
Journal of Physiology (1996), 492.2, pp.597-628

Relationship of firing intervals of human motor units to the
trajectory of post-spike after-hyperpolarization

and synaptic noise

Peter B. C. Matthews

University Laboratory of Physiology, Parks Road, Oxford OXI 3PT, UK

1. Interspike interval distributions from human motor units of a variety of muscles were
analysed to assess the role of synaptic noise in excitation. The time course of the
underlying post-spike after-hyperpolarization (AHP) was deduced by applying a specially
developed transform to the interval data. Different firing rates were studied both by
varying the firing voluntarily, and by selecting subpopulations of spikes for a given firing
rate from long recordings with slight variations in frequency.

2. At low firing rates the interval histograms had an exponential tail. Thus at long intervals,
the motoneurone was randomly excited by noise and its post-spike AHP was complete. This
contrasts with the firing produced by intracellular current injection in the cat, when the
membrane potential increases linearly until threshold is reached. The interval histogram
was therefore analysed with the aid of a model of synaptic excitation to deduce the mean
'trajectory' of membrane voltage in the last part of the interspike interval.

3. The computer model, described in the Appendix, was used to determine the effect of the
mean level of membrane potential on the probability of a spike being excited, per unit time,
during an on-going interspike interval. All variables were treated as voltages, with
synaptic noise simulated by time-smoothed Gaussian noise. This enabled an interval
distribution to be transformed into a segment of the underlying trajectory of the membrane
potential; the potential was expressed in terms of the noise amplitude and the spike
threshold.

4. At low firing rates, the equilibrium value of the membrane voltage trajectory lay well below
threshold; the deviation typically corresponded to the standard deviation of the noise or
more. The noise standard deviation was estimated to be about 2 mV.

5. With increasing mean firing rate, the near-threshold portion of the trajectory obtainable
from the histogram occurred earlier, was steeper and rose to a higher level. Trajectories for
different firing rates fell on the same curve after shifting them vertically by varying
amounts. The curve was taken to represent the AHP of the motoneurone and was closely
exponential. The shift of the trajectory gave its mean synaptic drive. The duration of the
AHP varied between units and was longer than average for units from soleus muscle.

6. Further modelling showed that summation of noise with the AHP can explain the well-
known changes in discharge variability that occur as firing rate increases.

7. It is concluded that synaptic noise plays a major role in the excitation of tonically firing
human motoneurones and that the noiseless motoneurone with a linear trajectory provides
an inadequate model for the conscious human. This is of interest in relation to various
standard measures of human motor unit activity such as short-term synchronization.

In their pioneer recordings in 1929, Adrian & Bronk found distribution with a coefficient of variation of 10-25%, as
that during a maintained voluntary contraction, human has long been recognized (Tokizane & Shimazu, 1964;
motor units fire at a slow regular rhythm. With the advent Clamman, 1969). The variability of the discharge is greater
of digital computers, the determination of interspike for low firing rates, with the coefficient of variation of the
interval histograms for such discharges has become routine. interval distribution tending to increase with the mean.
These histograms commonly approximate to a Gaussian Detailed analyses have regularly shown departures from
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normality, with a definite pattern emerging. Kranz &
Baumgartner (1974) noted that their 'interval histograms
were narrow and symmetrical at fast rates, broader and
skewed to the right at slower rates'; this was also found by
Person & Kudina (1972). Enoka, Robinson & Kossev (1989)
recently gave formal description to such behaviour and
stated that 'none of the distributions were Gaussian
(P < 0O001) because of a greater degree of kurtosis and a
skew towards longer intervals (positive skew)'. The Weibull
distribution will fit a range of such non-Gaussian histograms
(De Luca & Forrest, 1973), but its various parameters bear
no relation to physiological variables. Recently, the effects
of synaptic noise have been studied with a random walk
model with infinite memory (Warren, Miles & Tiirker, 1993).

Analysis of the detailed form of the interval distribution is
no mere statistical exercise, since it has long been common-
place that study of the detailed timing of spike events can
shed light on the mechanisms of spike production, as has
been well stated by Moore, Perkel & Segundo (1966). The
thesis of the present paper is that, with proper handling,
the simple interval histogram of the motor unit can indeed
tell one much about the factors controlling the firing of the
motoneurone in the unanaesthetized state in man; the
motoneurone is then activated physiologically by the tonic
interplay of synaptic excitation and inhibition, with
resultant synaptic membrane noise. In the cat, Calvin &
Stevens (1968) showed that synaptic noise was responsible
for slight deviations from normality of interval histograms
obtained from motoneurones during the intracellular
injection of current. Large departures from normality have
been seen in neurological disease (Freund, Dietz, Wita &
Kapp, 1973), giving further impetus to studying the
underlying factors.

The pattern of firing per se has also long been of interest in
relation to the noisiness of signal transfer. More recently,
synaptic noise has been recognized as having a crucial effect
on various experimental measures of synaptic action such
as the relation between the form of a brief excitatory input,
or EPSP, and the consequential change in motoneuronal
firing in a post-stimulus time histogram (Kirkwood, 1979;
Gustafsson & MIcCrea, 1984; Midroni & Ashby, 1989).
Likewise, noise affects the extent to which the discharges of
a pair of motor units may be synchronized when both are
activated by branches of the same presynaptic axon
(Kirkwood & Sears, 1991; Nordstrom, Fuglevand & Enoka,
1992).

The present experiments arose from an incidental
observation made during an earlier single motor unit
study (Matthews, 1994), namely that the falling phase of
histograms with a tail of long intervals (positive skew)
may be approximately exponential, a feature of well-
known importance (Moore et al. 1966). Surprisingly, such
behaviour does not seem to have attracted previous
attention for the motor unit although it immediately
suggests that the human motoneurone is then being

randomly excited by synaptic noise, following the
completion of the membrane after-hyperpolarization (AHP)
left by the preceding spike. In other words, the total
duration of the AHP 'trajectory' may be shorter than many
interspike intervals, making the pattern of excitation in
conscious man quite unlike that seen with intracellular
current injection in the anaesthetized cat, when the
potential increases linearly up to threshold and a spike is
initiated (Schwindt & Calvin, 1972). It then becomes of
considerable interest to determine how far the final
equilibrium membrane potential lies below threshold during
physiological activation of the motoneurone in man. A
simplified model of excitation, described in the Appendix,
was therefore used to determine the probability of firing in
terms of the membrane potential and the amount of
synaptic noise. This showed that for low firing frequencies,
the equilibrium membrane potential was subthreshold by
an amount about equal to the standard deviation of the
noise.

The model was also used to deduce the voltage trajectory of
the AHP (expressed in units of the noise variance) over the
whole period covered by the interval histogram. Only the
last part of the AHP could be charted, but the amount
covered was extended by studying a number of firing
frequencies. AHPs from different motoneurones were found
to differ in their time course, as is well known for directly
recorded AHPs; in addition, their apparent size might vary
between motoneurones, suggesting differences in the noise
level. The AHPs proved to be approximately exponential
over the range studied, in line with the time course of the
underlying conductance change. Reversing the causal chain,
synthetic interval histograms were produced by combining
an exponential AHP with the noise in the model
motoneurone; the variance of the histograms decreased
appropriately as the firing rate increased.

The special feature of the modelling was the deduction of
two inversely related transforms relating probability of
firing to membrane potential and vice versa, in the presence
of appreciable synaptic noise. These enabled an interval
histogram to be predicted from a trajectory and, more
especially, a trajectory to be estimated from a histogram.
The chief uncertainty arose from ignorance of the membrane
time constant of the particular neurone studied; this value
was used to smooth the Gaussian noise that simulated the
synaptic noise and affected the precise transform obtained.
In addition, inaccuracy was probably introduced by using a
highly simplified model motoneurone, and the matter merits
further study with more detailed modelling. Attention was
concentrated on the low-frequency noise-induced firing that
occurred when the mean value of the membrane potential
was below threshold. Previous modelling of the motoneurone
has been largely concerned with the higher-frequency firing
induced by steady currents that bring the membrane to
threshold, when noise is relatively unimportant (Kernell,
1968; Baldissera & Gustafsson, 1974a, b; Ashby & Zilm,
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1982). However, synaptic noise has always been at the
centre of modelling the physiological activation of
respiratory motoneurones during breathing (Kirkwood,
1979; Kirkwood & Sears, 1991). The present findings,
whether based on modelling or experiment, may thus be of
some general interest by virtue of their concentration on a

relatively neglected but essential part of the normal firing
range of a neurone.

Two broad conclusions can be drawn from the experiments;
they seem secure even if certain details of the modelling
should prove seriously simplistic. First, the human interval
histogram contains valuable information about the
trajectory of the AHP and the level of synaptic noise. Most
notably, at low firing rates the mean value of the membrane
potential never reaches threshold and firing is entirely due
to noise. Second, the variety of shapes of the distributions,
with their departures from a Gaussian curve and their
variation with firing frequency, can be attributed to an

interaction between appreciable on-going synaptic noise
and the trajectory of the AHP. The findings affect the
interpretation of several indices of synaptic activity, such
as those for short-term synchronization between a pair of
units.

METHODS
Single motor unit recordings were made in seven neurologically
normal subjects aged 20-65 years (5 male, 2 female). All gave

informed consent according to the Declaration of Helsinki; the
procedures involved no risk of harm. Sixty-three units were

studied, forty-three of them from the author, a variety of whose
muscles was studied (biceps brachii, brachioradialis, flexor carpi
radialis, first dorsal interosseus of the hand, abductor digiti
minimi (ADM), soleus, tibialis anterior and peroneus longus); in
other subjects, just one or two muscles were examined (biceps,
flexor carpi radialis or brachioradialis). A minimum of 2000 spikes
was collected for each unit, but normally very much longer
discharges were obtained; over 80000 spikes were recorded from
three of the units (of the 63 units, 4 had 2000-3000 spikes, 32 had
3000-10000 spikes, and 25 had more than 10000 spikes). The
mean firing rate was usually below 10 Hz (range, 5-6-15-6 Hz).
The collection of large numbers of spikes from a given unit was

done in a series of separate recording periods of 5-30 min
duration, in each of which the subject endeavoured to keep the
unit firing at a constant low mean rate; subjects were provided
with both visual and auditory feedback of the discharge (the visual
feedback consisted both of the on-going spike train displayed on a

slow time base and the individual spikes on a high-speed sweep;
the running mean firing rate was not provided because of its
potential to produce oscillatory behaviour). The subject was told to
make any corrections to the firing rate rather gently as rapid
changes interfered with the analysis (see Fig. 1). Collection ceased
when the subject found it difficult to continue to control the unit,
or if another unit started to interfere with the recording. The
various recordings from a given unit were normally very similar
and no systematic differences were found between the beginning
and end of an individual collection period when these were

analysed separately. The contractions were normally weak and the

subject did not become fatigued.

Most units (43/63) were recorded with surface electrodes, as
already described (Matthews, 1994). This greatly facilitated the
collection of a large number of spikes from a given unit and helped
ensure that the same unit was indeed studied throughout; these
'surface' units could thus be analysed in detail and so contributed
most of the present data. The two active electrodes (1-3 mm
diameter, separation about 1 cm) were placed over the surface of
the muscle; a suitable location was determined by trial and error,
but the edge of the muscle belly was frequently a favourable site.
An earth was placed in the mouth. Surface recording inevitably
favours the selection of low-threshold units; however, an
appreciable contraction might be present, and a large spike was
often recorded in the presence of smaller background spikes. Pre-
existing shorter recordings obtained from twenty units with
bipolar needle electrodes were thus also included in the analysis as
a control; the results were indistinguishable, confirming that the
surface recording had not selected an atypical population of units
(needles were inserted into the belly of flexor carpi radialis of
three subjects, including the much-studied author). In most of
these experiments the muscle was being stretched sinusoidally
(P. B. C. Matthews and P. Bawa, unpublished study), but trials
were chosen for analysis in which this had only a very weak effect
on the unit in question; the simple interval distribution is then
almost entirely unaffected (Matthews, 1994, especially Figs 8 and
9; cyclic modulation always below 45% and usually much less).
Spike train analysis
The unit recordings were amplified (bandpass, 100 Hz to either 1
or 3 kHz) and then fed to a simple level detector to produce a
standard pulse which was supplied to the digital input of a

computer for the initial on-line analysis; the unitary spikes were
also stored on a separate digital tape-recorder (bandpass,
0-20 kHz) to permit repeat analysis if desired. The triggering of
the pulse by the spike was monitored continuously during the
experiment to ensure that the same unit was being studied
throughout and that it remained truly single. The computer
measured the time of occurrence of every spike to within 0-1 ms
and constructed a spike interval histogram with a bin width of
5 ms. At the end of each trial both the interval histogram and the
serial spike times were stored on disk for further analysis. This
was done with a variety of programs, purpose-written in Turbo
Pascal; these both computed various conventional statistics and
performed various special functions, as detailed below. For these
subsequent analyses, individual runs of data with similar firing
frequencies were commonly combined.

Calculation of probability. The conventional interval histogram
was routinely transformed into a plot of the probability of an on-

going interval being terminated during the course of a bin (the
interval 'death rate', see Results). As a first approximation, this is
given by the number of spikes occurring in a given bin of the
interval histogram divided by the sum of the spikes in all bins
with the same or greater interval. In other words, this gives the
probability, for each time, that the unit will fire in the immediate
future, provided that it has not already done so. Such probabilities
have already been calculated for certain other neurones (Goldberg,
Adrian & Smith, 1964; Moore et al. 1966), but there is no agreed
name for the resulting probability function.

Even when the underlying continuous probability function
remains constant throughout the duration of the bin, the estimate
given above will be slightly in error when the bin width is
appreciable. This is well known for the analogous situation of
radioactive decay, and error is easily avoided by comparing the
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number of spikes remaining to be discharged at the beginning and
end of each bin. Specifically,

P= [ln(NO/N1)] / bin width,

where P is the probability of a spike being fired per unit time,
averaged over the bin; No and N, are the sum of all subsequent
bins in the simple interval histogram, with No including the bin
whose P is being measured and N, excluding it (ln is the natural
logarithm). This assumes that the probability of a spike being fired
is a continuous process, reducing the population of remaining
spikes available to fire throughout the course of a finite bin. The
calculations were terminated when the remaining counts had been
reduced to a fixed small proportion (typically 2%) of the initial
count.

More correctly, P (as given above) is the rate constant of decay, or
death rate, of the population of intervals but in the present
context it is conceptually easier to think of P as the estimated
probability that a spike will occur within the next millisecond and
terminate an individual on-going interspike interval (see Fig. 13).
This is acceptable for all qualitative considerations, so P has been
routinely referred to as 'probability'; but P was always treated as a
rate constant in the various calculations. (The true probability per
unit time = 1 - exp(-P), which tends to P as P tends to zero;
thus P correctly gives probability when the unit of time is suitably
small.) The exponential equation allows the rate constant to be
estimated from coarsely binned data in which the measured count
falls appreciably from bin to bin.

Cleaning the spike train. Inevitably, occasional false triggers
occurred, due to the intrusion of other units. The frequency of
their occurrence could be approximately estimated from the
interval distribution, since every false trigger splits a normal
interval into a pair of false shorter intervals. These displayed
themselves as a series of counts preceding the main body of the
interval histogram, which invariably had a well-marked
beginning. For most units studied, the proportion of false
intervals was below 3% (corresponding to approximately 2% false
spikes) and they could be largely ignored; values below 0 5% were
sometimes achieved and provided a standard for all the major
statements in the present paper. Spikes were only rarely missed;
the trigger level was set deliberately low to ensure reliability, at
the risk of creating false triggers which mattered less. Any
appreciable number of missed triggers declared themselves as a
delayed hump in the death rate plots and the data were then
discarded (or replayed from tape).

For routine analysis the majority of false intervals were removed
from the spike train by the following 'cleaning' procedure, which
enabled trains with up to, say, 8% false intervals to be studied
with reasonable confidence. First, the start of the interval
histogram was identified by simple inspection and a safe cut-off
point chosen, usually 10 ms earlier. The whole spike train was then
scanned and every interval below the cut-off point eliminated
(cf. Nordstrom et al. 1992). In addition, both the interval before
and the interval after each unduly short interval was also
eliminated, since one or other of them must also have been false.
Minor further algorithms dealt with the situation where two or
more short intervals followed in succession. When the interval was
below 5 ms (as sometimes happened when a single complex spike
elicited two trigger pulses), the short interval was eliminated
without any consequential adjustments.

Intervals above 300 ms, as occur when the subject temporarily
fails to keep the unlit firing steadily, were also eliminated. As the

work progressed, however, it became evident that the 300 ms limit
was sometimes removing a few genuine long intervals; for the sake
of comparability this was allowed to continue, since it had little
overall effect. The 300 ms limit was also used in the modelling. All
this cleaning of the spike train must have largely removed the
artefactual effects of false triggers on the interval distribution and
its statistical parameters, but at the cost of slightly distorting the
temporal relations within the train.

Slicing the spike train. Given the long periods for which a given
single spike was followed, it could not be expected that even a
trained subject would be able to keep it firing at precisely the same
mean frequency throughout, and statistical analysis confirmed
that this was so (see below). There is no ideal way of analysing
such non-stationary series, but the following procedures were

employed to subdivide the spike train into components with
different mean frequency.
In the initial experiments, the train was subdivided into successive
groups of twenty-five spikes and the mean frequency for each such
group determined; this may be taken as a measure of the on-going
level of central 'drive' upon the motoneurone determined for
successive periods spanning 2-3 s. The variance of the population
of means was then calculated and compared with the variance of
the whole population of intervals. The variance of the means

proved to be unduly large, thereby confirming that the mean rate
of firing (central drive) was indeed changing with time (analysis of
variance regularly gave F> 6, with the 1% significance level
<1 5). Groups with means falling within a specified range were

then summed to give subpopulations with different central drives;
these interval distributions differed in the same way (see Results)
as those obtained by the following more elaborate slicing procedure,
which was subsequently applied to most of the original data.

In the definitive method used for slicing, the running value of the
mean frequency of firing was calculated throughout the course of
the spike train as illustrated in Fig. 1. The running mean was then
used to allocate each spike individually to the appropriate
subpopulation. Ten interspike intervals were used to compute the
running mean, spanning a period of approximately 1 s; the period
used was centred on each interval in turn, but the interval itself
was not used for the average (no appreciable difference was

produced by including it). In other words, each spike was tagged
with a 'mean rate of firing' based on averaging the five interspike
intervals just before it with the five intervals just following it, and
the values were then stored. Any desired subpopulation or 'slice',
for a mean firing rate falling in a specified frequency range, could
then be rapidly assembled and the effect of varying levels of
central drive on the interval distribution studied (examples are

given in the figure legends). The efficacy of this procedure is shown
by findings described in Results.

The variability remaining within a slice was almost entirely due to
moment-to-moment variation in spike interval, rather than to
slow shifts of drive within the limits chosen (typically spanning
1 s). This is qualitatively apparent for records A-C in Fig. 1, and
was confirmed by finding that the standard deviation (in
milliseconds) of a slice population was only very slightly reduced
when the difference between each interval and its running mean

was used instead of its absolute value. The slicing cannot, however,
have entirely achieved its objective of isolating subpopulations
with a fixed synaptic drive; some inappropriate intervals must
have slipped through. In particular, as illustrated in Fig. ID, the
running mean cannot remain an effective indicator of the on-going
synaptic drive when this happens to change rapidly; however, slow
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changes as in Fig. 1E should not matter greatly. Mistakenly
introducing a few unduly long intervals into a histogram for a
high level of synaptic drive has a potentially serious effect on the
shape of the tail of the histogram, since it contains a small total
number of impulses (cf. Fig. 5); this was dealt with by ignoring the
last 2% of the spikes in any given histogram and paying less
attention to the last 5% when compounding individual trajectories
to deduce the AHP (see legends of Figs 7 and 8). In test trials the
homogeneity of a slice was not appreciably improved (i.e. its
variance only slightly reduced) by measuring the variance of the
ten intervals used to calculate each individual value of the running
mean, and discarding data with more than average variability.

RESULTS
The following pages describe a series of transformations of
the interval histograms of tonically firing motoneurones,
leading to a deduction of the time course or trajectory of
the underlying mean membrane potential and thus of the
post-spike after-hyperpolarization (AHP). Twenty-five
motor units with over 10000 recorded spikes were studied
particularly thoroughly, since large numbers of spikes
reduce the inherent variability of the data and improve the
curve fitting, thereby increasing the reliability of the
conclusions. Qualitatively similar results were obtained
with varying degrees of accuracy for all sixty-three units
studied; the final trajectories were always approximately
exponential, and for low firing rates came to equilibrium
with the membrane potential below threshold. A number of
units behaved almost identically and the experiments were
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continued simply to extend the number of muscles and
subjects studied. The text has thus concentrated on the
behaviour of individual motor units taken from six muscles,
together with a summary plot of the estimated AHPs of
eleven units that spanned the range observed. As is to be
expected, the findings suggest that the various moto-
neurones studied differed in their noise level and duration
of AHP, as well as in their mean firing rate. No attempt
has been made to provide a detailed comparison of such
discharge characteristics of the entire sample of moto-
neurones, as this does little to further understanding. The
analysis is developed and explained without any intended
loss of generality by reference to well-studied typical
examples representative of the whole population of units.

The exponential tail of the interval histogram
When a motor unit was firing at the bottom of its
frequency range, its interspike interval histogram regularly
displayed a prolonged exponential tail. Figure 2 shows
three different representations of such tails for two different
units with rather different absolute firing frequencies. The
subject was doing his best to keep the units firing at a
constant rate throughout the recording; any failure to do so
can be allowed for (see later) and does not affect the present
issue. The left-hand plots are conventional interval histo-
grams with the percentage of spikes in each bin plotted
against the spike interval. Their falling phases, from the
arrows onwards, are approximately exponential; this is not,
however, a striking feature of such histograms, partly
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Figure 1. Type of data analysed: serial intervals with running mean for slicing
Top (dots), values of successive interspike intervals plotted in serial order for 5 separate recordings, each
lasting approximately 20 s. Bottom (continuous line), their running mean averaged over the duration
indicated by the arrow at the left (bar = 10 intervals; plots moved 50 ms down for clarity). A, B and C
are from the same unit, when it was firing fairly steadily at 3 different mean rates; the subject was trying
to make the unit fire faster in A, but B and C were obtained about 40 s apart in a single recording period.
D shows a brief slowing of the discharge of the same unit during another recording period; the change
was rapid, thus reducing the reliability of the running mean as a measure of the on-going synaptic drive.
E shows a gradual slowing of another unit, during which the running mean should have remained
effective. A-D, brachioradialis; E, soleus. No intervals removed by cleaning.
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because the eye is unduly sensitive to the statistical
variation in the size of the vertical steps. With higher firing
rates, the interval histogram often approximated to a
Gaussian distribution. However, this always provided a
poor fit for low firing frequencies. In Fig. 2 the means of
the two histograms are appreciably larger than either of
their modes (ADM, 111i5 ms vs. 90-95 ms; soleus, 171P4 ms
vs. 155-160 ms) or their medians (103-5 ms and 166-5 ms,
for data grouped in 1 ms bins). This shows that both
histograms have a positive skew, as was confirmed by
measurement of their skew coefficients (1-4 for ADM, 1 1
for soleus).

The centre plots of Fig. 2 show the same data transformed
to provide a clearer demonstration that the last part of the
histograms was exponential, and pave the way for the
analysis of the motoneurone AHP. They are on a semi-log
scale and show the percentage of the total number of
intervals that were greater than the bin interval in
question; each value is plotted as a single point at the end
of the bin rather than as a histogram. In this representation
the points for the falling phases of the histograms lie on a
straight line, indicating an exponential decay. The inter-
pretation of such plots is simplified by considering their
familiar application to the statistics of human mortality
(cf. Hill, 1961). They give the survival function of a

J Physiol.492.2

population, showing the percentage of the original cohort
that has remained alive to any given age; an exponential
decay shows that a constant proportion of the survivors are
dying per unit time. In the present case, each member of
the population is an interval; one is born after every spike
and continues to live until the next spike destroys it.
Attention is focused on the interval rather than the spike.

Taking any particular age in a human population, the
probability of one of the remaining survivors dying in the
next year can be obtained from the slope of the semi-log
plots. An equivalent interval death rate was computed
point by point for the present data to give the graphs on
the right-hand side of Fig. 2 (each point is derived from an
adjacent pair of survival values and refers to the mid-point
of one of the original bins). The probability of an interval
'dying' within a given period is, of course, the same as that
of a spike occurring; the ordinary interval histogram gives
the ages at death of the various intervals. The utility of
such derivations of the simple interval histogram has long
been recognized (Goldberg et al. 1964; Moore et at. 1966).

After an initial approximately linear increase the death
rate plots of Fig. 2 terminated in a constant plateau, with
the probability of dying remaining approximately constant
over the last part of the distribution. In other words, once a
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Figure 2. Interval histograms with exponential tails
Three different representations of the distribution of the interspike intervals during slow tonic firing of
two different motor units, one in soleus and the other in abductor digiti minimi (ADM). The plots
collectively demonstrate that the last part of the distribution is an exponential. Left, conventional interval
histogram showing the percentage of intervals falling into a series of 5 ms bins; the arrows mark the start
of the exponential decay. Both histograms are positively skewed. Centre, log plot of the number of
intervals 'surviving' at the end of each 5 ms bin (i.e. the number of intervals greater than the stated value,
expressed as a percentage of the total number of intervals; this was converted to its natural logarithm (ln)
with a cut-off at 1-2 %). The points for the period of exponential decay lie on a straight line. Right, the
death rate of the intervals which have survived up to a given time, expressed as the percentage of the
survivors dying per millisecond (i.e. the slope of the survival plot computed for each successive pair of
points). The death rate rises to an approximate plateau, corresponding to the exponential tail of the
histogram. Both units were firing at the bottom of their frequency range (ADM, 9 0 Hz; soleus, 5 8 Hz)
with appreciable interspike variability (coefficients of variation: ADM, 34%; soleus, 17 %). 9181 intervals
used for ADM and 32101 for soleus after removing 139 stray intervals below 30 ms for ADM (1 f4%) and
296 below 90 ms for soleus (0 9 %), see Methods; intervals over 300 ms also discarded.
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certain critical interval was reached, the probability of a
spike being discharged in the next 5 ms stopped increasing
and settled at a constant plateau value. Excitation, with
the termination of the interval, was then essentially a
random process, presumably due to the noise produced in
the motoneurone by continuous synaptic bombardment. As a
corollary, the motoneurone would appear to have recovered
from its previous spike, with its mean depolarization
constant. Forty-two per cent of the ADM spikes and 26%
of the soleus spikes occurred during the plateau, and so
were due solely to noise. The final death rate was slightly
lower for ADM than for soleus (3 vs. 4% of intervals
terminated per millisecond), allowing its plateau to last
longer (i.e. until the majority of intervals had died); in
other words, the histogram for ADM had a more prolonged
exponential tail. However, the chief difference between
the two units was in the timing of the ramp phase of
increasing death rate; the two slopes were much the same,
but the ramp for ADM started over 50 ms earlier, suggesting
a considerable difference in the speed of their recovery
following a spike.

Reduction of exponential tail with increasing firing
rate
On a number of occasions the subject was able to regulate
the frequency at which a given unit was firing while
maintaining stable recording without undue interference
from other units (for 8 units, the mean firing rate was
changed by 2 Hz or above, and for another 4 units by
1 4-2 Hz). Figure 3 shows a typical pair of the resulting
interval histograms (left), together with their survival and
death rate plots. As was usual, increasing the firing rate
reduced the duration of the exponential tail. The plateau in
the probability plot was raised and shortened but the time

at which it began was relatively unaffected; the preceding
'ramp' became steeper with relatively little reduction in its
time of onset. Related to all this, the proportion of spikes
contributing to the exponential tail decreased as the firing
rate increased; in Fig. 3 the proportion fell from 33 to 22 %.
The interspike variability also decreased, but the histogram
remained positively skewed (the coefficient of variation fell
from 27 to 19%, with skews of 1f6 and 1-5). The death rate
plots in Fig. 3, for the same unit firing at two different
rates (8 and 10 Hz), contrast with those of Fig. 2 for two
different units with a somewhat similar difference in firing
frequency (6 and 9 Hz); varying the firing rate of a unit
has a large effect on the final plateau death rate and a small
effect on the timing of the ramp of increasing death rate,
rather than vice versa as in Fig. 2. Thus the form of the
distribution depends upon the properties of the individual
motoneurone as well as on the absolute frequency of
discharge.

Distributions of subpopulations with different central
drive
The data shown so far comprised nearly all of the spikes
discharged within a given recording period normally
lasting well over 10 min. Many thousands of spikes were
collected for each unit to provide a reasonable absolute
number of long intervals for measurements on the crucial
tail of the histogram, which contains relatively few spikes
per bin. The subjects did their best to hold the mean firing
rate constant throughout, but were never completely
successful (see Fig. 1). Thus the plots in Figs 2 and 3
compound the moment-to-moment variation in the
interspike interval, with the effects of any slower changes
in the on-going mean firing rate due to variation in the
level of central synaptic drive. This limits the accuracy of
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the analysis, since in statistical terms the population
studied was non-stationary. The situation was improved by
slicing the spike train into subpopulations for different on-
going mean frequencies of firing. As described in Methods,
this was achieved by calculating the local running value of
the mean frequency as it varied with time (mean measured
over 10 intervals centred on each interval in turn but not
including the interval itself). The local mean firing rate was
then used to allocate each spike to a subpopulation of
intervals, all of which had occurred when the immediate
value of the mean frequency fell within the desired range;
this approximately corresponds to selecting spikes
discharged at a given level of central drive. Such slicing was
not perfect, but it did not create false order out of random
variation (see below).

The slicing was partly used to improve the homogeneity of
the main interval distribution by removing spikes occurring
when the mean central drive happened to be at one or other
of its extremes (cf. Fig. 5). More importantly, it was
systematically used to select various subpopulations of
spikes for different firing rates occurring in the course of a
single recording period. This permitted a much fuller study
than could be achieved by asking the subject to vary his
drive voluntarily. Figure 4 shows an original distribution
based on some 30 min of recording (top), together with the
results obtained by slicing the spike train into three separate
frequency bands (bottom). Increasing firing rate was
associated with the interrelated changes seen in Fig. 3 on
deliberately varying the central drive. The final death rate
increased with the firing rate and the duration of the
plateau decreased, while the timing of the ramp leading up
to the plateau was relatively unaffected. Such changes
were regularly observed on slicing a spike train that
might initially have appeared to be homogeneous. In this
experiment, the death rate plot of the original recording
failed to show a plateau and sagged after an initial peak;
likewise the final part of its survival plot is curved,
suggesting that it represents the sum of more than one
exponential. Such effects inevitably occur on compounding
subpopulations with appreciably different final death rates
(cf. Fig. 6).
Reliability of slicing. The effectivenesss of the slicing
requires examination, since it underpins the ensuing
analysis of the recovery cycle of the discharging moto-
neurone. Such analyses inevitably require some such
filtering of the raw spike train since some fluctuation in
central synaptic drive and mean firing rate is inescapable
during a prolonged voluntary contraction, however well-
trained the subject. The criteria for creating a homogeneous
slice could easily have been extended, but no procedure can
ever fully correct for such untoward changes. It seemed best
to err on the side of simplicity and use just the mean firing
rate measured over approximately 1 s.

The present determination of the mean firing rate is subject
to two types of error that limit its reliability as a measure

of the central synaptic drive acting upon the motoneurone,
moment by moment. First, the drive will sometimes change
in the course of the period over which it is being measured;
the more slowly such changes occur, the less the error.
Second, even when the drive is constant, the inherent
variability of the interval distribution means that the
measurements of drive will also be subject to statistical
fluctuation; this must cause some spikes to be allocated to
the wrong frequency band.

These errors cannot easily be quantified or corrected.
However, three observations show that, on average, the
slicing was separating genuine subpopulations of intervals
with different levels of central drive. First, as shown in
Fig. 4, the slicing regularly separated subpopulations with
different interval distributions and mean frequencies.
Second, when the mean frequency of a sliced subpopulation
was compared with the mean value of the running mean
for each of its constituent spikes, the values agreed closely
(normally within 0.1 Hz); this would not occur if the
variations in the running mean were simply due to random
accumulations of the moment-to-moment variability of the
interspike intervals. However, such statistical variation
must have affected the slicing, and any deviations between
the means tended to occur for slices whose drive was at one
or other extreme of the population studied (the mean of the
sliced subpopulation then lay very slightly closer towards
the mean of the whole population than did the mean of its
drive frequencies). Third, a significant positive correlation
was regularly observed between the values of nearby
interspike intervals when the first ten serial correlation
coefficients were computed for the whole of the original
population, confirming that the firing rate drifted during
the recordings.

The correlation coefficients were usually in the range +0-1 to +0 3;
the ten successive values tended to show a progressive slight
decline. However, particularly for higher firing rates, the first
coefficient was sometimes appreciably lower than the immediately
subsequent values, suggesting that short intervals tended to be
followed by long intervals, and vice versa. For example, in one
extreme case the coefficients were 0 03, 0 24, 0-19, 0-19, 0-15,
0-15, 0-16, 0-16, 0-11 and 0O13 (biceps unit with 2891 spikes firing
at 11-7 Hz), while in another case at the other extreme they were
0 37, 0-38, 0 33, 0-29, 0 30, 0-27, 0-26, 0-25, 0-25 and 0-23
(brachioradialis unit with 11907 spikes firing at 11 1 Hz). In a
more typical example, the coefficients were 0-25, 0-28, 0-23, 0-17,
0 19, 0 16, 0 16, 0 17, 0 17 and 0 13 (brachioradialis unit with
3406 spikes firing at 9-1 Hz). A frankly negative first coefficient
has been occasionally seen by others (Person & Kudina, 1972;
Kranz & Baumgartner, 1974) and attributed to the summation of
the AHPs produced by successive spikes, as observed with intra-
cellular recording (Ito & Oshima, 1962). This must have slightly
influenced the slicing, but does not merit further consideration.

The trajectory of the motoneurone membrane
potential during the interspike interval
At low firing rates, the interval death rate becomes constant,
showing that the spikes are being triggered purely by
synaptic noise rather than by a continued change in
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membrane potential. Moreover, the membrane potential
may be suspected as having become stabilized well below
threshold; if it were above, the death rate would be very
high and the interval histogram would end abruptly rather
than in a gentle exponential decay. For subthreshold
potentials, the closer the potential gets to threshold the
greater becomes the probability that noise will trigger a
spike in the next unit of time. For each particular noise
level, there will be a one-to-one relation between the two
variables, potential and probability; increasing the noise

605

will lead to more excitation at a given potential. Given the
appropriate relation, the potential, in millivolts, can be
deduced from the interval death rate. Likewise, once an
equation is obtained, the whole death rate plot can be
transformed to give the trajectory of recovery of the
membrane potential in the last part of the interspike
interval. No analytical solution was available to provide the
transform so it was determined by computer modelling, as
described in the Appendix, with the result shown in
Fig. 13. In essence, potential was obtained from probability
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Figure 4. Subpopulations with different firing rates sliced from a single recording
The top plots, in the same format as Fig. 2, show the interval distribution for a brachioradialis
motoneurone firing at an overall mean rate of 9-8 Hz. However, when measured second by second, the
rate varied slightly during the recording. Three separate subpopulations of intervals were separated,
depending upon the current short-term firing rate (above 10 Hz, 8-10 Hz, below 8 Hz). The bottom plots
show their distributions; the differences parallel those seen in Fig. 3 on deliberately varying the firing
rate, with the final death rate decreasing and the variability increasing with the reduction of firing rate.
From left to right, the coefficients of variation of subpopulations were 13, 16 and 24 %, respectively. The
slight departure of the final part of the top distribution from an exponential (seen especially in the death
rate) is attributed to its compounding slightly differing subdistributions. (The whole population comprised
19724 intervals after removing 36 stray intervals below 50 ms, or 0- 2 %; its mean firing rate was 9-8 Hz,
with a coefficient of variation of 18%. The subpopulations had mean firing rates of 10-6, 9.3 and 7-6 Hz,
and comprised 9346, 9452 and 926 intervals, respectively.)
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606 P B. C. Matthews

by fitting a curve to the experimental points given by the
model motoneurone; the sum of two exponentials was used
since this provided a convenient arbitrary function for
routine use. Since the level of synaptic noise is inevitably
an unknown, the trajectory cannot be determined directly
in millivolts; it was thus scaled in 'noise units', equal to the
standard deviation of the on-going synaptic noise in
millivolts. Moreover, all values have to be expressed relative

J Physiol.492.2

to the firing threshold rather than to zero millivolts. The
modelling used time-smoothed Gaussian noise, as found
by Calvin & Stevens (1968) with intracellular recording,
and took their value of 4 ms for the smoothing. This
corresponds to the membrane time constant, and changing
its value slightly changes the transform. The simplest
possible model was used, with all variables expressed in
terms of deviation of membrane potential from a constant
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Figure 5. Post-spike membrane potential trajectories derived from interval histograms
The trajectories (top) were determined by applying the transform of Fig. 13 to the interval death rates
shown below (+); this gives a value for the membrane potential scaled in terms of the standard deviation
of the on-going synaptic noise (= 1 noise unit). The values are all referred to the threshold for spike
initiation; negative values correspond to hyperpolarization. The motor units were firing near the bottom
of their frequency range, with appreciable coefficients of variation (biceps, 20%; soleus, 17%). The
trajectory of the post-spike AHP then decays to an equilibrium well below threshold. The biceps data are

based on 16933 intervals recorded while the unit was firing in the range 7 5-11 Hz and the soleus data
are based on 27 085 intervals during firing at 5-7 5 Hz; these were sliced subpopulations comprising the
majority of the original populations (85 and 89%, see Fig. 4). The slicing improved the homogeneity of
the data by removing short periods of unduly low- or high-frequency firing; the mean frequencies
of firing of the slices (9-2 and 6 2 Hz) were within 0-1 Hz of the original values. A negligible number of
extraneous spikes were removed from the original populations (biceps, 2 below 50 ms or 0 01 %; soleus,
165 below 80 ms or 0 5%). Voltages below -2-5 noise units were not determined, since the estimates
became unreliable (corresponding death rates below 0 4%); the computation of the death rates, and thus
of the trajectories, was terminated when the number of surviving intervals fell below 2% of the initial
number.
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Firing trajectories of human motoneurones

threshold; membrane conductance changes and capacitance
were ignored. The present 'physiologically' determined
trajectories are thus potentially slightly distorted, as
discussed later.

The top plots of Fig. 5 show such computed trajectories for
two further motoneurones, again firing at the bottom of
their frequency range. In each case, the potential traverses
a smooth curve which comes to equilibrium slightly more
than 1 noise standard deviation below threshold. The
equilibrium potential may be presumed to correspond to
the net potential resulting from the leak conductance that
produces the resting potential and the effective synaptic
currents that reach the soma. Moreover, the curves
resemble the final decay of the AHP recorded intra-
cellularly following a spike. The death rate plots, used to
deduce the trajectories, are shown at the bottom of Fig. 5
and help illustrate the effects of the transform. The most
relevant difference between the plots is that the top of the
approximately linear ramp in the probability plots has
been converted into a curve in the membrane potential
trajectory; as the probability of a spike increases, the
transform converts a given increment in probability into
progressively smaller increases in potential. Likewise, the
transform smooths out the noise in the plateau of the
probability plot. This is all more simply expressed in terms
of the real cause and effect relation, namely that between
the membrane potential and the probability of firing. The
closer the potential gets to threshold, the more rapidly the
probability increases (corresponding to the rising limb of a
Gaussian distribution), and a given change in potential
produces an ever larger increase in probability.

Distortion of trajectory on mixing disparate
populations
The precise curvature of the last part of a trajectory
estimated from the interval data can be considerably
influenced by any admixture of populations with different
mean frequencies. This is important, because it affects the
numerical values required to fit an equation to a trajectory
for comparison with real AHPs. The nature of the
distortion must be considered in detail so as to establish
which parts of the trajectory can be relied upon, and which
parts discounted; without this, analysis of the AHP
becomes impossible. Some admixture will always be
present for human recordings, even after slicing a spike
train into components with different firing rates.

The distortion is illustrated in Fig. 6; its principal feature is
a sharpening of the angle of approach of the trajectory to
its final equilibrium, as shown by the curve joining the
open circles, bottom right. For clarity of illustration the
'pure' populations of intervals were synthesized by using a
model motoneurone with an exponential trajectory (see
later), but the distortions occur equally for natural
populations of intervals. Subpopulations for different firing
rates will then shade into each other, and a slice for a given
frequency will be contaminated by outliers from either side.

In essence, in the presence of a limited amount of
'contamination' of a population by those of other
frequencies, the initial rising phase of the trajectory
remains a reasonable indicator of the form of the AHP,
while a sharp curve preceding the final plateau is
potentially misleading. Moreover, any sag of the trajectory
from an initial peak is probably artefactual, and also any
short plateau following an abrupt angulation. However, a
plateau in the death rate plots for relatively impure
populations like those of Figs 1-4 is meaningful, and does
show that during low-frequency firing the membrane
potential comes to equilibrium well below spike threshold.
The precise level measured will be that for the lowest
frequency periods of discharge, and any periods of
discharge at high frequency will have been without effect
on this portion of the trajectory. A fuller description is
given below.

The distortion explained. The plots on the left of Fig. 6
show the data for the two pure subpopulations with different
mean frequencies, which were mixed; the trajectories were
computed from the histograms with the usual transform,
which successfully recovered the exponentials used as the
starting point. The thick plots on the right show the
properties of the impure population produced by amal-
gamating the two subpopulations. It is matched against a
pure population of similar frequency (which was actually
chosen so that its trajectory had an equilibrium value half-
way between those of the two subpopulations). The mixed
histogram starts before the one for the pure population and
ends later; this is to be expected, since it contains both an
excess of short intervals derived from the 9-8 Hz sub-
population, and an excess of long intervals from the 7 Hz
subpopulation.

The mixed trajectory reflects its origins and differs from its
companion pure curve in three principal ways: first, it starts
slightly earlier; second, it comes to a lower final equilibrium; third,
the smooth exponential of the individual distributions is
transmuted into a much sharper curve and the final equilibrium
appears to be stably achieved much earlier. With subpopulations of
more widely separated frequency, the mixed trajectory sags back
from an initial peak as in Fig. 4, and may approach a final
equilibrium from above. In all such compounding of disparate
populations, the initial part of the mixed trajectory largely
reflects that of the high-frequency subpopulation, while its final
tail approximates to that of the low-frequency subpopulation.
The sharp curve of the mixed trajectory occurs as the relative
importance of the contributions from the two subpopulations
becomes reversed.

There is a major difference in the contributions provided by the
two subpopulations, which prevents the mixed trajectory being
simply an arithmetic mean of the two original trajectories; it arises
because computation of the interval death rate (and with it the
trajectory) depends only on the survivors at a given interval since
a spike. The rising phase of the trajectory is relatively close to a
weighted arithmetic mean of the subtrajectories (all intervals
contribute to its determination, with most deaths from the high-
frequency population), but the final part of the mixed trajectory is
virtually the same as the low-frequency trajectory (since nearly all
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the long intervals came from the low-frequency subpopulation). In
Fig. 6, for example, the mixed trajectory comes to the same

equilibrium as the 7 Hz trajectory. In the example shown, the two
initial populations contained the same number of impulses. The
same principles apply when a pure population is contaminated by
a smaller number of outliers from populations with different firing
rates; again, the curvature of the trajectory tends to be sharpened
and there may be a short plateau lying well below that for the
main population.

Trajectories for different firing rates
Figure 7 shows a systematic analysis of the effect of the
firing rate on the form of the trajectory for a pair of
motoneurones that could be studied in particular detail,
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with over 90000 spikes recorded from each. The different
firing rates were obtained by a combination of varying the
level of voluntary drive and slicing the resulting populations
of different frequency into further subpopulations, as

detailed in the legend; Fig. 5 shows part of the same data
without significant slicing. The individual trajectories were

terminated when they became irregular or if they began to
sag, since this was probably due to residual contamination
of the purity of the slice (see above). The underlying
interval histogram was normally over 95% complete when
a trajectory was terminated, so only a very small part of
its final tail was ignored. The short stubs at the end of some
of the trajectories remain somewhat suspect; much greater
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Figure 6. Effect of mixing populations with different means
Top, interval histograms for 4 separate populations of intervals. Bottom, their underlying trajectories,
determined as for Fig. 5 from the interval histograms. The mixed population on the right was obtained by
combining the two pure populations of intervals shown on the left; the pure population on the right has
approximately the same mean firing rate as the mixed population (8-4 v8. 8-1 Hz). The trajectory of the
mixed population reached its final equilibrium more rapidly than those of the pure populations, which all
approached it exponentially. The flattening and other differences have been highlighted by using synthetic
populations of intervals (computed as in Fig. 11); mixing natural populations had similar effects. (The
parameters of the model were the same as in Fig. 11; the levels of drive for the pure populations were

-0 5, -1 0 and -15 noise units. From left to right, the means of the interval histograms were 102, 144,
123 and 119 ms with coefficients of variation of 18, 27, 30 and 22%. The trajectories end when 98% of
the intervals have occurred.)
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Firing trajectories of human motoneurones

reliance can be placed on the shape of the rising phase,
since far more spikes contributed to its determination.

Both units showed the same typical changes in the shape of
the trajectory as the mean firing rate increased, but on a
different absolute time scale. When the unit was firing at the
bottom of its range, the trajectory came up to a long plateau,
stabilizing well below threshold as in Fig. 5. As the firing
rate increased the plateau became shorter and lay closer to
threshold, while the initial part of the trajectory became
appreciably steeper as well as starting somewhat earlier
(i.e. reaching the threshold for detection of approximately
2f6 noise units). At the highest frequencies, a clear plateau
never developed and the trajectory terminated in the
region of threshold. It should be noted, however, that a
potential plateau near, and especially above, threshold
would normally be unable to display itself, because the
underlying probability of firing becomes so high that
virtually all intervals would have been terminated by a
spike appreciably earlier; to obtain a reasonable number of
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long intervals against huge statistical odds would require an
unduly long recording, and any plateau would be greatly at
risk of distortion by a small degree of admixture with
lower-frequency discharges. What matters is that the main
part of the trajectory invariably became steeper with
increase in firing rate, since this has been a matter of
debate (Nordstrom et al. 1992; Warren et al. 1993);
moreover, this could not have been produced artefactually
by any residual mixing of populations with different firing
rates.

Estimating the AHP by combining the individual
trajectories
Figure 8 combines the trajectories of Fig. 7 to provide an
estimate of the last part of the AHPs of the two moto-
neurones. These compound trajectories have been produced
by shifting the individual trajectories vertically along the
voltage axis so as to superimpose them upon a common
curve; attention was focused on their rising phases, since
these are least prone to error. The various trajectories then
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Figure 7. Family of trajectories for different firing rates
The trajectory of the post-spike membrane voltage was determined, as in Fig. 5, for a series of
subpopulations with different on-going mean frequencies of firing (value in Hz shown next to each
trajectory). The higher the frequency, the steeper the initial part of the trajectory and the shorter and
higher any period of final equilibrium. The range of frequencies was obtained partly by varying the level
of voluntary drive to produce 3 separate populations of intervals for each unit, with different mean firing
rates (separate symbols); these were then subdivided according to the on-going mean firing rate,
measured second by second as in Fig. 4 (comparable subpopulations for the different levels of voluntary
drive were very similar, but were not combined). The absolute value of a noise unit in millivolts was
probably slightly different for each trajectory, but without affecting the overall picture. The original
populations had mean rates of 12'5, 10 1 and 8-8 Hz for biceps and of 8-0, 7.5 and 6-3 Hz for soleus; the
proportion of stray spikes that had to be removed increased with the firing frequency of each unit (values
of 0 04, 1P5 and 6-4% for biceps; 0 5, 0 7 and 3-3% for soleus). All trajectories were based on over 4000
intervals, after strays removed, except for those for 14-4 Hz for biceps (n = 1963) and for 9-1 Hz for soleus
(n = 3336); in toto, the trajectories shown use the measurements on 41 682 intervals for biceps and 47 629
intervals for soleus. Each trajectory includes data for on-going frequencies spanning a range of about
1 Hz, without overlap (the ranges, expressed as an interval in milliseconds, were 60-70, 75-80, 80-90,
90-100, 100-110, 110-130 and 130-165 for biceps, and 100-112, 112-120, 120-130, 130-145,
145-160, 160-180 and 180-220 for soleus). Eleven of the 14 trajectories plotted used over 95% of the
spikes in their subpopulation before being terminated. The remaining 3 used just over 90% (plots for 5 9,
6-5 and 14-4 Hz); they were shortened because they began to sag (cf. Figs 4 and 6). Same units as in Fig. 5.
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fell remarkably well into register, providing an empirical
demonstration that they represent overlapping segments
taken from a more fundamental basic trajectory and then
displaced by varied amounts. Shifting them along the
horizontal axis does not produce effective superposition,
merely a fan of separate curves. The basic curve underlying
the compound trajectory is suggested as corresponding to
the waveform of the AHP of the motoneurone. Explanation
of this hypothesis, together with the rationale for the
vertical shift, provide an essential prelude to further
analysis of the data.

The locus and shape of each of the individual trajectories of
Fig. 7 will depend both upon the level of synaptic drive,
which will increase progressively with firing rate, and upon
the time course of the underlying AHP, which should be
invariant for each unit. If the situation is simplified by
ignoring the conductances and assuming linear summation
of voltages, then each trajectory is simply the sum of the
mean synaptic depolarization and the AHP; every
trajectory will then reproduce the form of the AHP, but
at a different vertical locus. However, any one individual
trajectory obtained by interval analysis will only display a
short segment of the full AHP, different for each firing
rate, since each interval histogram spans a limited range.
Initially, the membrane potential is too far from threshold
for the noise to trigger spikes, and no information is
obtained; next, the potential comes within range of

Biceps unit

threshold, noise-induced firing occurs and the trajectory
can be determined; finally, as threshold is neared, the noise
will have excited a spike on almost every occasion and the
trajectory is terminated, even though the motoneurone has
not fully recovered and the AHP remains incomplete. Thus
an appreciable part of the AHP can be estimated by
superimposing the individual trajectories after shifting
them vertically; the range spanned is then much greater
than for an individual trajectory. This also assumes that the
absolute size of the noise unit remains approximately
constant with the changing drive (see Appendix).

The amount by which each trajectory requires to be shifted
corresponds to the mean depolarization produced by the
synaptic drive associated with the trajectory; each
trajectory is based on a period of discharge with a different
firing rate and a different underlying synaptic drive. The
initial rapidly rising phase of the AHP is derived from
slices with a high firing rate associated with considerable
depolarization; the final gentle curve is based on slices with a
low firing rate and relatively weak synaptic depolarization.
Estimated this way, the synaptic depolarization differed by
3-4 noise units between the extreme trajectories of Fig. 7.
The individual values are plotted in Fig. 12.

Shape of curve. The curve fitted to the estimated AHPs is
a simple exponential. It provides a close fit to the points for
the rapid rising phase of each of the individual trajectories;
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Figure 8. Compound trajectories representing AHPs produced by combining a family of
individual trajectories
The trajectories of Fig. 7 have been compounded to give a fuller estimate of the time course of the post-
spike AHP of each motor unit. Taking the lowest trajectory as the reference, the next upwards trajectory
was shifted down, along the voltage axis, until the rising parts of the two trajectories superimposed. The
superimposed pair then became the new reference and the next trajectory was shifted into
correspondence, and so on. This is suggested as corresponding to adding a hyperpolarization to each
individual trajectory and so counteracting the depolarization produced by the greater synaptic drive
responsible for increasing the firing rate; it is assumed that the absolute value of the noise unit remains
approximately constant. Each individual trajectory has a separate symbol, except for those at the two
extremes; every original point has been included. The curves are simple exponentials; their equilibrium
value is deliberately slightly above the experimental points for long intervals (cf. Fig. 6). The time
constant is longer for soleus than for biceps (41 vs. 29 ms).
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this is their most meaningful portion since it is least affected
by any inhomogeneity in the underlying population of
intervals. An exponential was used for two quite different
reasons. First, it provided a good empirical fit to the data.
Second, it is theoretically appropriate because the increased
conductance responsible for the AHP decays exponentially
(Kernell, 1968).

The last few points of several of the trajectories fall below
the curve. This is likely to have been due to a slight residual
inhomogeneity, and so has been neglected. Likewise, the
terminal part of the lowest-frequency trajectory for each
unit (0) was also discounted, and the exponential allowed to
come to equilibrium at a slightly higher level in accordance
with the shape of the earlier part of the compound
trajectory. This compensates for the type of distortion
shown in grosser form in Fig. 6. (The exponential was fitted
to the data with an optimizing procedure which varied
each of its three parameters - starting level, time constant,
final level - and ignored the final tail.)

Comparison of AHPs of different motor units
The AHPs of the two units of Fig. 8 differ markedly in their
time course; the soleus AHP is an approximate version of
the biceps AHP, but delayed by some 50 ms. The para-

meters of the fitted exponential provide a convenient way

of characterizing the AHPs more fully. The final equilibrium
values shown in Fig. 8 have no significance; they simply
depend upon the lowest firing rate that happened to be
studied, since it was this which provided the reference for
shifting the other trajectories. As a description of the AHP,
the curve has to be bodily shifted to come to equilibrium at
zero. The two remaining parameters are the time constant
and the initial amplitude; both were greater for the soleus
unit, with completely different types of implication (time
constants, 29 and 41 ms; amplitudes, 24 and 50 noise units).
The time constant can be taken to be that of the underlying
conductance change; this is known to be exponential, with
a time constant varying between motoneurones (Baldissera
& Gustafsson, 1974a). The amplitude, however, is measured
in noise units, not millivolts, and the difference between
the two motor units seems more likely to be due to a

difference in their synaptic noise rather than in the
absolute size of their AHPs; the measurements thus suggest
that the biceps unit had appreciably more synaptic noise
than the soleus unit. It should immediately be emphasized
that the amplitude measurement is relatively inaccurate; a

small error in the value of the time constant is associated
with a relatively large error in the value of the amplitude,
since an exponential relation is being fitted to the data and
there are no points near the origin. When the time constant
is falsely taken to be slightly below its true value (as from a

slight artefactual sharpening of the curvature of the
trajectory), then the amplitude of the AHP becomes unduly
large to enable the curve to fit the measured points.

Figure 9 shows the range of the AHPs observed, estimated
in the same way as those in Fig. 8; each has been fitted

with an exponential, and shifted vertically to bring the
equilibrium to zero. With one exception (right-hand graph;
FDI, *) they form a single family of curves moving
progressively to the right, with an approximately regular
increase in their time constants in the range 20-40 ms and
with comparable initial values in the range 30-100 noise
units (see legend). Their progression is emphasized more by
their lack of overlap than by the precise numerical values of
their two parameters, which may be mutually in error. Such
consistency between units confirms that the trajectories
extracted by the present analysis are physiologically sig-
nificant, and reflect meaningful features of the interval
distribution.

The exceptionally flat trajectory in Fig. 9 (right-hand
graph) had a very long time constant (50 ms) and a very
small initial value (8 noise units); this suggests that it was
for a small, slow motoneurone with a very high level of
synaptic noise. One other flat trajectory was observed among
the twenty-one further compound trajectories obtained by
superimposing the individual trajectories of other moto-
neurones; these otherwise lay close to one or other of those
already shown. It was for the only ADM motor unit studied
(time constant, 36 ms; initial size, 12 noise units). Both the
unusual motoneurones supplied intrinsic hand muscles,
whose motoneurones are thought to receive a particularly
powerful input from individual corticospinal fibres; this
may have been responsible for their high noise level, but
very high levels were not invariable for such motoneurones
- four other FDI motoneurones had typical trajectories
(cf. Fig. 9; left-hand graph, cl). In contrast, soleus moto-
neurones tended to have rather low noise levels as judged by
their AHPs, being relatively large when expressed in noise
units (Fig. 8 values, 74 and 97 noise units). This might
reflect a paucity of corticomotoneuronal input. More
importantly, the time constant for soleus motoneurones was
regularly greater than average, as in Fig. 9.

Discharge variability of motoneurones with different
AHPs firing at the same rate
In mathematical terms, the trajectory deduced from the
spike discharge is simply a transformation of the interval
histogram data and displays the same information in
condensed form. Thus, for any given mean frequency of
firing, units with similar AHPs and noise levels should
produce similar interval histograms, as was regularly
observed. In contrast, the fine patterning of the discharge
should be quite different when motoneurones with different
AHPs happened to be firing at the same mean rate. Figure
10 extends earlier observations (Tokizane & Shimazu, 1964)
showing that there is no one standard interval histogram
for a given firing rate applicable to all motoneurones.

The first three pairs of histograms in Fig. 10 are for the two
units whose rather different AHPs are shown in Fig. 8;
both fired part of the time at about 8 Hz, so suitable
populations for comparison could be selected by slicing. The
soleus unit was being excited early in its AHP, so showed
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rather little variability; in contrast, the biceps unit was
being excited at the end of its AHP and the variability was
high. When the soleus unit was firing at 8-5 Hz, the mode
of its histogram was approximately the same as that for the
biceps unit firing at 8 0 Hz. When their mean firing was
matched, the soleus modal value was the greater. In both
cases, in comparison with the soleus unit, the biceps unit
fired an excess of both short and long intervals and the
coefficient of variation of its discharge was twice as great.
However, when biceps was driven to fire early in its AHP,
its discharge variability decreased, and when soleus was
excited late in its AHP, its variability increased; the
relative values of their coefficients of variation were then
reversed. The final pair of histograms compares the soleus
unit with the one unit from ADM noted above; again, the
soleus unit shows much less variability. Detailed examination
of the trajectories for these various units showed that the
similarities between the two sets of comparisons arose for
different reasons. The biceps unit fired less regularly than
the soleus unit largely because the time constant of its AHP
was shorter, while the ADM unit fired so irregularly largely
because it had a very high level of synaptic noise. This
emphasizes that highly variable discharges occur through
some combination of the firing rate being low enough for
the AHP to be largely complete, and the noise level being

Typical trajectories

high enough to bring an appreciable part of the trajectory
within range of threshold.

Interval histograms for an exponential trajectory
The calibration between probability and voltage used above
can equally be run in reverse from voltage to probability,
starting with a truly exponential trajectory and finishing
with an interval histogram. This both supports the earlier
analysis and shows how variations in the noise and the
AHP affect the histogram's shape. Figure 11 displays a
series of such synthetic histograms for a motoneurone
subjected to successively less synaptic drive, together with
the strictly exponential trajectories used as the input. The
histograms closely resemble those for real motor units. In
particular, the histograms develop a tail and become much
more positively skewed as the mean firing rate decreases.
Their standard deviation also obviously increases. Figure 11
also emphasizes that each histogram derives from a variable
segment of the full AHP (shown as a continuous line). At
shorter times, the membrane potential is too far from
threshold for the noise fluctuations to be able to trigger a
spike. At longer times (shown as a dashed line), the
trajectory potentially continues with the AHP unfinished,
but the histogram is complete as the cumulative probability
of a spike having been discharged verges on 100%.

Unusual flat trajectory
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Figure 9. AHPs for a range of motor units
Each curve shows the last part of the AHP of a separate motor unit, estimated as in Fig. 8 and labelled
with its muscle of origin. With one exception (right-hand graph, FDI), they form a regular series moving
progressively to the right, and with their time constants tending to decrease. Bi, biceps; FDI, first dorsal
interosseus; Br, brachioradialis; TA, tibialis anterior; Sol, soleus; FCR, flexor carpi radialis. Dashed lines,
curves of Fig. 8. Each of the 3 Br units on the left came from a different subject. The points were obtained
by measuring tracings of compound trajectories, derived by superimposing trajectories for subpopulations
with different mean frequencies. Each set of points was fitted with an exponential curve; both curve and
data were then shifted vertically to bring the final equilibrium to zero. From left to right, the time
constants for the two sets of data were 19, 24, 33, 34, 37, 39, 36 and 37 ms and 50, 24 and 34 ms (Fig. 8
values, 29 and 41 ms). The initial size of the AHPs were 60, 47, 30, 29, 36, 74 and 97 for the first set and
8, 29 and 33 for the second set, and 24 and 50 for the dashed curves (values in noise units). The illustrated
AHPs are based on 6800-71 000 spikes (median value, 16000; strays removed). Almost all the
subpopulations used contained over 1000 spikes.
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Assumptions. Four major simplifications are involved in
this modelling, paralleling those used in the Appendix to
determine the transform (essentially they all involve treating
the signals as voltages and ignoring the underlying
conductances); for the limited part of the AHP studied,
these seem likely to approximate to the complex real-life
situation. First, the central drive exciting the motoneurone
simply produces a fixed depolarization, so that increasing
the level of drive can be simulated by shifting the membrane
trajectory of the motoneurone vertically. Second, the basic
trajectory of the post-spike AHP is simulated by a voltage
that is independent of the depolarization; the slow under-
lying potassium conductance is unaffected by the voltage
(Baldissera & Gustafsson, 1974a). Third, in the range
studied, the AHP declines exponentially with time, as does
the underlying conductance (Kernell, 1968; Gustafsson &
Baldissera, 1974a) and there is no summation between
successive AHPs. Fourth, the noise remains constant
throughout, independent of the level of synaptic drive or
the stage of the AHP.

Quantitative comparisons. Figure 12 summarizes the effect
on the synthetic histograms of varying the two parameters
of the model motoneurone, namely the amount of synaptic
noise and the duration of the AHP. The 'standard' curve on
the top left shows the progressive increase of interval
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variability with increasing mean interval for a motoneurone
with an AHP time constant of 30 ms (approximately 120 ms
total duration; Kernell, 1968) and a medium amount of
noise (see legend). The two other curves show that for any
given mean interval, the variability increased both when
the noise was increased and when the duration of the AHP
was reduced (noise increased by a factor of 2-5, AHP
shortened to 20 ms). On average these produced fairly
similar increases over the range examined, but the curves
crossed, showing that the underlying relations differed.
Thus, real motoneurones whose interval histograms match
over a range of firing rates should have both the same AHP
and the same level of synaptic noise, suggesting that they
are similar both in themselves and in the type of input they
receive.

The continuous curves in the top right graph of Fig. 12 are
for the same three model motoneurones and show the way
in which the mean firing rate increases with the underlying
synaptic drive, expressed as a depolarization measured in
noise units. In all three cases, the relation was fairly closely
linear over most of the range examined, namely for drives
bringing the equilibrium depolarization to somewhere near
threshold (the slight departures at low frequencies are
partly genuine and partly due to an arbitrary cut-off of
300 ms for the maximum interval allowed; this was done to
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Figure 10. Interval histograms for motor units firing at the same mean rate but with different
AHPs
The first three sets of histograms are for the pair of units whose AHPs are shown in Fig. 8.
Subpopulations of intervals were used, for periods with an appropriate short-term on-going firing rate. In
A, the peaks of the histograms come at nearly the same place (approximately equal modal values); the
biceps unit produced more short intervals even though it was firing at a lower mean frequency. In B, the
mean rate for soleus matches that for biceps; however, the histogram of biceps spreads further in both
directions (coefficients of variation, 30% and 13%). The differences can be attributed to soleus having a

slower AHP. C confirms that such differential patterning of the discharge was not, per se, a fundamental
difference between the two motor units or their inputs, since the shapes of their histograms were reversed
when the frequency was increased for biceps and reduced for soleus (coefficients of variation, 15 and 28%).
D shows the same effects as B (coefficients of variation, 30 and 10% for the same mean firing rate), but
with the soleus unit compared with one in ADM (same unit as in Fig. 1). In this case, there was probably
an appreciable difference in the levels of synaptic noise, since the time constant of the AHP of the ADM
was only slightly shorter (36 vs. 41 ms), while its initial amplitude was considerably smaller (12 vs. 50 noise
units). All histograms are based on subpopulations with more than 3800 intervals (strays removed), except
that of biceps at 14 Hz (n = 1615); the parent populations contained 25000-32000 spikes. The on-going
firing rate for each subpopulation covered a range corresponding to 10 ms in its reciprocal, the mean

interval for 10 adjacent intervals.
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match the experimental data and produced a corresponding
effect in the variation plots). Once again, increasing the
noise and shortening the AHP had the same general effect,
namely increasing the firing rate produced by a given mean
synaptic drive, but, as with variability, the effects of
changing the two parameters were not precisely equivalent.

The comparison of the three continuous curves on the right-hand
side of Fig. 12 is complicated by the fact that the synaptic drive is
expressed in the noise units for each particular motoneurone.
Direct comparison is straightforward between the standard and
shorter AHP curves since the noise is unchanged; their abscissae
therefore have the same absolute scaling in millivolts. In contrast,
each noise unit for the 'more noise' curve corresponds to a larger
absolute potential. The dotted line rescales its central region in
terms of the noise units for the standard lower noise level,
bringing it onto the same absolute scale as the two other examples.
This shows that increasing the noise increased the firing rate
produced by a given level of synaptic depolarization (or current),
with the relation differing from that found on shortening the AHP.

A
Synaptic drive +2

25 J]

10 l
15 -

.C 10 -

6 5-z

+1

B

Comparison with particular motoneurones. The model-
ling shows that the precise relation between variability and
firing rate, and between firing rate and synaptic drive, will
vary from motoneurone to motoneurone. Real and simulated
data were therefore compared. This showed that the
experimental data for any given motor unit lay close to the
curves given by a model motoneurone, with the values of
noise and AHP that had been deduced for the real moto-
neurone. This is shown at the bottom of Fig. 12 for the two
extensively studied units of Figs 7 and 8 (same spike trains
used throughout). The agreement between the observed and
predicted patterns of variability is of particular interest,
because the standard deviations of the original interval
histograms made no direct contribution to the determination
of the AHPs used for the modelling. Similar comparisons
were made for the eleven other units of Fig. 8, when the
experimental values again lay close to the appropriate
curves predicted by the modelling, which again covered a
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Figure 11. Interval histograms for a model motoneurone with the synaptic drive varied
The model had an exponentially decaying AHP which summed linearly with the synaptic drive to give
the mean membrane potential trajectories shown below. As the drive decreased, the mean interval
increased and the histogram broadened and became skewed (the coefficient of variation was successively
13, 14, 16, 22 and 28%; the skew increased from close to zero to +0-8 for the last 2 histograms). The
dashed portions of the trajectories did not affect the firing pattern, since the histograms were then
complete, with an insignificant number of spikes at these intervals. The potential is scaled in terms of the
the standard deviation of the synaptic noise (1 noise unit), with zero corresponding to threshold for spike
initiation; the depolarizing drive is in the same noise units, with zero corresponding to the mean

excitation required to bring the final equilibrium potential to threshold. The histograms were computed
by using the Gaussian transform of Fig. 13 to convert the voltage shown in the lower graphs into the
probability of an on-going interval being terminated by a spike in the next millisecond, then performing
serial calculations from zero to determine the number of spikes discharged at each time. The AHP of the
model was set to match that of the biceps unit of Fig. 8.
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wide range of behaviour. It is concluded that, in spite of
its simplifications, the present model of motoneurone
firing combining the AHP with synaptic noise, provides a
remarkably satisfactory explanation of the varied shape of
the interval histogram.

In making the above comparisons, the observed coefficients of
variation normally lay further above the curves than those of
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Fig. 12; for any given unit, the deviation tended to increase with
the mean interval. An average value for this deviation was
obtained by taking the central value for each unit, in the middle of
its firing range, and then averaging across the eleven units. The
mean upward displacement of the experimental points
corresponded to a coefficient of variation of 3 7 + 11%
(means + S.D.). Some such discrepancy is to be expected, since the
synaptic drive will have varied slightly during collection of the
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Figure 12. Comparison of model with real data
The top graphs show the separate effects of shortening the AHP, and increasing the synaptic noise on the
response of the model to varying levels of synaptic drive (duration of AHP reduced by one third, or noise
increased 2-5 times). The curves join a series of invisible points obtained from a series of interval
histograms like those of Fig. 11. Relative to the standard, both alterations increased the mean firing rate
for a particular synaptic drive and also the variability of discharge at any given firing rate, but they
differed in their action on the underlying relationships. In the bottom graphs, the points (0) are for the
real motor units of Fig. 7 while the curves are from the model, using the AHP values for these particular
units; there is reasonable agreement. In the left-hand graphs, the coefficient of variation of the interval
histograms is plotted against their mean. In the right-hand graphs, the mean firing rate (reciprocal of
mean interval) is plotted against the amount of synaptic drive. The drive is measured in noise units (the
S.D. of noise in millivolts, assumed unaffected by the change in drive); zero is the drive that brings the
final equilibrium of the trajectory to threshold. The value of the noise unit, measured in millivolts, will be
greater for the more noise plot; the dotted line in the top right-hand graph shows the effect of rescaling its
drive in terms of the noise units of the standard, thereby making the absolute units of the abscissa the
same for all 3 plots. (In the top graphs the values for the AHPs were: time constants, 30 and 20 ms; initial
amplitudes, 50 and 20 noise units; the absolute size of the AHP in millivolts may be assumed constant, so

reducing its amplitude in noise units corresponds to increasing the noise level. For comparison, the time
constants were 29 ms for biceps and 41 ms for soleus; the initial amplitudes of their AHPs were 24 and 50
noise units, respectively.)
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experimental data for each histogram (cf. Figs 1 and 6), and a few
unduly long intervals have a disproportionate effect on the
coefficient of variation. In accordance with this view, the agreement
between the variability plots was considerably improved by
removing the last 4% of long intervals from both the real and the
synthetic histograms. The mean difference between the coefficients
of variation for these eleven units was then reduced to 1P7 + 11 %
(means + S.D.); put another way, the 'filtering' reduced the mean of
the experimentally observed coefficients of variation by over twice
as much as those of the model (by 3-4 vs. 1-4%).

DISCUSSION
The present analysis shows that noise plays a major role in
excitation during tonic firing of human motoneurones.
Thus the tonic firing produced by intracellular current
injection in the anaesthetized cat provides only a partial
model of the real-life situation; the excitatory drive is then
noise free and the post-spike voltage trajectory of the
neurone continues to rise until it reaches threshold and a
spike is initiated. In decerebrate and lightly anaesthetized
cats, however, the background synaptic noise introduces
some variability into the current-evoked discharge;
moreover, the observed interval histograms with their
slight departures from a Gaussian distribution can be
explained in terms of the noise parameters (Calvin &
Stevens, 1968). The present effects in man are much larger,
especially for low firing rates. This is to be expected, since
the tonic firing is entirely due to synaptic drive with its
inherent noisiness (in the cat data, the coefficient of
variation was only 5 %, contrasting with the present
10-30%, as in other human recordings). During low-
frequency firing, a third of the spikes may occur after the
motoneurone has recovered from the preceding spike and
be due solely to the noise, being triggered while the mean
value of the membrane potential is nearly static and well
below threshold. The deviation from threshold often
exceeded the standard deviation of the noise, which was
probably 1-5-2 mV (see later). Such noisiness is of interest
for a variety of reasons, which will be considered after
examining the validity of the analysis.

Assessment of analytical methods and modelling
The present raw material is commonplace, consisting simply
of interval histograms whose shape varied with mean
frequency in a way that has long been familiar. Two special
features of the histograms facilitated their detailed study.
First, by virtue of using surface recording they contained
an unusually large number of intervals. Second, they were
based upon relatively homogenous samples of spikes
obtained when the running mean frequency of firing fell
within certain chosen limits. The novelty lies in the
analysis, especially in the use of a transform to deduce the
trajectory voltage, necessitating a careful scrutiny of its
underlying assumptions and simplifications. The initial
stages of data transformation are simply algebraical, without
involving modelling with its attendant uncertainties. They
provide direct qualitative backing for many of the present

conclusions. The modelling was needed to provide quanti-
tative estimates. The broad picture is thus considered
secure, although the numerical details cannot be taken as
exact. The starting point was the demonstration that an
asymmetrical histogram, often simply described as a
skewed Gaussian curve, has a tail which proves to be closely
exponential once sufficient spikes are collected to smooth
out the statistical irregularities. This observation owes
nothing to modelling and suffices to show that following a
spike, the motoneurone membrane potential comes to
equilibrium appreciably below threshold when it is firing at
low frequency; but modelling is required to estimate the
magnitude of the deviation of the equilibrium potential
from threshold, with important implications (see later). The
next feature of the analysis was the algebraical trans-
formation of an ordinary interval histogram into an interval
death rate plot, giving the conditional probability of the
motoneurone discharging a spike in the next unit of time at
each time following a preceding spike. The exponential tail
of the histogram gives a constant death rate, corresponding
to the probability that noise will trigger a spike when the
mean potential is at equilibrium but below threshold.

The modelling was then introduced in order to estimate the
underlying relation between this probability and membrane
potential, thereby enabling the death rate plot to be trans-
formed into an estimate of the trajectory of membrane
voltage; this was scaled in units of the noise standard
deviation and the firing threshold was taken as zero. The
model employed physiologically appropriate values for the
noise and its behaviour did not change greatly when these
were varied; the temporal correlations within the noise
played a crucial part in determining its behaviour, in
agreement with theory (Kirkwood & Sears, 1991). Next,
the last part of the AHP was determined by combining a
number of separate trajectories for different firing
frequencies, involving yet further assumptions; the validity
of obtaining the different frequencies by slicing has been
considered in Results. Finally, the AHP was fitted with an
exponential, and the parameters of this curve fed back
into the model to produce synthetic interval histograms.
The later transformations gain their justification partly
empirically, by providing consistent results between
motoneurones, and, more significantly, by being based on
known motoneurone properties that are formalized in the
simplified model. The final validation is provided by the
ability of the modelling to predict the relation between firing
variability and mean interval for individual motoneurones
from their estimated AHP (Fig. 12); direct measurements
of variability played no part in determining the two
parameters of the AHP (amplitude and time constant).
Given its simplicity, the present model does surprisingly
well in making intuitive sense of the rich variety of
histograms found for a variety of motoneurones firing at a
variety of frequencies. The model was deliberately kept
simple and incorporated a number of assumptions which
cannot be strictly true. However, some of the potential
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errors appear to cancel out, so that the final estimates of
AHP may not be too greatly in error. In principle, this
could be checked in animals by recording intracellularly
from motoneurones while exciting them tonically by reflex
action. It would then also be worth expanding the model.
Many of the present simplifications could be circumvented
by starting with the underlying conductance changes rather
than dealing solely in terms of membrane potential (Kernell,
1968; Jack, Noble & Tsien, 1983), and confirmatory results
have been obtained in this way in preliminary experiments
with M. D. Binder and R. K. Powers of University of Seattle,
WA, USA. However, the difficulty remains that the choice
of values is inevitably somewhat arbitrary, given that the
real neurones will be receiving a mixture of excitation and
inhibition. The present simplifications are reviewed in the
Appendix, with the conclusion that the deficiencies of the
model are unlikely to have invalidated the whole approach.
Estimates of the equilibrium level of the trajectory are

more liable to error than those of the duration of the AHP.

Shape of the AHP trajectory
Present observations. The present analysis suggests that
over the final part of the interspike interval, the membrane
voltage trajectory is fairly closely exponential. This agrees

with the biophysical evidence that the last part of the
AHP is due to a change in potassium conductance which
decays exponentially with time and is voltage independent
(Kernell, 1968; Baldissera & Gustafsson, 1974a; Baldissera,
Gustafsson & Parmiggiani, 1978; Schwindt & Crill, 1982).
The AHP voltage cannot then be strictly exponential, since
it does not precisely mirror the conductance, but for small
changes near threshold the deviation should be small. The
time constants of the present estimated AHPs fall within
the range expected from the direct recordings of the AHP
of a variety of motoneurones made by Eccles, Eccles &
Lundberg (1958). They gave values for the total duration of
the AHP rather than its time constant, and these ranged
from 60 to 180 ms; in their recordings, the AHP appeared
to be prematurely terminated by a delayed negative after-
potential. On Kernell's (1968) dictum that the time constant
equals a quarter of the duration, the present values of time
constant (20-40 ms) correspond to durations of 80-160 ms.
The present values for soleus muscle were at the top end of
the range, as in the recordings. Direct measurements by
Baldissera et al. (1978) on four particular motoneurones gave

time constants of 13-26 ms for the underlying conductance
change. The present values do not go as low as the direct
values, probably because the recording discriminated
against large, high-threshold units with short AHPs.

An unsettled detail is whether the tail of the AHP during
voluntary action is exponential to the very end or whether it is
terminated slightly prematurely by some other process, as

suggested for the cat (Eccles et al. 1958). The cell membrane
contains voltage-activated channels that respond with an

appreciable delay (Schwindt & Crill, 1982), and which might
become important as the 'pure AHP' conductance tends to zero.

The present findings are equivocal. Quite commonly, the

exponential creep was cut short, but this was probably mostly due
to a failure of the slicing to isolate sufficiently pure subpopulations
of spikes for a given firing frequency (cf. Fig. 6). On other
occasions, the exponential creep continued to the limit of accurate
measurement. This uncertainty was bypassed by neglecting the
final tail of the 'observed' AHP trajectory when fitting it with an
exponential; thus it did not vitiate the comparisons between
motoneurones.

Comparison with trajectories recorded during current
injection. At first sight, the present trajectories for tonic
firing elicited by synaptic drive conflict with those directly
recorded from motoneurones excited by current injected
intracellularly (Schwindt & Calvin, 1972, 1973; Baldissera
& Gustafsson, 1974a), quite apart from the differences in
scaling (noise units vs. millivolts) and reference level (spike
threshold vs. zero millivolts). However, the differences are
readily explained and highlight the limitations of the intra-
cellular work in providing a model of the human situation.

The lowest firing rates are not easily studied with injected
current and tend to be avoided; maintenance of a consistent
firing rate makes great demands on the stability of the moto-
neurone. Moreover, any residual noise distorts the trajectory
that it is desired to measure, obscuring its true form. The
human trajectories, derived from the interval distribution,
are a statistical average of the underlying AHP rather than
a description of the actual voltage trajectory leading up to
any particular spike. A high level of synaptic noise does not
prevent the statistical demonstration of the AHP, while
obscuring it for the individual case. Thus, the present AHPs
with a long tail would not be commonly observed with
current injection, and if seen might be taken as trivial
examples of isolated AHPs; they are, however, found on
modelling the motoneurone (Baldissera & Gustafsson,
1974b).

At slightly higher firing rates, at the very bottom of the
primary range with injected current, the trajectories
obtained by the two methods are in reasonable accord. The
recorded trajectories then consist of an approximately
constant 'scoop' followed by a linear ramp; the slope of the
ramp increases with the current and thus with the
frequency of firing (Schwindt & Calvin, 1972). Ignoring
any tail, the present trajectories for comparable firing rates
are also approximately linear, with their slope increasing
with frequency. The matching between trajectories with
different algebraical formulations is facilitated by the need
to perform it over only a small part of the interspike
interval. For any particular frequency, the present method
provides only a short segment of the trajectory; with
increasing frequency, this spans a progressively earlier part
of the exponential AHP, so its slope increases (Fig. 7). For
the bottom of the primary range the present model is
basically the same as that used by Calvin & Stevens (1986),
which was tested numerically in the cat.

At moderate to high firing rates, probably well beyond
those currently studied, the recorded trajectories show
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changes in the depth of the scoop as the current is
increased, typically without a change in the slope of the
ramp (Schwindt & Calvin, 1972; Schwindt & Crill, 1982);
possibly, the ramp is actually slightly curved (Baldissera &
Gustafsson, 1974b). This is all quite different from the
present observations. It would be interesting to extend the
present analysis to high firing rates, when several types of
channel contribute to the conductance change at the time of
firing, successive AHPs summate, and the spike threshold
rises.

Voltage, current and conductance. It must next be
emphasized that when determined over a wide frequency
range by compounding the effects of various levels of
synaptic drive (Fig. 8), the present computed trajectories
should differ consistently from the voltage trajectories
recorded intracellularly. The reason is fundamental, and is
that the present compound trajectory should correspond
more closely to the time course of the conductance
generating the AHP rather than to the actual voltage
trajectory recorded within a given interspike interval. The
present trajectories should correspond to the voltage
trajectory that would be obtained if the equilibrium
potential for the AHP lay far away, whereas the beginning
of the real voltage trajectory may approach this value and
so be attenuated. However, the various individual short
trajectories, each determined for a single level of synaptic
drive, all relate to the same level of membrane voltage,
namely close to threshold (i.e. within 2-6 noise units,
probably below 5 mV, see later); the conductance and
voltage trajectories should then be virtually inter-
changeable as explained below (see eqns (11.11)-(1 1.13) in
Jack, Noble & Tsien, 1983). At the end of the AHP, its
underlying conductance will be small in relation to the
sum of the other membrane conductances. To a first
approximation, the slope of the voltage trajectory will then
be linearly related to that of the conductance trajectory so
that the shape of any individual trajectory is the same for
both voltage and conductance. The increase in slope of
trajectories for higher firing rates simply reflects the fact
that the AHP is being probed earlier in its time course,
when both the conductance and its rate of change increase.
Intracellular recordings for low firing rates commonly show
such a progressive increase of slope of the voltage
trajectory when it is measured at a fixed DC potential near
threshold, so there is no major conflict with experiment.

The present compound trajectory was produced by shifting
the individual trajectories vertically so as to superimpose
their regions of overlap (Fig. 8). Viewed as a conductance,
such vertical shift is in order, since AHP conductance is
unaffected by voltage (Baldissera & Gustafsson, 1974a). On
viewing the trajectory as a plot of the voltage of the AHP,
this corresponds to the assumption that, for the range
studied, the membrane potential is sufficiently far from the
potassium equilibrium potential for the current generated

by a given AHP conductance to remain nearly constant.
This is reasonable when the trajectory is within a few
millivolts of threshold, since the potassium equilibrium
potential is probably some 20-30 mV below threshold
(Baldissera et al. 1978). It also assumes that the change in
conductance produced by the increase in synaptic drive is a
small proportion of the total membrane conductance
(otherwise a given change in AHP conductance would
produce a smaller change in potential, possibly offset by a
change in the size of a noise unit, as discussed in the
Appendix). These two assumptions correspond to treating
the synaptic drive as the injection of a constant current. The
amount of shift of each individual short trajectory required
to place it on the compound curve then represents the
voltage shift produced by the synaptic current. Significant
correction would probably be required to the initial part of
the present AHPs to convert them reliably to voltage, since
they commonly started 4-5 noise units from threshold
(probably corresponding to about 10 mV). Even viewed as
conductances, they must be slightly in error because of the
various simplifying assumptions.

When comparing the present trajectories with published
voltage trajectories it should be noted that the latter have
often been superimposed by shifting them horizontally as
well as vertically so that they match at the moment of spike
generation, whatever the firing rate. While pictorially
effective, this is quite different in functional terms. There
is then no general relation between the AHP conductance
(or resultant current) and the voltage for the family of
normalized trajectories, since a given time (measured
backwards from the moment of spike initiation)
corresponds to very different stages of the AHP (measured
forwards from the preceding spike).

Absolute amount of noise
In conjunction with published illustrations for intracellular
current injection, the present data permit an estimate of
the absolute amount of synaptic noise, in millivolts, in
human motoneurones during voluntary activation. This
may be done by comparing the present trajectories, scaled
in noise units, with those recorded in the cat and scaled in
millivolts; these are both extrapolated back to time zero
(the preceding spike) and the values equated. A number of
assumptions are involved and so the resulting values are
very approximate, but they are in line with direct
recordings of noise in cat motoneurones.

Assumptions. The first requirement is to decide upon a value for
the size of the directly recorded AHP at time zero. A value of
10 mV is often used (Nordstrom et al. 1992; Warren et al. 1993),
but this seems unduly low. The total excursion of the trajectory,
from the bottom of the scoop to the firing level at the top of the
ramp, is often 12 mV or more during low-frequency firing (Calvin
& Stevens, 1968; Schwindt & Calvin, 1973; Schwindt & Crill,
1982); this provides the basis for comparison with the present
data, rather than the smaller values seen with higher-frequency
firing. Moreover, the scoop takes some 20 ms to develop its
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maximum size and so underestimates the time zero value.
Extrapolating the trajectory back to time zero gives a value of
about 15 mV, which is probably still an underestimate.

The serious problem is to decide how to extrapolate the present
trajectories back to time zero. The computed trajectories were

exponential. Nonetheless, a linear extrapolation was performed
from the approximately linear segment spanning the vertical
range 1-2 noise units from the final equilibrium (occupying less
than a quarter of the duration of the AHP). This was done because
the present trajectories are essentially conductance trajectories (see
above), while they are being compared with genuine voltage
trajectories. When the membrane potential is close to threshold at
the end of the interspike interval, the two types of trajectory will
have very similar shapes, and can be interconverted with a

constant scaling factor; thus comparison is justifiable. Using an

exponential to extrapolate the present curves back to time zero

should give an appropriate value for the conductance, but a quite
inappropriate value for the voltage, because a given conductance
produces progressively less voltage change as its equilibrium
potential is approached. The essential assumption is that over the
chosen segment, the computed trajectory corresponds sufficiently
closely to a voltage trajectory to permit it to be extrapolated back
to time zero to give the size of the AHP in units of voltage, albeit
scaled in noise units (the S.D. of noise voltage).

The segment spanning 1-2 noise units was chosen for the linear
extrapolation because it was both sufficiently short for a linear
approximation, and reasonably clear of the final curvature with its
potential inaccuracies (cf. Fig. 8). Published trajectories for current
injection do not include the final tail of the AHP, so it would be
inappropriate to use the slope of this portion of present AHPs for
extrapolation. However, varying the precise segment used for
extrapolation had rather little effect on its slope. The zero of the
AHP was taken as the final plateau of the trajectory; this
corresponds to the trajectory coming to equilibrium at threshold.

In a sample of twenty motor units with typical trajectories,
the linear extrapolation at time zero fell in the range from 7
to 10 noise units. Equating this with the 15 mV obtained
by intracellular recording makes the standard deviation of
the synaptic noise 1-5-2-2 mV. Two further motoneurones,
both supplying intrinsic hand muscle, had higher than
normal noise levels, with standard deviations of just over

3 mV. It was notable that similar values were obtained for
motoneurones whose AHPs differed very greatly in
duration, falling in different regions of voltage-time plots
like those of Fig. 9. This is another facet of the observation
that, treated as exponentials, the various AHPs differed
chiefly in their time constants rather than their initial
values. However, because the time constant may sometimes
have been slightly in error, the present linear extrapolation
should provide a better measure of the relative amount of
noise for the different units. These estimates of the absolute
noise show that for low firing rates, the voltage trajectory
stabilizes itself about 2 mV below threshold, leaving the
noise fluctuations to determine the moment of excitation.

The peak-to-peak noise may be taken to extend to two
standard deviations either side of the mean (95% limits for

recordings in the cat. The present values were 6-9 mV.
Granit, Kellerth & Williams (1964) show values around
4 mV during muscle stretch; their cats were always lightly
anaesthetized, even when decerebrate. Gustafsson &
McCrea (1984) give values of 1P5-3i5 mV during maximal
muscle stretch in anaesthetized cats. Calvin & Stevens
(1968), using some anaesthetized and some decerebrate
cats, stated that the noise was 'usually of the order of 2 mV
peak-to-peak, but in some cells it reached a peak-to-peak
amplitude of 8 mV'. They also noted that Nembutal
anaesthesia greatly reduced the noise; in their example, a
supplementary dose of half the anaesthetic dose reduced
the noise standard deviation from 2-8 to 1-5 mV (i.e. from
11 to 6 mV peak-to-peak). The present estimates of the
synaptic noise in unanaesthetized human motoneurones
are thus entirely in line with the limited direct recording.

Noise and trajectory shape: implications for
methodology of human studies
The present findings have an immediate relevance to various
measures of motor unit activation, since the detailed
interpretation of all such measures is inevitably based on a
model of the motoneurone and its excitation. This has
previously led to much debate. The importance of synaptic
noise is widely recognized in both theory and practice; a
well-studied example is that noise affects the relation
between the shape of the post-stimulus time histogram
(PSTH) of a motor unit and the waveform of a brief
depolarization of the motoneurone, such as an EPSP
(Kirkwood, 1979; Gustafsson & McRea, 1984; Midroni &
Ashby, 1989; Kirkwood & Sears, 1991; Kenyon, Puff &
Fetz, 1992). The present findings show that noise is an
inescapable, major contributor to low-frequency tonic firing.
As a corollary, any analysis which ignores its action is
suspect; most human studies deliberately employ low firing
rates, and even high firing rates will be affected. The
noiseless motoneurone is an inadequate model for studying
excitation in man.

The models underlying the analysis of human data usually
incorporate assumptions about the trajectory of the
motoneurone, with everything treated in terms of voltage
rather than conductance, even for the first part of the AHP.
The trajectory is typically taken to be a linear ramp
starting at a fixed value of scoop, with excitation occurring
simply when the ramp reaches threshold (for example,
Ashby & Zilm, 1982; Fetz & Gustafsson, 1983; Nordstrom
et al. 1992; Warren et al. 1993). Noise has often been entirely
ignored, in spite of its recognized theoretical importance
(Kirkwood & Sears, 1991). Most authors assume that the
slope of the linear ramp increases with the firing frequency,
while usually recognizing the conflict with typical intra-
cellular recordings (variable depth of scoop, fixed slope of
ramp). The variable slope model is justified by the
observation that on varying the mean firing rate, a testing
EPSP still produces much the same effect (expressed as the
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percentage of spikes in PSTH), which is incompatible with
a constant ramp slope. At moderate firing rates, the present
exponential trajectories would give the same result, since a
short segment of an exponential approximates to a
straight line with its slope increasing with the firing rate
(see Fig. 7). At low firing rates, however, the constant slope
model may fail, and the trajectory has recently been
suggested as having a final slower approach to threshold in
accordance with some earlier modelling (Baldissera &
Gustafsson, 1974a, b; Piotrkiewicz, Churikova & Person,
1992; Olivier, Bawa & Lemon, 1995). Ashby & Zilm (1982)
noted that 'exponential rather than linear trajectories
would ... modify the behaviour of the model ... in a
complex but essentially predictable manner'. The linear
model would appear to have been chosen for its simplicity,
but the details of its behaviour cannot be trusted,
especially for low firing rates. Three types of analysis merit
comment in the light of the present evidence that the
trajectory is exponential and that synaptic noise crucially
determines excitation.

(1) PSTH
As is well recognized, the conventional peri-stimulus time
histogram is a complex affair with no simple general
relation between the shape of the EPSP and the form of the
resulting PSTH. The present experiments contribute by
showing that the PSTH typically contains spikes evoked
during totally different phases of the trajectory, namely
both during its rapid phase, when it is an approximate
ramp, and its final exponential tail, when noise is
dominant. The relation between the EPSP and the PSTH
probably differs for these two situations, perhaps with the
shape of the PSTH shifting further away from the first
differential of the EPSP towards its direct representation.
If so, the particular mean firing rate chosen for study will
be important since it will determine how much of the
overall PSTH is derived from the rising phase of the
trajectory and how much from its nearly horizontal tail.

The difficulties of interpretation are reduced but not entirely
eliminated on refining the situation and triggering the
stimulus from a spike, and so repeatedly testing 'excitability'
at the same point on the trajectory (usually before any
spikes occur normally). In the absence of noise, the moto-
neurone would respond the same way every time, either
firing or not firing. In the presence of noise, the unit will
alternate between responding and not responding, and its
probability of firing will be a function of the size of the
EPSP, the distance of the trajectory from threshold and
the amount of noise (also the time structure of the noise
and of the EPSP). The situation thus invites the present
type of analysis, which is potentially capable of improving
upon the PSTH, especially for long testing intervals with
spontaneous spikes, as when studying recurrent inhibition
(Meunier, Pierrot-Deseilligny & Simonetta-Moreau, 1994).
The underlying relation between voltage and probability
can be expected to be Gaussian rather than linear, so that

doubling the underlying depolarization would more than
double the 'response', measured as the mean number of
spikes evoked in a PSTH. Likewise, when two EPSPs are
precisely synchronized, their joint action would exceed
their arithmetical sum, thereby mimicking neural
facilitation as already shown by others (Kirkwood & Sears,
1991; Kenyon et al. 1992).

It follows that the normal PSTH, for random stimulation, is
yet harder to interpret in quantitative terms. It will
summate all the probabilities for the spike-locked
stimulation and will show a peak at the time of the EPSP
which increases monotonically with the size of the EPSP;
the underlying relation will, however, be complex and is
likely to vary with the firing rate of the unit. Measure-
ments of excitability obtained by adjusting the strength of
a testing monosynaptic stimulus so as to excite a unit to
fire on 50% of occasions will also depend upon a unit's firing
rate, even if combined with spike-triggered stimulation.
Yet further uncertainties apply to various grosser measures
that essentially utilize the surface EMG to compound the
PSTH of a number of units, such as averages of the EMG
following the discharge of a cortical neurone or following a
cortical stimulus, and indeed the simple H reflex itself.
Thus, the stochastic properties of the motor unit complicate
the development of quantitative measures of synaptic input.

(2) Instantaneous firing frequency
Detailed measurements of instantaneous frequency (the
reciprocal of the interspike interval) have recently been
combined with spike-triggered stimulation and have been
suggested as providing important information unobtainable
from the PSTH (Miles, Tiirker & Le, 1989; Awiszus,
Feistner & Schiifer, 1991; Poliakov, Miles & Nordstrom,
1994). In a noise-free model motoneurone with a linear
trajectory, such analysis can provide a precise estimate of
the shape of the rising phase of an underlying EPSP with
far fewer trials than a PTSH (Miles et al. 1989). The details
of such estimates must now be at risk, since the present,
more realistic, model might behave slightly differently.

More seriously, during low-frequency firing, measurements
of instantaneous frequency can be grossly misleading when
applied to a synaptic input of appreciable duration, such as
a stretch response with both short- and long-latency
components. For example, when two successive excitatory
inputs are actually equal, the second might be taken to be
the larger for the following reasons. On delivering the
paired inputs repeatedly, at random times, the first input
will affect the motoneurone at all phases of its trajectory
and will terminate many intervals which are already long,
and which would otherwise have contributed to the tail of
the histogram; the mean frequency of the spikes that it
elicits will thus be relatively low. In contrast, the second
input will tend to act on the motoneurone relatively early
in its trajectory, since many long intervals will have been
terminated prematurely by the first stimulus; thus the
relatively few impulses it elicits will have a higher mean
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frequency than the more numerous impulses elicited by the
first input. Similar considerations apply when inhibition is
also introduced. Thus, measurement of mean instantaneous
frequency and its derivatives can never provide a reliable
index of the level of excitation; the maximum instan-
taneous frequency achieved would seem more significant,
and further statistical measures of frequency and/or
interval might well improve upon the PSTH.

(3) Cross-correlogram peaks
General considerations. Short-term synchronization of a
pair of motoneurones, occurring over 5-10 ms, seems
largely due to their being excited by branches of the same
stem fibres. Considerable effort by a number of workers has
been devoted to methods of estimating the strength of the
common input from an observed correlogram and to
allowing for synaptic noise (see Kirkwood & Sears, 1991).
The present observations sharpen the perspective by
showing that spike initiation is largely dependent upon
synaptic noise rather than on the trajectory itself reaching
threshold. Moreover, during low-frequency firing many
spikes occur when the trajectory is almost flat and well
below threshold. This must increase the probability that a
given stem fibre will excite both neurones of a pair, since
the proportion of time that both neurones are available to
be excited by the fibre will be greater than if the trajectory
were rising linearly throughout. The increased synchron-
ization of y-motoneurones that occurs as the firing rate falls
has already been explained in essentially the same way
(Ellaway & Murthy, 1985).

Theoretical analysis shows that when the trajectory is more
than one noise standard deviation from threshold, the
synaptic efficacy of an EPSP in triggering firing increases
very rapidly with its size (Kenyon et al. 1992). The present
analysis shows that at low firing rates, the trajectory never
rises much above this level. Short-term synchronization
should thus be particularly dependent on presynaptic fibres
which produce large EPSPs, with their effects 'amplified' by
such non-linear behaviour; corticomotoneuronal inputs
might well be favoured in this way with their suggested
major contribution to short-term synchrony and the
related increases in coherence (Farmer, Bremner, Halliday,
Rosenberg & Stephens, 1993). However, the motoneurones
should also 'be especially sensitive to the synchronous
arrival of many EPSPs' (Kenyon et al. 1992). Thus any
tightly synchronized activity in the population of pre-
synaptic fibres would also be amplified and helped to
produce a peak in the cross-correlogram, independent of
the extent to which the motoneurones were supplied by the
same stem fibres.

Indices of synchronization and modelling. There are a
number of ways in which an index of synchronization can
be determined, but for a given pair of motor units the value
of all the usual indices increases when the firing rate
decreases (Nordstrom et al. 1992). This limits their utility
as a direct measure of connectivity. Nordstrom et al. held

that the inconstancy occurred for purely mathematical
reasons and that their own new index should be unaffected,
but the whole issue is clouded by the failure of their eqn (2)
to address the realities of the situation (as shown to me by
Professor J. R. Rosenberg of Glasgow University, UK). The
value of such indices is also positively correlated with the
variability of the unitary discharges (Nordstrom et al.
1992); synchrony between pairs of y-motoneurones in the
cat also increases with variability (Davey & Ellaway, 1988).
The correlation might simply reflect differences in synaptic
noise in the various cases, since this should influence both
variability and short-term synchronization (Kirkwood &
Sears, 1991). As an alternative, it might arise from
differences in the intrinsic properties of the motoneurones
themselves; the duration of the AHP then emerges as an
important variable, with its gross effect on the variability
of discharge for a given mean rate (see Fig. 12). Thus, when
studying short-term synchrony, it would be interesting to
estimate the AHPs of the motoneurones involved from the
interval distributions used for making the cross-
correlograms.

Wider considerations
The present analysis shows that the varied shapes of the
interval histograms found during voluntary activation of
single motor units conform to a simple pattern, determined
by the interplay between time-filtered Gaussian noise and
the AHP. However, the recording techniques selected units
with a low threshold, recruited at low forces, firing in the
lower part of their frequency range. Although there is no
direct information as to what happens beyond these limits,
the experiments validated a model whose behaviour may be
extrapolated. High-threshold units supplying fast muscle
fibres would have shorter AHPs than low-threshold units, so
should give a similar range of histograms on a compressed
time scale. A unit firing at the top of its frequency range
should give an approximately normal distribution, like
those in Fig. 11. But there is no substitute for further
experiment. It would be particularly interesting to compare
the behaviour of motor units within the same muscle with
different firing patterns (fast units tend to fire at a higher
frequency than slow ones), and to study muscles whose
units show little tendency to increase their firing rate with
increasing voluntary drive.

The properties of the synaptic drive will be as important as
those of the motoneurone in determining the shape of the
histogram for a given mean firing rate (cf. Fig. 12); the
noise may well differ for a given mean depolarization, when
evoked by different types of input. The size of the unitary
EPSPs will matter, as will the number of active afferents
converging on a given inotoneurone. Such change in the
synaptic input is held to be responsible for the gross
increase in the variability of single y-motoneurones that is
seen when a decerebrate animal is spinalized (Ellaway,
1972). Perhaps the very nature of the synaptic drive is
involved, as excitation of a-motoneurones might involve

J Physiol.492.2 621



P B. C. Matthews

voltage-sensitive ligand-gated channels as well as voltage-
insensitive ones. It would be interesting to study the same
motor unit during the performance of different tasks. Not
only might the noise vary, but the duration of the AHP
itself seems to be under central control; it is much reduced
during fictive locomotion (Brownstone, Jordan, Kriellars,
Noga & Schefchyk, 1992).

In conclusion, the present type of analysis offers a novel
way of studying the descending control of the motoneurone
in man, which can be readily performed on both healthy
and diseased subjects. It should also be applicable to animal
recordings from other types of tonically firing neurones,
raising other tvpes of issue; for example, a neurone
'waiting' slightly below threshold could provide a sensitive
coincidence detector of synchronized inputs. However, the
wider the range of conditions studied, the more important
it will become to extend the modelling and incorporate
more of the complexities of synaptic activation.

APPENDIX
Modelling the excitation of the motoneurone by noise
Statistical fluctuations in the synaptic bombardment of a
motoneurone produce appreciable synaptic noise, so that its
membrane potential fluctuates about an otherwise steady
level. Intracellular recording shows that such noise may
have a peak-to-peak amplitude of several millivolts (Granit
et al. 1964; Gustafsson & McCrea, 1984) and that it can be
formally described as exponentially time-filtered Gaussian
noise (Calvin & Stevens, 1968). The extreme fluctuations
would be expected to trigger the occasional spike even when
the mean depolarization is well below threshold. As the
membrane potential approaches threshold, the frequency of
noise-induced spikes will increase. Such noise excitation is
suggested as being responsible for the exponential tails of
the present interval histograms for low firing rates. The
relation between the membrane depolarization and the
probability of a spike being triggered by noise was thus
determined by computer modelling. This was done under
static conditions using a motoneurone without AHP, with
its membrane potential set to a series of constant values.
The resulting transforms were then used to model the
behaviour of motoneurones with an AHP and applied to
the last part of the trajectory, when the voltage is changing
relatively slowly.

The starting point was Gaussian noise, rather than
individual synaptic potentials; given the correct time
smoothing this is quite in order, since the amplitude
distribution of the sum of a large number of separate events
is Gaussian (the central limit theorem). This was recognized
by Calvin & Stevens (1968) and has been confirmed by
computer modelling (Kirkwood & Sears, 1991, their
Fig. 10.4 legend). The simplest possible model was used
with the aim of bringing out the essentials, rather than
achieving final numerical accuracy. All signals were treated

as voltages, remaining constant at different mean levels of
membrane potential, and the underlying conductance
changes were ignored. This should produce relatively little
error for small deviations near threshold (see Discussion);
this has been confirmed in preliminary studies with a more
elaborate model in collaboration with M. D. Binder and
R. K. Powers (unpublished).

The novelty in the present modelling is its use to determine
the transforms of Fig. 13, rather than simply to produce
interval histograms. The forward voltage-probability trans-
form provides a minor convenience as it enables interval
histograms to be synthesized more rapidly than by direct
simulation. The backward probability-voltage transform
opens up quite new possibilities, since it can be applied to
real interval histograms to estimate the underlying
trajectory. The initial simulations, however, follow a well-
trodden path. Calvin & Stevens pioneered such modelling
of the motoneurone with a noisy input in 1968, and
D. L. Tuck introduced a related model in 1977, which
continues to be used (Kirkwood, 1979; Kirkwood & Sears,
1991). Geisler & Goldberg (1966) applied a similar model to
superior olivary neurones and certain studies on the well-
known leaky integrator model are closely related (reviewed
by Jack et al. 1983). The concentration on the role of noise
is the essential, since this was neglected in much earlier
modelling of the response of motoneurones to injected
current. There is also an extensive mathematical literature
on the determination of 'level crossings' in noisy systems;
in a review, Cox & Isham (1980) noted that each individual
case has to be considered on its own. Longuet-Higgins
(1962) had already emphasized the intractability of the
general problem to direct analytical methods, and tested
the validity of various approximate solutions numerically
using an early computer simulation. Computer simulation
was also rapidly adopted by physiologists studying
excitation (cf. Gerstein & Mandelbrot, 1964).

General description of the model and its behaviour
Since the amplitude distribution of the noise is approx-
imately Gaussian, it might be thought that when the
mean depolarization of a motoneurone is known, then the
probability of its being excited by noise in the next milli-
second could be directly obtained from standard
statistical tables. But this would neglect the temporal
structure of the noise, which is as crucial as its amplitude
distribution; an example is that spikes are only triggered
when the threshold is approached from below, not from
above. The situation was modelled as follows.

First, 30 000 serial values of Gaussian noise were calculated
(zero mean, unit S.D.) corresponding to sampling the
membrane potential at 1 ms intervals. The series was then
time smoothed to create the temporal correlations; each
member of the new series consisted of the exponentially
weighted sum of the original value and the ten preceding
values, using a time constant of 4 ms as found by Calvin &
Stevens (1968). The mean of the new series approximated
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to zero, but its standard deviation was 1 58 times larger
than that of the original series; this new value was used as
the standard noise unit for scaling the membrane potential,
since it is that of the simulated smoothed noise in the
motoneurone.

The threshold was then set to one of a preselected series of
deviations from zero and each successive value of the
smoothed noise series tested to see whether threshold had
been reached; if so, a spike was scored and the interval since
the last spike recorded. When several successive values
were above threshold, the start of the interspike interval
was timed from the last suprathreshold value. There was no
refractory period or AHP, and every spike reset the timing.
However, intervals below 11 ms were discarded since the
synaptic noise of the model then correlated temporally;
these had no counterpart in life since the real spikes arose
at widely separated times. This enabled an interval histo-
gram to be constructed for a particular deviation from
threshold (bin width, 1 ms). These histograms were simple
exponentials, with statistical fluctuations, showing that
there was a fixed probability that the noise would reach
threshold and terminate the on-going interval in the course
of the next millisecond. This interval death rate was
calculated bin by bin, as for the real spike trains (see
Methods; calculation terminated when the number of
survivors fell below fifty). These values were then averaged
(with constant weight) to give a mean probability of the
noise reaching threshold in the next millisecond. This was
repeated on the same run of noise for a number of different
thresholds. Five independent segments of noise were
analysed in this way and the results combined (probabilities
averaged).

Figure 13A shows the resulting 'observed' dependence of
the probability of firing on the membrane potential; the
points were obtained directly from the model. This
particular set of data was used to analyse the real interval
histograms; however, as discussed below, changes in the
numerical details of the modelling alter the precise
numerical values without affecting the general outcome
(cf. Geisler & Goldberg, 1964). The values also include a
small residual statistical variability. Very slightly different
values were obtained subsequently when 3 260 000
successive noise intervals were tested rather than 150000;
but the differences were insignificant in the light of the
other uncertainties (see below), and no correction was
attempted. The curve fitted to the data is derived from a
normal distribution, with the probability value for any
potential corresponding to the probability of that value
being exceeded by chance (i.e. the area under one tail of the
distribution). Thus the behaviour of the model was
essentially Gaussian, but because of the temporal
correlations in the noise the parameters of the curve (mean
and S.D.) differed from those of the noise distribution itself.
The values for the curve were used in the computation
when synthesizing a histogram from a trajectory.

The Gaussian behaviour was demonstrated by treating each
probability measurement as the area (integral) of one tail of a
normal distribution from X to infinity and using standard tables
to calculate the value of X. A straight line was then obtained on
plotting X against the corresponding value of V (membrane
potential) on linear scales (correlation coefficient = 0'9996, for V
in the range -2f1 to +0 5, beyond which small deviations began to
appear). This also provided the parameters of the Gaussian
distribution involved. Due to the time structure of the noise, these
differed appreciably from those for the noise distribution itself
(mean shifted from 0 to 1'37, S.D. increased by a factor of 1P52,
both in noise units). Similar behaviour was obtained when the time
course of the filtering was changed from exponential to linear or
hyperbolic.

Such Gaussian behaviour is of interest in relation to a theoretical
study by H. B. Bostock, only parts of which have been published
(Kirkwood, 1979; Kirkwood & Sears, 1991). After simplifying,
Bostock's analytically derived equations state that for time-
smoothed Gaussian noise the probability of a threshold crossing
from below is again a Gaussian function of the mean deviation
from threshold, with its standard deviation depending on the rate
of change of the noise as well as on its amplitude (both assumed
Gaussian). Cox & Isham (1980) give the same result (their
eqn (3.67)). These equations, however, cover the situation in which
no spikes are discharged and so are not immediately applicable to
the present firing model; Kirkwood & Sears (1991) have already
noted that 'considerable changes in membrane potential
distribution ... occur near threshold when crossing and recrossing
of threshold at short intervals is prevented by spike occurrence';
this has equally been recognized by Warren et al. (1993).

Figure 13B shows the same data with the axes reversed to
provide a calibration that allows the membrane potential
trajectories of real motoneurones to be computed, point by
point, from their interval histograms. The curve fitted to
the data is now simply the sum of two exponentials and has
no theoretical basis; it was chosen and fitted empirically to
provide a convenient formulation for the routine calculation
of trajectories (the Gaussian integral is a non-analytic
function). The deduction of the trajectory from the interval
histogram data is thus based empirically on the way the
model responded to noise with a particular structure,
rather than purely on theory. The behaviour of the model
was not intuitively obvious at the outset; when the mean
membrane potential was at threshold, then the probability
of a spike being discharged in the next millisecond was
only 18%, not 50% as might be casually supposed.

Application of transform to a moving trajectory
The transform of Fig. 13B was determined under steady-
state conditions, with the noise disturbing the mean
membrane potential around a fixed value; but it was then
applied to determine the rising phase of the trajectory as
well as its final near equilibrium. This presumably
introduced some distortion, since the rate of change of
membrane potential should matter as well as its absolute
value, and the transform would not work with rapid
transients; however, for present purposes the resulting
error was probably small enough to be neglected because
the time constant of the noise was very much shorter than
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that of the AHP (4 ms vs. 20-40 ms). Bostock's equations
(Kirkwood & Sears, 1991) deal with the related case of an
EPSP and suggest that for a change of potential to produce
a significant effect, both its amplitude and its rate of change
must be appreciable in relation to those of the noise;
considering the change in the AHP millisecond by
millisecond, both these parameters should have been small
within the time scale of the noise, allowing the AHP to be
treated as a series of steady states.

This was validated by comparing histograms synthesized
with the transform of Fig. 13A and those determined by
a more direct method that allowed for the trajectory being
a dynamic event; good agreement was then regularly
obtained, as shown in Fig. 14A. The direct method
followed most previous practice (see earlier) and summed
the AHP with the synaptic drive and smoothed noise
millisecond by millisecond, until threshold was reached,
when the AHP was reset and a spike scored; this simply
incorporates an AHP into the simulation used above to
determine the present transforms (for comparability, the
noise was still smoothed over eleven bins only). The thick

A
Probability vs. membrane potential

line in Fig. 14A shows such a directly obtained histogram,
based on 17 520 spikes discharged over 34 min of simulated
recording time. The small differences from the histogram
given by applying the transform to the same trajectory
(thin line) must have been partly due to the statistical
errors inherent in determining the transform's parameters,
as well as to the slightly different dynamics of the two
situations; they do not warrant further discussion.

Value of membrane time constant
In physiological terms, the time constant of the smoothing
applied to the noise corresponds to the time constant of
the membrane of the neurone. This means that there is an
inherent limitation to the accuracy of modelling a
particular human motoneurone, because its time constant
remains unknown. The passive time constant will differ
between neurones, and during tonic firing the value will be
reduced by an unknown amount by the opening of
inhibitory as well as excitatory channels. As is to be
expected, the value of the time constant affects the precise
shape of the transforms given by the modelling. This is
illustrated in Fig. 13, where the dashed lines show the

B
Membrane potential vs. probability

-2-0 -1*0
Membrane potential (noise units)
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Figure 13. Probability-voltage relations obtained by modelling the effect of noise
Each point was obtained from the model by setting its mean membrane potential to a particular value,
adding time-smoothed Gaussian noise, and repeatedly determining the time at which the noise triggered
a spike by causing the momentary potential to reach threshold. The probability of its firing a spike during
any given millisecond, when it has not yet done so, was calculated for each mean potential, giving
graph A; the potential is scaled in terms of the S.D. of the noise (1 noise unit), zero is at threshold and
negative values represent hyperpolarization. The curve fitted to the points is that for the area under the
tail of a Gaussian distribution, but one whose mean and variance differ from those of the noise (see text).
B shows the same data with the axes interchanged to provide a calibration curve for estimating the
membrane potential of real motoneurones from measurements of probability on their interval histograms.
The curve fitted to the points is now the sum of two exponentials. It has no theoretical significance, but
was convenient for computing trajectories and accurate over the range studied. (Curve parameters: rate
constants, 00120 and 02039 probability units; starting values, -1t054 and -3-096 noise units;
equilibrium value, 1-276 noise units.) The membrane time constant of the model was 4 ms, but because of
the finite bin width used, the transforms apply to a neurone with a slightly longer time constant (see text).
The dashed lines join the (invisible) points obtained when the time constant was doubled (8 ms).
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effect of doubling the time constant from 4 to 8 ms (both for
1 ms bins). The deviation from the 4 ms data increases as
threshold is approached, and is somewhat less serious
around the region of particular present interest, namely
1 noise unit from threshold; for example, if the 4 ms
probability-voltage transform is applied to data from an
8 ms motoneurone, it falsely gives the voltage as 1P25 noise
units when the correct value is 0-85 noise units (for the
same false value, the true value would be IP0 for a 6 ms
neurone, and 1P5 for a 2 ms neurone). The false values are
of the right order of magnitude, but sadly lacking in
numerical precision.

Figure 14B compares the trajectories obtained by applying
the 'right' and 'wrong' transforms to an entire interval
histogram. The continuous line shows the input trajectory
applied to a neurone with a time constant of 8 ms to
synthesize an interval histogram (by using the 8 ms
voltage-probability transform, histogram not shown). The
filled circles show the successful re-creation of the trajectory
on applying the 8 ms probability-voltage transform to the
histogram. This also helps validate the two transforms as
computational tools, by confirming that they are inversely
related. On the evidence of Fig. 14A, the underlying

A
Transform and direct histograms compared

trajectory would also be recovered effectively on applying
the probability-voltage transform to a histogram obtained
by conventional time-based simulation.

The wrong trajectory in Fig. 14B was obtained by
applying the 4 ms transform to the 8 ms histogram. It
systematically overestimates the deviation from threshold,
but retains much the same general form and remains fairly
closely exponential. Fitting these particular points with
an exponential gave a time constant that differed by only
4% from the value for the original input trajectory.
Compounding several such false trajectories for several
synaptic drives, as was done with the real motor unit data
(Fig. 8), also gave an approximately exponential trajectory,
with its time constant again only differing very slightly
from the correct value (difference again 4%, but now the
time constant was underestimated rather than over-
estimated; these small differences are within the error of
the estimates, but more probably result from the non-linear
relation between the 4 and 8 ms transforms). However, the
initial size of the AHP was appreciably underestimated in
both cases (by 17 and 7%, respectively). It may be
concluded that the use of an inappropriate transform on
physiological data can produce appreciable errors in the

B
Effect of inappropriate transform

Vo

c

Co
C
e

0'
0

0-

-1 -

-2 -

-3 -

100
Interval (ms)

Threshold
-----------------------------------

Wrong

100

Time since spike (ms)
200

Figure 14. Testing the transforms
A tests the voltage-probability transform of Fig. 13A. The thin line shows an interval histogram
synthesized using the transform of Fig. 13, as in Fig. 11. The thick line shows the histogram produced by
a more direct method (see text) for the same model motoneurone, with the same synaptic drive (-1 noise
unit, 4 ms membrane time constant, AHP as in B). The 2 histograms have similar means and coefficients
of variation (1 17-4 and 118-2 ms; 22-1 and 21-2%). B tests the effect of using a probability-voltage
transform derived from a motoneurone with the 'wrong' membrane time constant. The thick curve shows
the input trajectory applied to a motoneurone with a time constant of 8 ms to create the histogram for
analysis. Applying the 8 ms transform to the histogram gave the 'right' curve (S), which re-created the
original trajectory. Using the standard 4 ms transform gave the wrong curve (0). This curve is
qualitatively similar, but significantly overestimates the displacement of the trajectory from threshold;
the approximate equilibrium potential was shifted from -0-8 to -1'2 noise units. (Synaptic drive, -075
noise units; AHP time constant, 28-6 ms; initial size, -23-7 noise units, corresponding to the values for
the biceps unit of Fig. 8.)
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estimate of the absolute level of the trajectory, while
having remarkably little effect on the estimate of the time
constant of the underlying AHP.

In the present experiments, the transform for a 4 ms
smoothing time constant was applied to all motoneurones;
this was the time constant found by Calvin & Stevens (1968)
in a motoneurone with appreciable synaptic noise, but
leakage around the electrode might have caused it to be
slightly low. Many quiescent motoneurones have appreciably
longer time constants (Jack, Miller, Porter & Redman,
1971; mean value, 5-8 ms; range, 2-14 ms), but steady
synaptic activation should reduce the value. In making
comparisons it should be noted that the present simulations
introduced some additional smoothing by using the finite
bin width of 1 ms, so that the use of the 4 ms transform
approximated to the behaviour of a motoneurone with a

membrane time constant of 5 ms (see below). The data of
Fig. 13 thus provide a reasonable compromise between
competing uncertainties, but no one transform can provide
numerically exact estimates for all motoneurones; nothing
better can be done until the time constant of the individual
motoneurone can be estimated. The errors should usually
have been rather smaller than those illustrated in Figs 13
and 14.

Effect of bin width. Using a bin width of 1 ms to calculate
the transforms inevitably helped smooth the noise, since
this was calculated bin by bin. Thus, in accordance with the
effect of changing the smoothing time constant, reducing
the bin width to 0 5 ms shifted the probability-voltage
curve upwards (cf. Fig. 13). The original 4 ms transform
corresponded rather closely to the transform for 5 ms
smoothing calculated with 0 5 ms bins. However, it is not
suitable simply to use a very short bin width, say 01 ms,
as some such smoothing is physiologically appropriate to
allow for the finite rising time of individual post-synaptic
potentials which will filter out the highest noise frequencies.
For a unitary I a EPSP, the rise time may vary between
0'2 and 2-8 ms (Jack et al. 1971; 10-90% rise times, modal
value 0 5 ms, mean approximately 0 7 ms). The effect of
introducing a finite rising time to the noise was studied by
reducing the bin width to 0-25 ms and introducing a high-
cut filter by two-point smoothing of the original random
number series, thereby spreading the rise of each of the
original noise steps over 2 bins (before the exponential
smoothing). The transforms for a filtered 0-25 ms bin width
series were then very close to that for an unfiltered 0 5 ms
bin width series; without such filtering the smoothing time
constant had to be increased to 6 ms to match the original
transform of Fig. 13.

Duration of smoothing. The smoothing calculation stopped
looking back after 2-5 time constants to ensure that a run

of noise which brought the membrane to threshold played
no part in the excitation of the next spike contributing to
the interval histogram (intervals shorter than this rejected,
see earlier). When the smoothing was allowed to run its

course, the resulting transform showed very little change (a
shift of less than 0 05 noise units in the region of 1 noise
unit); this also introduced some inappropriate correlations
in the noise, since spike collection still started 2-5 time
constants after the last spike (this cannot be delayed
indefinitely, as too few valid spikes are then obtained). No
major effect would be expected since a noise spike had
decayed to 6% of its initial value when it was first
ignored. The unimportance of restricting the duration of
the smoothing was confirmed on synthesizing interval
histograms by the direct method of Fig. 14, which allows
the duration of smoothing to be increased to infinity; for
the example in Fig. 14, this increased the mean of the
histogram by 0 7% and its coefficient of variation by 2 fi7%
of the stated values.

Further assumptions
Several simplifications underlying the modelling deserve emphasis,
since they might affect the numerical details of the estimate of the
AHP; but they should not compromise the overall conclusions.

(1) Noise structure. The actual structure of the synaptic noise is
unknown for man and might vary with the conditions. That used
was taken from recordings in the cat, and was a time-smoothed
Gaussian distribution. Small changes in the smoothing produced
only secondary effects on the model and its transform from
probability to voltage. But large EPSPs from large pyramidal tract
axons might have a special role to play in voluntary excitation and
might perhaps positively skew the noise amplitude distribution,
with consequences that remain to be explored.

(2) Spike threshold. The voltage threshold of the neurone was
assumed to be constant, whereas in some motoneurones it may be
slightly raised following each spike (Calvin & Stevens, 1968;
Schwindt & Crill, 1984). This is largely immaterial for the present
modelling, which will simply lump any threshold change in with
the AHP; it would matter if the computed AHP could be
compared with actual intracellular recordings.

(3) AHP summation. The model ignored any summation between
successive AHPs, as recorded by Ito & Oshima (1962), with its
tendency to produce a negative correlation between successive
intervals. This might increase the tail of the interval distribution,
and make the computed AHP longer than that following an
isolated spike. At the worst, the potential error corresponds to
averaging AHPs with amplitudes varying by up to 15%, but with
the same time constant. (The shortest intervals corresponded to
about twice the AHP time constant, which would make the
ensuing AHP 13-5% larger than that following a very long
interval; any residual AHP at the time of a spike sums
approximately linearly with its successor; Baldissera & Gustafsson,
1974b.) In a closely related model, the retention of the residual
AHP from one interval to the next made little difference (Geisler &
Goldberg, 1966). On extending the present model, this slightly
increased the mean of 'direct' histograms like that of Fig. 14A
while slightly reducing their coefficient of variation (about 1 %
change for both).

Likewise, the determination of the final third of the full AHP by
superimposing the trajectories from the interval distributions for
different levels of synaptic drive (producing different firing
frequencies) assumes that the AHP does not change with the firing
rate. Also, the AHP is assumed to sum linearly with the drive, as
widely believed (Kernell, 1968; Schwindt & Calvin, 1973).
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(4) Effect of synaptic drive on noise level. It was assumed that
the noise amplitude remained constant when the mean synaptic
drive changed. This cannot be strictly true, but for the following
reasons the changes in noise level were probably small; the
estimated AHP would then be slightly distorted without becoming
entirely unreliable. First, the percentage increase in the net
amount of synaptic drive (mean depolarization) required to
produce the present spread of firing rates was probably below
50%, since this is how models with a threshold typically behave
(Jack et al. 1983). Second, the noise may be expected to increase as
the square root of the drive, rather than in direct proportion, since
it is produced by the summation of an irregular series of synaptic
potentials which should show Gaussian behaviour. A 50% increase
in drive should thus correspond to a 22% increase in noise
amplitude. Third, the membrane conductance will increase with
the level of synaptic drive, thereby decreasing the voltage swing
produced by each unitary synaptic event. This, however, is not
easily quantified since any concomitant inhibition will act both to
decrease the noise voltage by increasing the conductance further,
and to increase it by increasing the number of synaptic events for
a given net depolarization.

(5) Effect of AHP conductance on noise. The noise amplitude
was also assumed to remain the same for the whole of the AHP;
again this cannot be strictly true, since the conductance changes
throughout its course. Within an individual trajectory the effect
should be small, since each spans only a small segment of the full
AHP. At low firing rates, dependent on the tail of the AHP, the
absolute value of the AHP conductance will be low and it will
contribute relatively little to the overall conductance. At high
firing rates, however, the AHP conductance probably matters and
should reduce the noise level, providing further compensation for
the noise increase produced by the greater synaptic drive.
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