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Abstract

Mycobacterium tuberculosis is a lethal human pathogen, with the key flavoenzyme for cata-

lyzing bacterial cell-wall biosynthesis, decaprenylphosphoryl-D-ribose oxidase (DprE1),

considered an Achilles heal for tuberculosis (TB) progression. Inhibition of DprE1 blocks cell

wall biosynthesis and is a highly promising antitubercular target. Macozinone (PBTZ169, a

benzothiazinone (BTZ) derivative) is an irreversible DprE1 inhibitor that has attracted con-

siderable attention because it exhibits an additive activity when combined with other anti-TB

drugs. Herein, 754 BTZ analogs were assembled in a virtual library and evaluated against

the DprE1 target using a covalent docking approach. After validation of the employed cova-

lent docking approach, BTZ analogs were screened. Analogs with a docking score less than

–9.0 kcal/mol were advanced for molecular dynamics (MD) simulations, followed by binding

energy evaluations utilizing the MM-GBSA approach. Three BTZ analogs–namely, Pub-

Chem-155-924-621, PubChem-127-032-794, and PubChem-155-923-972– exhibited

higher binding affinities against DprE1 compared to PBTZ169 with ΔGbinding values of –

77.2, –74.3, and –65.4 kcal/mol, versus –49.8 kcal/mol, respectively. Structural and energe-

tical analyses were performed for the identified analogs against DprE1 throughout the 100

ns MD simulations, and the results demonstrated the great stability of the identified BTZ

analogs. Physicochemical and ADMET characteristics indicated the oral bioavailability of

the identified BTZ analogs. The obtained in-silico results provide promising anti-TB inhibi-

tors that are worth being subjected to in-vitro and in-vivo investigations.
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Introduction

Mycobacterium tuberculosis is a slow-growing pathogenic bacterium that requires up

to six months of antibiotic treatment for eradication [1]. With the development of

antibiotic resistance, it persists as a health threat, especially in low- and middle-income

nations [2–4]. The resurgence of tuberculosis (TB) as a global pandemic has been influenced

in part by a lack of an effective vaccine [5] as well as by a significant increase in TB drug

resistance [6]. At the same time, there has been a global refocusing over the last twenty

years by health organizations that have resulted in a significant reduction in TB-related

mortality [7].

A principal flavoenzyme in M. tuberculosis cell-wall formation is decaprenyl-phosphoryl-

D-ribose oxidase (DprE1); indeed, several potent covalent and noncovalent DprE1 inhibitors

have been identified [8,9], including isoniazid, rifampin, pyrazinamide, ethambutol, and strep-

tomycin that showed promise as anti-TB agents [10,11]. Currently, four DprE1 inhibitors have

entered clinical trials–namely, BTZ043, TBA-7371, OPC-167832, and macozinone (PBTZ169).

OPC-167832 and TBA-7371 are noncovalent inhibitors that function as highly effective anti-

mycobacterial agents [12,13]. Among the covalent-specific DrpE1 inhibitors, 8-nitroben-

zothiazinone (BTZ) analogs, including macozinone (PBTZ169), demonstrated promising

inhibitory activity in in-vitro tests [14–16]. The electrophilic nitro group of BTZ is the appar-

ent covalent warhead, which forms an irreversible covalent bond with the nucleophilic

CYS387 residue in the enzyme active site [17]. According to a previous study, PBTZ169 was

three to seven times more effective than BTZ043 against M. tuberculosis [18]. A previous study

indicated that PBTZ169 could significantly improve patient survivorship in cases suffering

from multidrug-resistant TB [19]. In fact, PBTZ169 is currently undergoing phase I/II clinical

trials for the treatment of TB [20], and a PBTZ169, pyrazinamide, bedaquiline cocktail is being

considered as a prospective anti-TB regime [18].

In the current study, 754 BTZ analogs were obtained from the PubChem database and

virtually screened as prospective DprE1 inhibitors using covalent docking computations.

Based on the covalent docking scores, molecular dynamics (MD) simulations for potent

BTZ analogs in complex with DprE1 were examined. Furthermore, post-MD analyses were

inspected, and the corresponding binding energies were computed utilizing the MM-GBSA

approach. Physicochemical and pharmacokinetic features of the identified BTZ analogs

were also predicted. A schematic diagram of the in-silico methods employed for screening

BTZ analogs is shown in Fig 1. Such in-silico computations provide insight with regard to

the suitability of the identified BTZ analogs for the future development of potential anti-TB

drug candidates.

Computational methodology

DprE1 preparation

The crystal structure of M. tuberculosis DprE1 in complex with PBTZ169 ligand (PDB code:

4NCR [18]) was utilized as a template for all covalent molecular docking and molecular

dynamics computations. The non-terminal missing residues were constructed using the Mod-

eller software [21], which are located at 272–283 and 315–330. DprE1 enzyme was prepared by

eliminating all ions, inhibitor, and water molecules. The protonation states were then exam-

ined using the H++ web server [22]. Besides, all missing hydrogen atoms were added with the

following parameters: external dielectric = 80, salinity = 0.15, internal dielectric = 10, and

pH = 7.0. The quality of the modeled structure was evaluated based on the Ramachandran plot

occupancy of residues, utilizing the PROCHECK server [23].
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Covalent inhibitors preparation

In the current study, a total of 785 BTZ analogs were retrieved from the PubChem database

(https://pubchem.ncbi.nlm.nih.gov) in an SDF format. The duplicated compounds were elimi-

nated according to the International Chemical Identifier key (InChIKey), giving 754 BTZ ana-

logs [24]. Subsequently, the three-dimensional (3D) structures of BTZ analogs were created

using Omega2 software with a maximum of 200 conformers generated within a 10 kcal/mol

Fig 1. Schematic diagram of the utilized in-silico approaches in the virtual screening strategy of BTZ analogs.

https://doi.org/10.1371/journal.pone.0314422.g001
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energy window [25,26]. The ionization state of each BTZ analog was examined using the

Fixpka tool within the QUACPAC software [27]. The geometrical structures were subse-

quently minimized by the MMFF94S force field within SZYBKI software [28,29]. The charges

of the investigated BTZ analogs were estimated using the Gasteiger-Marsili method [30].

Covalent docking

All covalent docking calculations were conducted using AutoDock4.2.6 software [31]. The

applied docking protocol keeps the macromolecule rigid while permitting flexibility in the

ligand. For preparation purposes, the DprE1 enzyme was converted into a pdbqt file [32].

Except for the number of genetic algorithm (GA) runs and the maximum number of energy

evaluations (eval), all covalent docking parameters were adjusted to their default settings. Fast

and expensive accuracy levels of calculations were employed to virtually screen the BTZ ana-

logs. For docking computations, the GA and eval parameters were increased from 25 and

2,500,000 to 250 and 25,000,000 for fast and expensive levels of accuracy, respectively. In both

levels of calculations, the grid box was placed at 40 Å × 40 Å × 40 Å. The grid spacing value of

0.375 Å was used. The grid box was centered on 17.176, −20.119, and 1.875 (XYZ coordinates).

The predicted docking modes for each BTZ analog were processed using a built-in clustering

analysis with an RMSD tolerance of 1.0 Å. The lowest energy conformation from the largest

cluster was chosen as the representative docking mode.

MD simulations

Molecular dynamics (MD) simulations of the most potent BTZ analogs complexed with the

DprE1 enzyme were carried out using AMBER20 software [33]. The details of the utilized MD

simulations are described in Ref. [34–38]. DprE1 enzyme and BTZ analogs were characterized

using the AMBER force field of 14SB and the General AMBER force field (GAFF2), respec-

tively [39,40]. For atomic charges calculations, the irreversible covalent inhibitors with

CYS387 residue were capped using acetyl and methylamide groups and subjected to geometri-

cal optimization at B3LYP/6-31G* level of theory using Gaussian09 software [41]. A restrained

electrostatic potential (RESP) approach at HF/6-31G* level was then utilized to assign the

atomic partial charges of the optimized inhibitors [42]. The parameters of covalent inhibitors

with CYS387 residue (included in the covalent bond exhibition) and atom types were charac-

terized and defined utilizing an antechamber module within the AMBER package. The docked

BTZ analog-DprE1 complexes were solvated in an octahedron box of TIP3P water molecules.

Sodium or chloride counterions were inserted to neutralize all solvated systems. Moreover, the

ionic strength of the solution was also tuned to 0.15 M NaCl. Nevertheless, all prepared

DprE1-analogs complexes were minimized for 5000 cycles. The minimized systems were

gently heated up to 310 K for 50 ps. The DprE1-analogs complexes were equilibrated with a

simulation time of 10 ns. After that, the production stages were run on the equilibrated systems

throughout 1, 10, 25, and 100 ns. The snapshots were assembled each 10 ps through all produc-

tion stages. The Particle Mesh Ewald (PME) method was employed to handle long-range elec-

trostatic interactions under periodic boundary conditions, with a cutoff of 12 Å [43]. To

maintain the temperature at 298 K, Langevin dynamics were used with a collision frequency

(gamma_ln) set to 1.0. Pressure control was achieved using a Berendsen barostat with a relaxa-

tion time of 2 ps [44]. Bonds involving hydrogen atoms were constrained using the SHAKE

algorithm, with a time step of 2 fs [45]. All calculations, including MD simulations, quantum

mechanics computations, and covalent molecular docking estimations, were undertaken using

the CompChem GPU (pmemd.cuda)/CPU hybrid cluster (hpc.compchem.net). All graphical
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representations were generated with the assistance of BIOVIA Discovery Studio Visualizer

[46].

Binding energy computations

The binding energy of the most promising BTZ analogs in complex with DprE1 enzyme was

computed using the MM-GBSA (molecular mechanics-generalized Born surface area)

approach [47]. The modified GB model proposed by Onufriev et al. (igb = 2) was used to cal-

culate the polar solvation energy [48]. The following equation can be used to compute the

MM-GBSA binding energy:

DGbinding ¼ GComplex � ðGDprE1þGBTZ analogÞ Eq ð1Þ

where energy term (G) is given as follows:

G ¼ Gsolve þ EMM � TS Eq ð2Þ

EMM ¼ EvdW þ Eint þ Eele Eq ð3Þ

Eint ¼ Eangle þ Ebond þ Etorsion Eq ð4Þ

EMM stands for molecular mechanics gas-phase energy. Gsolv indicates the solvation energy.

Eint is the internal MM energy involving angle, bond, and dihedral energies. EvdW indicates

van der Waals energy. Eele is electrostatic energy. Entropy contributions were disregarded

owing to the high computational cost [49,50].

Physicochemical features

The online SWISS-ADME (https://www.swissadme.ch) server was employed to investigate the

physicochemical features of the most potent BTZ analogs as DprE1 irreversible inhibitors.

These physicochemical characteristics included MW (molecular weight), HBD (number of H-

bond donors), TPSA (topological polar surface area), HBA (number of H-bond acceptors),

and MlogP (n-octanol/water partition coefficient).

Anticipation of the pharmacokinetic and toxicity characteristics

The online pkCSM server was used to estimate the pharmacokinetic features (http://biosig.

unimelb.edu.au/pkcsm/prediction). Pharmacokinetic characteristics involve absorption, dis-

tribution, metabolism, and excretion. Besides, the toxicity feature was predicted. Absorption

(A) is evaluated based on water solubility (logS). The distribution (D) was assessed based on

Log BB (blood-brain barrier) and CNS (central nervous system) permeability. The Cyto-

chromes P450 (CYPs) models were used to predict metabolism (M). For excretion (E) prop-

erty, total clearance was evaluated. The toxicity of the identified BTZ analogs was predicted

according to AMES toxicity.

Results and discussion

Validation test

Before the virtual screening of the BTZ analogs against DprE1, an assessment of the efficiency

of the utilized covalent docking protocol to predict the correct docking mode and binding

affinity of DprE1 inhibitors was initially evaluated based on test sets I and II, respectively. As

well, the DprE1 enzyme was validated based on the Ramachandran plot (S1 Fig). Notably, the
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Ramachandran plot predicts the structural stereochemical properties of the protein. As illus-

trated in S1 Fig, 92.1% of the residues fall within the most favored regions, 7.7% in the addi-

tionally allowed regions, and 0.3% in the generously allowed regions.

Test set I. The co-crystallized PBTZ169 inhibitor was re-docked utilizing covalent docking.

The predicted docking mode was then examined and compared to the native structure to validate

the efficiency of the employed docking technique to predict the docking mode of the DprE1

inhibitor (Fig 2). The predicted docking pose of PBTZ169 inside the DprE1 active site was similar

to its native binding mode with an RMSD value of 0.73 Å. The computed PBTZ169 docking score

in a complex with DprE1 was −7.8 kcal/mol. The good score is attributed to PBTZ169’s ability to

form a covalent bond with the SH group of CYS387 (1.16 Å) (Fig 2). In addition, the oxygen of

the thiazine-4-one and NO2 group exhibited two H-bonds with the NH3 group of LYS134 (2.52

Å) and LYS418 (2.00 Å). As well, PBTZ169 demonstrated carbon-hydrogen bonds with HIS132,

GLY117, and SER228 (Fig 2). PBTZ169 also displayed halogen, pi-sigma, alkyl, and pi-alkyl inter-

actions with GLY133, VAL362, LYS367, and HIS132 residues, respectively (Fig 2).

Test set II. Test set II included six irreversible covalent inhibitors–namely BTZ043,

PBTZ169, DNB1, VI-9376, BTO, and cBT–with known MIC values with DprE1 [9]. For test

set II inhibitors, covalent docking calculations were performed to assess the efficiency of the

utilized docking protocol to predict the binding affinity of DprE1 inhibitors. The predicted

covalent docking scores were then compared with the corresponding experimental ΔGexp (S1

Table and Fig 3A). These docked complexes were subjected to MD simulations over 100 ns.

Besides, the corresponding binding energies were computed using the MM-GBSA approach.

The estimated binding affinities were compared to ΔGexp values (S1 Table and Fig 3B).

Favorable correlations between calculated covalent docking scores and binding affinities as

well as ΔGexp were observed with correlation coefficient (R2) values of 0.93 and 0.98, respec-

tively (S1 Table and Fig 3). These findings imply that AutoDock4.2.6 software precisely por-

tends inhibitor-DprE1 binding score and docking pose. Thus, the validated covalent docking

protocol was employed to screen potential DprE1 inhibitors.

Virtual screening of BTZ analogs

Computational techniques are used in various scientific fields, especially in drug discovery and

molecular biology [51,52]. Virtual screening (VS) is a powerful computational technique used

in the early stages of drug discovery. VS allows researchers to filter large libraries of chemical

compounds to identify potential bioactive molecules that could interact with specific biological

targets [53–55]. In the current study, an in-house database containing 754 BTZ analogs was

visually screened using AutoDock4.2.6 software (Fig 1). To reduce computational time and

cost, the covalent docking computations of the corrected analogs were executed using fast

covalent parameters (i.e., GA = 25 and eval = 2,500,000). The fast docking scores of these ana-

logs were computed and gathered in S2 Table. As enrolled in S2 Table, 349 out of 754 BTZ ana-

logs demonstrated covalent docking scores less than that of PBTZ169 (calc. −7.8 kcal/mol).

These BTZ analogs were selected and subjected to expensive covalent docking computations

(i.e., GA = 250 and eval = 25,000,000). The computed expensive docking scores are listed in S3

Table. According to expensive docking computations, only 94 BTZ analogs manifested cova-

lent docking scores< −9.0 kcal/mol. 2D representations of the most promising 94 BTZ ana-

logs complexed with the DprE1 enzyme are depicted in S2 Fig. Besides, the 2D chemical

structures, docking scores, and binding features of the three most potent BTZ analogs with the

DprE1 enzyme are summarized in Table 1. It is worth noting that these three analogs were

selected based on the calculated MM-GBSA binding energy during the 100 ns MD course

detailed in the following sections.
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Fig 2. (a) Superimposition illustration of the predicted docking pose (in pink) and the native binding mode of PBTZ169 (in dark cyan),

(b) 3D and (c) 2D molecular interactions of the expected docking pose of PBTZ169 complexed with DprE1 enzyme.

https://doi.org/10.1371/journal.pone.0314422.g002
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According to data listed in S2 Fig and Table 1, most of the examined BTZ analogs showed

nearly identical docking poses within the active site, forming an irreversible covalent bond

with CYS387 and multiple H-bonds with THR118, HIS132, and LYS418 residues.

Fig 4 illustrates 2D and 3D representations of PubChem-155-924-621, PubChem-127-032-

794, and PubChem-155-923-972; the nitro (NO2) group of the three BTZ analogs formed an

irreversible covalent bond with the SH group of CYS387 (1.41, 1.42, and 1.16 Å, respectively)

(Fig 4).

PubChem-155-924-621 showed a great binding affinity with DprE1 with a covalent docking

score of −15.7 kcal/mol, demonstrating three H-bonds with proximal residues within the

active site (Table 1). Examining the docking pose indicated that carbonyl oxygen formed an

H-bond with the NH group of TRP17 (2.76 Å) (Table 1 and Fig 4). In addition, the hydroxyl

group of the carboxylic acid group exhibited two H-bonds with carbonyl and carboxylic

groups of GLN334 (2.63 Å) and ASP389 (2.23 Å) (Table 1 and Fig 4).

PubChem-127-032-794 also demonstrated a promising binding affinity with DprE1 with a

covalent docking score of −14.7 kcal/mol. The strong binding of PubChem-127-032-794 with

the enzyme is ascribed to the presence of three H-bonds (Table 1 and Fig 4). More precisely,

the oxygen of azetidine-one formed an H-bond with the hydroxyl of THR118 (2.86 Å) (Fig 4).

An H-bond was predicted between fluorine and the NH group of the HIS132 (2.85 Å) (Fig 4).

Furthermore, the oxygen of the anisole ring established an H-bond with the NH3 group of

LYS418 (1.80 Å) (Table 1 and Fig 4).

Lastly, PubChem-155-923-972 displayed a good binding affinity with the DprE1 with a

covalent docking score of −13.3 kcal/mol. The oxygen of the nitro group contributed to two

H-bonds with the NH3 of LYS418 (2.40 Å) and the carbonyl group of GLN326 (2.08 Å)

(Table 1 and Fig 4). The NH group established an H-bond with the carbonyl group of

GLY328 (2.55 Å) (Table 1 and Fig 4). In addition, the hydroxyl of the carboxylic group

formed two H-bonds with the NH group of ARG58 (2.08 Å) and the OH group of THR118

(2.16 Å).

Fig 3. (a) Predicted covalent docking scores and (b) estimated binding energy of test Set II inhibitors complexed with DprE1 enzyme relative to the

comparable to the experimental binding energy (ΔGexp).

https://doi.org/10.1371/journal.pone.0314422.g003
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Molecular dynamics (MD) simulations

MD simulations probe the constancy of ligand-target complexes, the reliability of ligand-target

binding affinities, and the conformational elasticity [56,57]. 94 BTZ analogs with covalent dock-

ing scores< −9.0 kcal/mol were chosen and submitted to MD simulations. It is worth noting

that the docking score of –9.0 kcal/mol was chosen as the threshold value to shortlist the potent

BTZ analogs. To minimize time and computational costs, the MD simulations were run over 1

ns. The corresponding binding affinities are listed in S4 Table. From S4 Table, 33 out of 94 BTZ

analogs demonstrated binding energies (ΔGbinding) less than −50.0 kcal/mol. To obtain more

credible DprE1 binding affinities, these 33 BTZ analogs were further submitted to MD

Table 1. Predicted covalent docking scores (in kcal/mol) and binding features of PBTZ169 and the most potent BTZ analogs within the DprE1 active sitea.

No. PubChem Code 2D Chemical Structure Covalent Docking Score (kcal/

mol)

Binding Featuresb

Fast Expensive

PBTZ169

(PubChem-573-313-86)

−7.8 −7.8 CYS387 (1.16Å:

Covalent bond),

LYS134 (2.52 Å: H-bond),

LYS418 (2.00 Å: H-bond)

1

PubChem-155-924-621

−15.0 −15.7 CYS387 (1.41 Å: Covalent bond),

TRP17 (2.76 Å: H-bond),

GLN334 (2.63 Å: H-bond),

ASP389 (2.23 Å: H-bond),

LYS418 (2.11 Å: H-bond)

2

PubChem-127-032-794

−14.3 −14.7 CYS387 (1.42 Å: Covalent bond),

THR118 (2.68 Å: H-bond),

HIS132 (2.85 Å: H-bond),

LYS418 (1.80 Å: H-bond)

3

PubChem-155-923-972

−12.8 −13.3

CYS387 (1.16 Å: Covalent bond),

ARG58 (2.08 Å: H-bond),

THR118 (2.16 Å: H-bond),

GLN326 (2.08 Å: H-bond),

GLY328 (2.55 Å: H-bond),

LYS418 (2.40 Å: H-bond)

a Data ranked in accordance with the expensive covalent docking scores.
b Intermolecular H-bonds (in Å) and covalent bonds are only mentioned.

https://doi.org/10.1371/journal.pone.0314422.t001
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Fig 4. 3D and 2D representations of (a) PubChem-155-924-621, (b) PubChem-127-032-794, and (c) PubChem-155-923-972 complexed

with DprE1 enzyme.

https://doi.org/10.1371/journal.pone.0314422.g004
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simulations throughout 10 ns. The corresponding binding affinities were evaluated and collected

in S5 Table. Notably, 23 BTZ analogs manifested binding energies< −50.0 kcal/mol (S5 Table).

The MD simulations of these analogs complexed with DprE1 were prolonged to 25 ns. Addition-

ally, the corresponding binding affinities were calculated (S6 Table). Interestingly, out of these 23

BTZ analogs, PubChem-155-924-621, PubChem-127-032-794, and PubChem-155-923-972

exposed binding energies (ΔGbinding) with values of −73.1, −69.7, and −62.8 kcal/mol, respec-

tively, compared to PBTZ169 (ΔGbinding = −42.9 kcal/mol). In order to obtain more rigorous

binding energies, MD simulations for those three analogs were elongated to 100 ns. Moreover,

the corresponding binding affinities were calculated (see Fig 5). Interestingly, there was no

noticeable difference in the estimated binding energies for the identified BTZ analogs complexed

with DprE1 throughout the 25 and 100 ns MD simulations. Compared to PBTZ169 (ΔGbinding =

−49.8 kcal/mol), the computed binding energies of PubChem-155-924-621, PubChem-127-032-

794, and PubChem-155-923-972 were −77.2, −74.3, and −65.4 kcal/mol, respectively.

To examine the binding for these selected BTZ analogs, the computed binding affinities

were further decomposed (Fig 6). From Fig 6, ΔEvdW was the predominant contributor for

PubChem-155-924-621, PubChem-127-032-794, PubChem-155-923-972, and PBTZ169 com-

plexed with DprE1 with an average value of −89.3, −91.3, −79.6, and −50.7 kcal/mol, respec-

tively (Fig 6). In addition, ΔEele was appropriate with values of −66.4, −19.9, −35.6, and −29.8

kcal/mol for PubChem-155-924-621-, PubChem-127-032-794-, PubChem-155-923-972-, and

Fig 5. Calculated binding energies of PubChem-155-924-621, PubChem-127-032-794, PubChem-155-923-972, and PBTZ169 complexed with DprE1

enzyme over 1, 10, 25, and 100 ns MD simulations.

https://doi.org/10.1371/journal.pone.0314422.g005
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PBTZ169-DprE1 complexes, respectively (Fig 6). By comparing the average values of ΔEvdW

and ΔEele, it was indicated that ΔEvdW approximately was one and a half-fold of ΔEele. Notably,

ΔEint has a tiny contributor for the investigated BTZ analogs complexed with the enzyme, with

values ranging from 2.8 to 4.3 kcal/mol (Fig 6).

In addition, a per-residue energy decomposition analysis was implemented to investigate

the amino acid residues that exhibit prominent participation with DprE1. Only residues with

binding energy contributions lower than −0.50 kcal/mol were considered and are displayed in

Fig 7A. MET319, PHE320, GLN334, VAL365, and CYS387 interact with PubChem-155-924-

621, PubChem-127-032-794, and PubChem-155-923-972, and PBTZ169. CYS387 had a signif-

icant role in ΔGbinding with values of −0.69, −6.95, −4.88, and −1.12 kcal/mol for PubChem-

155-924-621-, PubChem-127-032-794-, PubChem-155-923-972-, and PBTZ169-DprE1 com-

plexes, respectively (Fig 7A). Inspecting the final trajectory of the BTZ analogs and PBTZ169

complexed with DprE1 indicated preserved H-bonds with key residues over the MD simula-

tions (Fig 7B). Noteworthy, the three investigated BTZ analogs complexed with DprE1 have

approximately identical interaction patterns with proximal residues, implying propinquity in

the binding mode of these studied complexes.

Post-MD analyses

To inspect the conformational changes and the stability of the most promising BTZ analogs

complexed with DprE1, post-MD analyses were employed during the 100 ns MD course. Post-

MD analyses involved the binding energy per trajectory, the number of H-bonds, CoM dis-

tance, RMSD, RMSF, Rg, and SASA [58,59].

Binding energy per trajectory. To estimate the constancy of PBTZ169, PubChem-155-

924-621, PubChem-127-032-794, and PubChem-155-923-972 complexed with the DprE1

active site, the correlation between MM-GBSA binding affinity and time was executed

Fig 6. Binding energy decomposition for PubChem-155-924-621, PubChem-127-032-794, PubChem-155-923-972, and PBTZ169 complexed with DprE1

enzyme throughout 100 ns MD simulations.

https://doi.org/10.1371/journal.pone.0314422.g006
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Fig 7. (a) The energy contribution of the most significant residues to the overall binding energy and (b) 2D molecular

interactions of binding modes of (i) PubChem-155-924-621, (ii) PubChem-127-032-794, (iii) PubChem-155-923-972, and (iv)

PBTZ169 complexed with DprE1 enzyme according to the final snapshot throughout a 100 ns MD simulation.

https://doi.org/10.1371/journal.pone.0314422.g007
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throughout the simulation time of 100 ns (Fig 8A). The most intriguing aspect of Fig 8A is the

high stability of PubChem-155-924-621, PubChem-127-032-794, PubChem-155-923-972, and

PBTZ169 complexed with the enzyme with ΔGbinding values of −77.2, −74.3, −65.4, and −49.8

kcal/mol, respectively. Based on these outcomes, the three BTZ analogs and PBTZ169 com-

plexed with DprE1 kept immutability over 100 ns MD course.

CoM distance. The center-of-mass (CoM) distance between the selected BTZ analogs and

CYS387 was adopted throughout a 100 ns MD simulation to understand the constancy of

DprE1-analog complexes (Fig 8B). As depicted in Fig 8B, the gauged CoM distance was steady

for PubChem-155-924-621, PubChem-127-032-794, PubChem-155-923-972, and PBTZ169

complexed with DprE1 with an average value of 7.3, 11.1, 6.8, and 5.7 Å, respectively. These

outcomes demonstrated that PBTZ169 and the investigated BTZ analogs bind tightly with the

DprE1 enzyme.

Fig 8. (a) Estimated binding energy per trajectory, (b) CoM distances, and (c) RMSD of the backbone atoms from the initial conformational of PubChem-155-

924-621 (in dark cyan), PubChem-127-032-794 (in blue), PubChem-155-923-972 (in violet), and PBTZ169 (in black) towards DprE1 enzyme during the 100 ns

MD course.

https://doi.org/10.1371/journal.pone.0314422.g008
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Root-mean-square deviation (RMSD). To examine the structural and positional variations

inside the DprE1 active site and inspect the structural stabilization of the complexes, RMSD was

measured (Fig 8C). The average RMSD values for PubChem-155-924-621, PubChem-127-032-

794, PubChem-155-923-972, and PBTZ169 complexed with DprE1 enzyme were 0.23, 0.32, 0.23,

and 0.63 nm, respectively (Fig 8C). The RMSD analysis displayed that the investigated complexes

tended to exist in an equilibrium state after 20 ns until the end of the 100 ns MD simulations, and

the proposed analogs were tightly bonded without changing the overall topology of DprE1.

Root-mean-square fluctuation (RMSF). To assess the conformational variation and sta-

bility of the backbone in apo-, PubChem-155-924-621-, PubChem-127-032-794-, PubChem-

155-923-972-, and PBTZ169-DprE1, the RMSF analysis of Cα atoms was measured (Fig 9A).

As shown in Fig 9A, the residues remained stable for the investigated systems throughout the

100 ns MD simulations. Nevertheless, a greater fluctuation was observed at residues from 260

Fig 9. Estimated (a) RMSF, (b) Rg, and (c) SASA for apo- (in grey), PubChem-155-924-621- (in dark cyan), PubChem-127-032-794- (in blue), PubChem-155-

923-972- (in violet), and PBTZ169-DprE1 (in black) over 100 ns MD simulations.

https://doi.org/10.1371/journal.pone.0314422.g009
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to 290 and from 310 to 330, indicating great flexibility in these regions. The average RMSF val-

ues for apo-, PubChem-155-924-621-, PubChem-127-032-794-, PubChem-155-923-972-, and

PBTZ169-DprE1 were found to be 0.14, 0.13, 0.15, 0.14, and 0.14 nm, respectively (Fig 9A).

Radius of gyration (Rg). The Rg analysis was executed to inspect the compactness of

DprE1 in its apo form and complex form with identified BTZ analogs over 100 ns MD simula-

tion. The Rg analysis provided insights into the overall folding and unfolding behavior of the

DprE1 structure upon binding with the identified BTZ analogs (Fig 9B). The average Rg values

were 2.22, 2.26, 2.25, 2.28, and 2.24 nm for apo-, PubChem-155-924-621-, PubChem-127-032-

794-, PubChem-155-923-972-, and PBTZ169-DprE1, respectively (Fig 9B). The Rg results

indicated that DprE1 maintained its compactness when bound to the BTZ analogs and

PBTZ169 throughout 100 ns MD simulations. These findings unveiled that the binding of

PubChem-155-924-621, PubChem-127-032-794, PubChem-155-923-972, and PBTZ169 sig-

nificantly stabilized the DprE1 structure.

Solvent-accessible surface area (SASA). SASA analysis was performed to gain a deeper

understanding of the interactions between the complexes and the solvent over the course of

the 100 ns MD simulations. Fig 9C illustrates the graph for SASA vs. simulation time for apo-,

PubChem-155-924-621-, PubChem-127-032-794-, PubChem-155-923-972-, and

PBTZ169-DprE1. As depicted in Fig 9C, the average SASA values were found to be 198.91,

207.56, 199.90, 207.46, and 202.04 nm2 for the apo-, PubChem-155-924-621-, PubChem-127-

032-794-, PubChem-155-923-972-, and PBTZ169-DprE1, respectively. These findings demon-

strated that no significant changes in the SASA values were observed for DprE1 due to its com-

plexation with BTZ analogs. These results revealed that the BTZ analogs did not notably affect

the solvent exposure of the DprE1 enzyme.

H-bond number. H-bond analysis was performed to estimate the number of H-bonds

between the identified BTZ analogs and DprE1 enzyme over a 100 ns MD course (Fig 10).

Interestingly, PubChem-155-924-621, PubChem-127-032-794, PubChem-155-923-972, and

PBTZ169 complexed with DprE1 revealed an average number of H-bonds was 2, 1, 1, and 2,

respectively. Generally, these post-dynamics studies endorsed the inherent steadiness of the

investigated BTZ analogs in complex with DprE1 enzyme over a 100 ns MD course.

Physicochemical features

The druggability of each compound was determined by its physicochemical characteristics

[60]. To predict the bioavailability and physicochemical features of the examined BTZ analogs

as DprE1 inhibitors, the SWISS-ADME server was used. Fig 11 illustrates the anticipated phys-

icochemical properties of the examined BTZ analogs. MLogP values for PubChem-155-924-

621, PubChem-127-032-794, PubChem-155-923-972, and PBTZ169 were 2.75, 3.25, 2.89, and

3.49, respectively, demonstrating that these analogs exhibited high lipophilicity. Molecular

weight (MW) ranged from 750 to 850 dalton (Fig 11). However, PBTZ169 demonstrated MW

with a value of 456.5 dalton. Additionally, the number of H-bond acceptors (HBA) for Pub-

Chem-155-924-621, PubChem-127-032-794, PubChem-155-923-972, and PBTZ169 was 10,

13, 9, and 8, respectively (Fig 11). Notably, this increase in molecular weight and hydrogen

bond acceptors is unlikely to significantly impact molecule transmission and diffusion, as

many FDA-approved drugs have deviated from the conventional molecular weight limit of

500 and the number of hydrogen bond acceptors of 10 [61]. The number of HBD for Pub-

Chem-155-924-621, PubChem-127-032-794, PubChem-155-923-972, and PBTZ169 was less

than 5 (Fig 11). The TPSA values of the identified analogs ranged from 110 to 200 Å2, demon-

strating their good oral absorption and membrane permeability [62].
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Pharmacokinetic characteristics

The pkCSM server was employed to evaluate the pharmacokinetic properties of identified BTZ

analogs. ADMET properties of the investigated analogs are compiled in Table 2. LogS values of

PubChem-155-924-621, PubChem-127-032-794, PubChem-155-923-972, and PBTZ169 were

−2.99, −4.1, −2.9, and −5.6, respectively, and were considered to be reasonably soluble

(Table 2). PubChem-155-924-621, PubChem-127-032-794, PubChem-155-923-972, and

PBTZ169 demonstrated log BB with values of −2.4, −2.1, −2.0, and −0.9, respectively. The log

PS value for CNS permeability ranged from −4 to −2, indicating impenetrability. The majority

of the identified analogs were predicted to be unable to cross the CNS or permeate the BBB

barrier (Table 2). In terms of metabolism (M), PBTZ169 and PubChem-127-032-794 were

inhibitors of CYP3A4 enzyme, whereas PubChem-155-924-621 and PubChem-155-923-972

Fig 10. Number of H-bonds for PubChem-155-924-621, PubChem-127-032-794, PubChem-155-923-972, and PBTZ169 complexed with DprE1 enzyme

during the 100 ns MD simulations.

https://doi.org/10.1371/journal.pone.0314422.g010
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were non-inhibitors of CYP3A4 enzyme (Table 2). Additionally, the result of the metabolism

test indicates that PBTZ169 and the identified analogs act as substrates for the CYP3A4

enzyme (Table 2). For excretion (E) property, the estimated total clearance for PubChem-155-

924-621, PubChem-127-032-794, PubChem-155-923-972, and PBTZ169 was 0.26, −0.3, −0.53,

and 0.02, respectively (Table 2). According to toxicity (T) analysis, PubChem-155-924-621 and

Fig 11. Estimated physiochemical features of PubChem-155-924-621, PubChem-127-032-794, PubChem-155-923-972, and PBTZ169 as DprE1

inhibitors.

https://doi.org/10.1371/journal.pone.0314422.g011
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PubChem-155-923-972 were non-toxic, while PBTZ169 and PubChem-127-032-794 were

toxic (Table 2). All the examined BTZ analogs revealed satisfied outcomes, with some values

even better than PBTZ169, as indicated in Table 2.

Conclusions

DprE1 is reported to be a crucial and very effective target for inhibiting tuberculosis (TB). As a

prospective DprE1 irreversible covalent inhibitor, BTZ analogs have received increased atten-

tion because they demonstrate additive activity when combined with other anti-TB drugs. To

identify effective DprE1 inhibitors, a library of 754 BTZ analogs was constructed and screened

against DprE1 using covalent docking computations. Based on covalent docking scores, the

most promising BTZ analogs with docking scores< −9.0 kcal/mol were subjected to MD sim-

ulations, followed by binding energy evaluations using the MM-GBSA approach. In accor-

dance with the MM-GBSA computations, PubChem-155-924-621, PubChem-127-032-794,

and PubChem-155-923-972 demonstrated promising ΔGbinding with values of −77.2, −74.3,

and −65.4 kcal/mol, respectively, compared to PBTZ169 (ΔGbinding = −49.8 kcal/mol). Post-

dynamics analyses showed that the identified BTZ analogs demonstrated high stability over

100 ns MD simulations. The predicted physicochemical and ADMET properties of the identi-

fied BTZ analogs proposed the promising oral bioavailability of PubChem-155-924-621, Pub-

Chem-127-032-794, and PubChem-155-923-972 as potential tuberculosis drug candidates.

These findings indicated that PubChem-155-924-621, PubChem-127-032-794, and PubChem-

155-923-972 may be potent DprE1 inhibitors that warrant additional in-vitro and in-vivo
assays. The current in-silico results established that these compounds are recommended for

clinical investigations against tuberculosis.
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Total

Clearance
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Toxicity
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PubChem-127-032-794 −4.1 −2.1 −3.5 Yes Yes −0.3 Yes

PubChem-155-923-972 −2.9 −2.0 −3.6 Yes No −0.53 No

https://doi.org/10.1371/journal.pone.0314422.t002
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