Skip to main content
. 2024 Nov 12;18:1496143. doi: 10.3389/fninf.2024.1496143

Table 3.

This table represents an overview of artificial intelligences, its respective performance, and data acquisition of each study.

References AI Resolution Data acquisition MAE [SD], r2
Ball et al. (2017) Gaussian Process Regression Not stated 3 T, T1- and T2-weighted MRI & diffusion weighted scans 1.54 y, r = 0.926
Ball et al. (2021) Regularized linear regression with elastic net penalty Not stated 3 T, T1-weighted MRI images 1.81 y [0.06], 0.79
Gaussian process regression 1.75 y [0.07], 0.81
Ensemble model 1.92 y [0.10], 0.78
Ball et al. (2019) Gaussian Process Regression Image resolution was 1 × 1 × 1.2 mm (Siemens) or 0.9375 × 0.9375 × 1.2 mm (GE)
Diffusion data: resolution 2.5 × 2.5 mm (Siemens) or 1.875 × 1.875 (GE) and slice thickness = 2.5 mm
3 T T1-weighted MRI & diffusion MRI 2.18 y [0.18]
Brown et al. (2017) Linear regression 0.625 mm × 0.625 mm × 3 mm (Brown et al., 2015) 1.5 T T1-weighted MRI & diffusion MRI scan 6.284 w [4.230 SDAE]
Multi-layer perceptron 7.223 w [5.080 SDAE]
SVR 1.712 w [1.366 SDAE]
Bagging regression 1.559 w [1.255 SDAE]
Random forests 1.554 w [1.197 SDAE]
Brown et al. (2012) Regularised multivariate nonlinear regression-like T1: slice thickness = 1.2 mm
T2: slice thickness = 2.5 mm
3 T, T1- and T2-weighted MRI & diffusion weighted scans 1.03 y, 0.92
Cao et al. (2015) LASSO/multivariate linear regression GE scanners: slice thickness, 1.5 mm
Siemens scanners: slice thickness, 1 mm
1.5 T T1-weighted MRI 1.69 y, r = 0.82
Chen et al. (2022) 3DCNN using T1 & T2 Not stated T1-, T2-weighted MRI 7.7 w [1.7]
3DCNN using T1 9.8 w [2.3]
3DCNN using T2 9.1 w [1.9]
Chung et al. (2018) Support vector regression with radial basis function kernel 1.2-mm slices (256 × 192-mm) in-plane resolution (PING study) 3 T T1-MRI weighted 1.69 y, 0.84
Erus et al. (2015) SVR with a linear kernel 0.9375 mm × 0.9375 mm × 1 mm 3 T T1-MRI weighted & Diffusion Tensor Imaging
MRI
1.22 y
Franke et al. (2012) RVR with a smoothing kernel 1 × 1 × 1 mm3 1.5 mm or 1 mm (Siemens) slice thickness 1.5 T, T1-MRI-weighted 1.1 y, r = 0.93
Galdi et al. (2020) Linear regression model with elastic net regularisation acquired voxel size = 1 mm isotropic T1 & T2 3 T T1 MRI-weighted & diffusion MRI 0.7 w [0.56], r = 0.78
Gschwandtner et al. (2020) CNN n.a. EEG (8, 4 & 2 electrodes) 8 EEG electrodes: 93.6% of estimations lying within ±2 w
67.9% within ±1 w deviation from PMA
He et al. (2020) CNN NIH-PD and MGHBCH 1.5 T, T1-MRI 0.96 y
Hosseinzadeh Kassani et al. (2020) SVM classification with linear kernel voxel size = 3 mm3 Resting-state-functional MRI 0.929 y [0.041]
Hu et al. (2020) Hierarchical Rough-to-Fine model T1: resolution with 1 × 1 × 1 mm3
T2: 1.25 × 1.25 × 1.95 mm3
3 T, T1-, T2-weighted MRI 32.1 [1.2 days]
Hu et al. (2021) Dimensional-attention-based 3D convolutional neural network ABIDE I & II, ADHD200 3 T, T1-MRI 1.01 y, MSE: 1.92y, 0.73
Kardan et al. (2022) SVR with a linear kernel T1 & T2 slice thickness 0.8 mm 3 T, T1- T2 MRI & rs-fMRI 3.6 m, 0.51
Kawahara et al. (2017) CNN Not stated diffusion tensor imaging 2.17 w [1.59]
Kelly et al. (2022) Gaussian process regression Victorian Infant Brain Study (VIBeS) 3 T T1 MRI 1.72 y [0.16], 0.80
Khundrakpam et al. (2015) Linear regression 1 mm isotropic data
GE scanner – 1.5 mm
Fallback protocol 3 mm
1.5 T, T1-MRI, T2-MRI, Proton Density 1.68 y, r = 0.84
Li et al. (2018) CNN Philadelphia Neurodevelopmental Cohort (PNC) Rs-fMRI 2.15y [1.54]
R0.4 = 0.614
Lund et al. (2022) Linear regression Healthy Brain Network (HBN) study sample & Philadelphia Neurodevelopmental Cohort (PNC) 3 T T1 MRI & T2 rs-fMRI 2.43 y [2.93], r = 0.6
Morita et al. (2022b) 3DCNN n.a. CT 4.61 m [3.65], r = 0.89
Morita et al. (2022a) 3DCNN n.a. CT RMSE: 6.45 m
R = 0.89
Mean Prediction Error: 2.29 m [6.04]
Nielsen et al. (2019) SVR T1: 1 × 1 × 1 mm3 voxels 3 T T1 MRI & rs-fMRI R2 = 0.57
O’Toole et al. (2016) SVR with a linear kernel n.a. EEG (10 electrodes) [7.85] d, r = 0.889
Qu et al. (2020) 3DCNN ABIDE, ADHD200, HBN resampled to 1.5 × 1.5 × 1.5 mm3 T1 MRI 1.11, 0.78
Saha et al. (2018) 2DCNN field of view 224 × 224 mm, matrix 128 × 128
in plane res: 1.75 × 1.75 mm, slice thickness not given
Diffusion MRI R = 0.6
Shabanian et al. (2019) 3DCNN NIMH Data Archive (NDA) 1.5 T, T1- T2-MRI & Proton density MRI Class, Precision, F1-Score New-born, 1.00, 1.00;
1 Year, 0.95, 0.97;
3 Years, 1.00, 0.99
Smyser et al. (2016) SVM with a linear kernel voxel size 1 × 1 × 1 mm3 T2-MRI, rs-fMRI Preterm vs. Term classification: 84% accuracy, 90% sensitivity and 78% specificity
Stevenson et al. (2017) SVR n.a. EEG (9 electrodes) R = 0.936
Stevenson et al. (2020) SVM n.a. EEG (9 electrodes) Random error = 1.1 w
Systematic error = −0.1 w
Vandenbosch et al. (2019) Random Forest n.a. EEG (30 electrodes) 1.22 y
RVM 1.46 y
SVM Not presented
Zhao T. et al. (2019) SVM with a linear kernel ADHD-200
T1: acquisition matrix: 256 × 256, FOV: 256 × 256 mm2; slice thickness – slice thickness 1.33 mm
1 × 1 × 1.33 mm
Beijing cohort
T1: in-plane resolution 1.0 × 1.0 mm, slice thickness 1.0 mm
T2: in-plane resolution—0.7 × 0.7 mm, slice thickness—0.7 mm,
3 T, T1- T2-MRI r = 0.48
RVM with a linear kernel r = 0.48
Sturmfels et al. (2018) 3DCNN Voxel size 0.94 × 0.94 × 1, FOV dimensions 196 × 256 × 160 T1-MRI 1.43 [0.03]
Hong et al. (2020) 3D CNN “newborns (≤1 month):
voxel dimensions = 1.0 × 0.7 × 4.5 mm
older children (>1 month):
voxel dimensions = 1.4 × 1.0 × 5.0 mm”
1.5 T T1-w MRI 67.6d, 0.971
Zhao Y. et al. (2019) ridge regression Not stated 1.5 T or 3 T T1-weighted 1.41 years, 0.71
1.42 years, 0.70
Liang et al. (2019) Penalized ridge regression Not stated T1w MRI 6–30 years age range, 2.53 years, 0.85
Support vector regression Not presented
Gaussian processes regression Not presented
Deep neural network Not presented
Lewis et al. (2018) Elastic net penalized linear regression model resolution of 1 mm isotropic 1.5 T T1-w MRI
3 T T1-w MRI
504 d best model
Dean et al. (2015) Voxel-wise probabilistic model Not stated Voxel-wise VFM maps Males: 79.06 d
Females: 90.02 d
Pardoe and Kuzniecky (2018) Relevance vector machine regression Not stated T1-w MRI 7.2 y
Gaussian processes regression 8.4 y
Lavanga et al. (2018) Linear mixed effect regression model n.a. EEG 1.51 w, 0.8
Liu et al. (2024) Graph Convolutional Network (GCN) UCSF:
enrolled until 2011: 1× 1 × 1 mm3 resolution
enrolled between 2011 and 2017: 0.7 × 0.7 × 1 mm3 resolution
UCSF:
Enrolled until 2011:
1.5 T T1-w MRI
enrolled between 2011 and 2017:
3 T T1-w MRI
0.963 weeks, 0.94
dHCP:
0.5 × 0.5 × 0.5 mm3 resolution
dHCP:
3 t T1-w MRI
Tang et al. (2023) 2D Convolutional Neural Network Not stated T1-w MRI 1.15
3D Convolutional Neural Network 1.80
Liu et al. (2023) radiomics first-order grayscale feature extraction method gray matter Not stated 1.5 T MRI 104.41
radiomics first-order grayscale feature extraction method white matter 92.72
FreeSurfer feature extraction method 81.83
Mendes et al. (2023) Convolutional Neural Network Not stated T1-weighted MRI 0.47 [0.01], 0.18 [0.04]
Zandvoort et al. (2024) Support Vector Regression with linear kernel function n.a. EEG & EMG 1.75 weeks (95% at [1.51, 2.03])
Nielsen et al. (2023) Support Vector Regression 0.8-mm isotropic resolution 3 T T2-weighted MRI & resting-state fMRI R2: 0.51
0.59
Hu et al. (2023) Convolutional Neural Network on RAW data 0–6 months:
slice thickness = 4.0 mm, in-plane resolution = 0.7 × 0.7 mm2
6–36 months:
slice thickness = 5.0 mm, in-plane resolution = 0.7 × 0.7 mm 2
3 T T1-weighted MRI 67.66, 0.91
Convolutional Neural Network on white matter 72.17, 0.89
Griffiths-King et al. (2023) Gaussian Processes Regression Not stated T1w MRI 1.48y, 0.37
Bellantuono et al. (2021) Deep neural network on the full dataset Not stated T1 weighted MRI 2.19 [0.03y], 2.91 [0.03y]
Deep neural network on the subset of subjects within the 7–20 age range 1.53 [0.02], 1.94 [0.02]
Deep neural network on an external dataset 2.7 [0.2], 3.7 [0.2]

y, year; m, month; w, week; MAE, Mean Absolute Error; rs-fMRI, resting-state functional MRI; RVM, Relevance vector machine; RVR, Relevance vector regression; RVM, Relevance vector machine; SVM, Support Vector Machine; SDAE, absolute error standard deviation; MSE, mean standard error.