes]

 Up to 42 rapid tests

« Rack of Opentrons OT-2 Pipette Tips, 300uL, with at least 43 tips

o Indelible lab marker

o Translucent or clear sample tubes (1.1-2ml each) of less than 11mm bottom diameter

o 2ml running buffer tubes (if test utilizes running buffer) of less than 11mm bottom diameter

« Optional: 0.75 x 0.75” printable labels (Avery 94102)

Downloads

» Opentrons App

¢ From rtWIZARD.LJI.ORG:

o Deck printouts (S1 Appendix)

o Test-specific tWIZARD Opentrons protocol (import into Opentrons App)

o Test-specific rtWIZARD Opentrons labware definitions (import into Opentrons App)
o rtWIZARD manual plate record (S2 Appendix, S3 Appendix)

o Optional: tWIZARD plate record spreadsheet

Procedure

1. Testing grid and board preparation
1.1 Print the four pages in the deck printouts file (Fig 1B).

1.2 Using ruler, measure the 140mm scale bar on grid printouts to verify that dimensions are
true. If dimensions need adjusting, adjust scale in printer settings until dimensions are true.

1.3 Using adhesive tape, stitch the four printouts (Fig 1C). Proper sheet alignment can be
assured by viewing backlighting (overhead lights, lamp, sunlight) through two overlapping
sheets.

1.4 Following grid assembly, align the edge of the rear bar to the rear edge of the board (Fig
1D) and tape onto the board.

2. Aligning grid with OT-2 deck
2.1 Seat the 48-well plate in bay 10 and the pipette tip box in bay 11

2.2 Place the board over bays 1-9 and push back until the rear of the board is sitting flush with
the pipette tip box and the 48-well plate.

2.3 See the small arrows at the front of the grid/board, and make sure these arrows align with
the ends of the retainer bars under the board (Fig 1E).
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3. Sample collection

3.1 Prior to sample collection, use marker to draw a horizontal line 25mm from the bottom of
each tube (Fig 1G and 1H). This will ensure that the pipette tip is submersed in sample.

3.2 User marker to label tube with sample ID.
3.3 At collection, fill tube to 25mm line or higher.

3.4 Optional: If sample sources are known prior to collection, identities can be entered into
plate record spreadsheet.

4. Well plate (rack) organization

4.1 Complete manual plate record, assigning each sample to a plate position and writing the
plate position on the sample tube. Assign samples in order of columns from wells A1l to F2.

4.2 Centrifuge samples for RT's requiring serum or plasma.

4.3 Remove sample tube caps and place each tube in its assigned well. For tubes with flip-top
lids, remove the lid by either sliding it off or cutting the lid hinge.

4.4 For RTs requiring running buffer, expel running buffer from each test kit into clean 2ml
tubes. As each tube is filled, place the tube in wells F3-F8. RT kits routinely provide running
buffer volumes in excess of amount required for tests. For 42 tests, RTs requiring:

o 1 standard drop of running buffer per test will require 1.5 tubes filled in F3-F4.
« 2 standard drops of running buffer per test will require 2.5 tubes filled in F3-F5.
« 3 standard drops of running buffer per test will require 3.5 tubes filled in F3-F6.
o 4 standard drops of running buffer per test will require 4.5 tubes filled in F3-F7.
« 5 standard drops of running buffer per test will require 5.5 tubes filled in F3-F8.

4.5 Place well plate in OT-2 bay 10.

4.6 Place pipette tip rack in OT-2 bay 11.

5. Testing board organization

5.1 Remove 42 RT cassettes from their packaging.

5.2 Holding each cassette with the sample and running buffer wells on the right, write the grid
position on each cassette. Grid positions mirror well plate positions when the well plate is
turned 90 degrees counterclockwise (Fig 1F).

5.3 Starting at the back row, place the cassettes in each cell. For each test justify the bottom
right hand corner of the cassette to the bottom right hand corner of the cell.

5.4 Optional: Print QR code download (S4 Appendix) and create cassette labels with QR code
and grid position.

6. Use the Opentrons app to run the fluid handling protocol
6.1 Note the time at which all drops of sample and running buffer were delivered to well Al.
7. Resulting

7.1. After the appropriate amount of incubation time, starting at the front row, record the
results of each test by circling +,—or (). If the control line and target line show clear signal,
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then the test is positive(+). If the control line shows signal but the target line shows no sig-
nal, then the test is negative(-). If the control line shows no signal or any of the lines show
ambiguous signal, then the test result is indeterminate ().

7.2. Optional: Open the spreadsheet in Microsoft Excel. Enable macros. Using the barcode
scanner, scan each cassette and then the result (positive, negative, indeterminate) from the
printed test menu (Fig 2B-2D). The scanned results will automatically populate into the
results field.

Results

To determine the efficiency of the tWIZARD protocol, we performed trial runs using the
Opentrons OT-2. Results are displayed in Table 3. Regarding individual cassettes, the time
from sample delivery to running buffer delivery ranged from 261 seconds for the first cassette
to 404 seconds for the 42nd cassette. Regarding the entire testing board of 42 cassettes, the
mean time from the start of the protocol to the delivery of the last running buffer for the entire
board of 42 cassettes was 733 seconds (12 minutes and 13 seconds) with a standard deviation

PN 8RR tf%"w_
I
%

Fig 2. Embodiment of field testing station for use of rtWIZARD protocol. (a) A portable power bank can power
several pieces of equipment including the OT-2, laptop computer, a centrifuge, an office printer, and lights. (b) The
rtWIZARD QR code sheet includes codes for resulting by scanner. The rtWIZARD plate record spreadsheet includes
(c) a script/macro for automatic cursor movement and (d) these cells can be populated by scanner as well.

https://doi.org/10.1371/journal.pgph.0002625.g002
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Table 3. rtWIZARD protocol trial runs.

Total run Time between sample and buffer delivery (s)
Trial time (s) 1st cassette 42nd cassette

1 709 265 404

2 767 261 393

3 738 263 385

4 717 263 388
Mean + SD 733 +22 263 +1 393+7

https://doi.org/10.1371/journal.pgph.0002625.t003

of + 22 seconds. In comparison, a laboratory technician provided with the same rack of 42
samples tubes and 8 running buffer tubes would have to deliver sample and running buffer to
all cassettes at a rate of 733 seconds - 42 cassettes = 18 seconds/cassette to match the efficiency
of tWIZARD. During this time the technician would be expected to make no errors such as
sample-cassette mismatch, sample spillage, and cassette contamination. Additionally, in sce-
narios where 100 or more rapid tests are performed during a work shift, the technician would
be required to maintain this efficiency to match the precision and efficiency of tWIZARD.

Discussion

The current simultaneous and ongoing large-scale outbreaks of human and animal diseases,
along with their economic consequences, underscore the vital importance of rapid, reliable,
and scalable diagnostic tests. While RT-qPCR remains the gold standard, PCR is not always
feasible at the onset of an outbreak or in settings without proper resources, such as a nearby
laboratory or trained personnel. Though imperfect, especially in respect to scaling, rapid tests
have emerged as important tools due to their combination of simplicity, resilience to ambient
conditions, cost, improving quality, and lack of infrastructure and personnel requirements.
Our introduction of the rtWIZARD protocol provides moderate scaling of RTs at a cost that is
affordable to many but not all organizations. The throughput benefit afforded by rtWIZARD
results from batching and requires not inconsiderable pre-analytic sample organization; thus
the rtWIZARD model is not suited for individual urgent bedside testing.

Prior to the COVID-19 pandemic, the RT market had an anticipated value of $8.2 billion
by 2022 [54]. In the short span of six months (Q4 2020—Q1 2021), just three major US manu-
facturers (Abbot, Quidel, and Becton Dickinson) accounted for sales exceeding $5.5 billion.
Such growth of the RT market points towards a bolstering of RT research and development,
manufacturing capacity and supply chains. Grant funding initiatives, like NIH RADx [55], are
providing further financial and other resources to foster innovation and increase RT produc-
tion. Consequently, the RT market is poised for further expansion in the near- to medium-
term [54].

While we present the tWIZARD model as a bridge solution for African swine fever or den-
gue virus outbreaks, the protocol can be easily modified for more routine testing scenarios in
which large numbers of RT's are performed. Examples of other testing scenarios include preg-
nancy testing, workplace testing, food safety, environmental testing, and defense applications.
When applied properly, tWIZARD can provide faster, cheaper, and better information for
One Health and other applications.

Limitations

This work describes a model for increasing outbreak diagnostic efficiency and of increasing
RT throughput for other applications. Sites using these protocols should verify it locally for
test accuracy, competence of staff and efficiency. For research use only.
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