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Abstract

Biocatalysis has the potential to address the need for more sustainable organic synthesis routes. 

Protein engineering can tune enzymes to perform in cascade reactions and for efficient synthesis 

of enantiomerically enriched compounds, using both natural and new-to-nature reaction pathways. 

This review highlights recent achievements in biocatalysis, especially the development of novel 

enzymatic syntheses to access versatile small molecule intermediates and complex biomolecules. 

Biocatalytic strategies for the degradation of persistent pollutants and approaches for biomass 

valorization are also discussed. The transition of chemical synthesis to a greener future will 

be accelerated by implementing enzymes and engineering them for high performance and new 

activities.

Introduction

Biocatalytic transformations are becoming an essential part of the synthetic chemist’s 

armamentarium, and these greener and more sustainable catalysts are transforming chemical 

process landscapes [1,2]. Enzymes can produce valuable compounds with high yields and 

exquisite selectivities, providing cost benefits compared to traditional organic synthesis 

and reducing waste production. The tunability and evolvability of biocatalysts, using 

protein engineering techniques such as directed evolution, mean that efficient catalysts 

can be generated for key synthetic steps [3,4]. The chemical transformations catalyzed 

by enzymes are not limited to those found in nature, and thus exciting new trajectories 

such as strategies for the degradation of persistent pollutants and polymers as well as the 

atomefficient synthesis of complex biomolecules are enabled. Here we highlight some of the 
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latest advancements in biocatalysis, focusing on unique attributes that have been harnessed 

in industry and academic research (Fig. 1). We aim to showcase the ever-increasing 

opportunities that enzymes offer in devising solutions to long-standing challenges in organic 

synthesis.

Application of Biocatalysts in the Pharmaceutical Industry

The pharmaceutical industry has recognized the valuable role enzymes can play in 

manufacturing bioactive molecules, leveraging their advantages to circumvent obstacles 

encountered in traditional synthetic processes. This appreciation stems primarily from 

enzymes’ remarkably high chemo-, regio-, enantio-, and substrate selectivities, which can 

enable multiple enzymes to work together in the same pot (‘cascade’ reactions) and make 

complex molecules with few side products, much as they do inside living cells. In this 

section, we will highlight recent examples that demonstrate the power of biocatalysts for 

the synthesis of enantioenriched building blocks, target molecules, or active pharmaceutical 

ingredients (APIs).

Biocatalysts confer high regio- and enantioselectivity.

Enzyme properties can be tuned for industrial applications by engineering the protein 

sequence. Recent work by Merck researchers addressed challenges associated with α-

ketoglutarate-dependent dioxygenases (α-KGD) on manufacturing scale, including low total 

turnover number (TTN), aerobic reaction conditions, low stability, enzyme inactivation 

by self-hydroxylation, and overoxidation of unnatural substrates. An engineered α-KGD 

replaced five synthetic steps with a direct enzymatic hydroxylation to produce chiral 

intermediate 2 from 1 used in the synthesis of belzutifan in high enantioselectivity and 

preparative yield (Fig. 2a) [*5]. Compared to heme-dependent oxygenases, α-KGDs require 

only iron in combination with α-ketoglutarate and do not necessitate complex cofactors or 

co-expression of reductase domains. Enzymes’ high selectivity also enables them to target 

specific functional groups among others, and this selectivity can be engineered by directed 

evolution. Fryszkowska and coworkers engineered acylases for improved bioconjugation of 

insulin (consisting of both α-and β-peptides covalently bound by disulfide bonds). This 

facilitated the selective acylation of an internal or terminal amine, as well as selective 

hydrolysis of the phenylacetyl group [6].

Large scale production of APIs.

Imine reductases (IREDs) and reductive aminases (RedAms) are well known for their 

scalability and have been successfully applied on ton scale for the synthesis of chiral amines 

from ketones [7]. Researchers at GlaxoSmithKline (GSK) engineered an IRED to perform 

a stereoselective reductive amination via kinetic resolution of a racemic mixture of trans-

phenylcyclo-propylamine (>38,000-fold greater TTN compared to the wild-type enzyme), 

reducing the generated waste by half – process mass index (PMI) improved from 355 to 178 

[8]. Researchers at Pfizer improved on a prior chemoenzymatic synthesis of cis-cyclobutyl-

N-methylamine intermediate 4. Initially, a car-bonyl-containing substrate was converted 

into the corresponding amine with a transaminase, followed by chemical alkylation of the 

primary amine with iodomethane. Augmenting this preliminary process, they combined 
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transamination and alkylation into a single enzyme-catalyzed reductive amination with 

methyl amine and a RedAm to selectively form the cis aminated cyclobutane 4 in 73% 

isolated yield from the corresponding carbonyl 3, a >200-fold increase compared to the 

wild-type enzyme (Fig. 2b) [*9]. This step was optimized for large scale to afford 230 kg 

of the product. Cumulative batch processes generated >3.5 megatons of chiral intermediate 

4 as the succinate salt for the synthesis of abrocitinib. Another RedAm was used to simplify 

production of an enantioenriched intermediate by directly installing a protected benzylamine 

on kilogram scale, with a substrate loading of 50 g/L, 98% ee, and 43% conversion [10,11]. 

These examples showcase the utility of IREDs and RedAms for chemical manufacturing on 

ton scale, due to their inherent stability, high activities, and broad applicability for installing 

amine functional groups. Future efforts need to focus on identifying and developing more 

enzyme families capable of performing useful transformations on industrial scale.

One-pot enzymatic cascades.

The high chemoselectivity of biocatalysts can suppress unproductive side reactions and 

allow multiple reactions to occur in a single pot. This typically results in a process with high 

atom economy, good step efficiency, limited waste generation, and no need for purification 

between chemical steps. Examples from Merck include extraordinary enzymatic systems 

for synthesis of APIs such as complex cyclic dinucleotides and nucleosides. Impressive 

demonstrations of enzyme cascade syntheses of nucleosides islatravir and molnupiravir have 

generated the excitement and interest biocatalysis deserves [12,13]. Another example is the 

cascade synthesis of a stimulator of interferon genes (STING) protein activator, MK-1454, 

currently in clinical trials [*14]. The original synthesis of this cyclic dinucleotide required 

nine synthetic steps – Merck researchers streamlined the synthesis into three concatenated 

biocatalytic reactions. The cascade consisted of two enzymatic phosphorylation events 

requiring three engineered kinases to produce activated thiotriphosphorylated nucleotides 

9 and 10 (Fig. 2c).

The final step involved an engineered cyclic guanosine-adenosine synthase (cGAS) and 

a bimetallic system (Zn2+ and Co2+) necessary for the stereocontrolled cyclization of 9 
and 10 to produce MK-1454. With these reported enzymatic cascades, API production 

was achieved in fewer steps with less waste generated during synthesis and purification, 

improving the PMI. Protein engineering enabled inefficient, naturally occurring enzymes to 

become competent and robust catalysts with improved activity and diastereoselectivity.

Frontiers of Biocatalysis for Small Molecule Synthesis

Academic research groups are expanding the repertoire of biocatalysis by discovering novel 

enzyme-catalyzed natural product syntheses and developing non-natural transformations 

using engineered enzymes. Especially, new chiral synthetic intermediates have been 

accessed efficiently and stereoselectively using biocatalytic strategies. These novel and 

creative reaction designs are primed to be useful resources to consider in developing 

biocatalytic routes that produce fine chemicals and pharmaceuticals, after further 

improvement of process relevant properties such as enzyme stability, activity, and selectivity 

at scale.
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Amination strategies to access important synthetic targets.

The efficient and stereoselective introduction of amine functional handles into target 

molecules is a fundamental synthetic task, given their importance in bioactive 

molecules. New-to-nature heme-containing enzymes have been shown to achieve direct 

amination by catalyzing C–H bond and alkene functionalization reactions. Engineered 

Pyrobaculum arsenaticum protoglobin (ParPgb) variants can use inexpensive hydroxylamine 

hydrochloride (NH2OH·HCl) as a nitrene precursor, generating water as the sole byproduct 

(Fig. 3a) [*15]. In the directed evolution campaign to develop these new enzymes, it 

was observed that the KM values for hydroxylamine decreased (5.4 mM to 0.30 mM), 

suggesting higher affinity of the aminating reagent with the heme enzyme resulting in 

improved activity (at low substrate concentrations). Also, an increase in the turnover number 

(kcat) by 180-fold from the initial variant improved overall yield. The ability of enzymes 

to utilize hydroxylamine as an aminating reagent was then expanded to the biocatalytic 

conversion of boronic acids into the corresponding amines [16]. As another example, Zhao 

and coworkers engineered flavin mononucleotide (FMN)-dependent ene-reductases to use 

N–O based reagents as amine precursors in the enantioselective hydroamination of alkenes 

under visible light [17]. The authors indicate that further directed evolution of the biocatalyst 

is required to improve on the low enzyme activity and expand the substrate scope.

Gathering mechanistic insights can help address the need for robust and novel biocatalytic 

processes. Hilvert and coworkers investigated a myoglobin model system to uncover the 

cause for the unproductive reduction of nitrenes generated from azide precursors [18]. 

Based on their findings, more competent heme-based nitrene transfer biocatalysts could be 

developed by fine-tuning the reduction potential of the enzyme, which in turn suppressed 

unproductive reduction pathways.

The selective introduction of azide groups as masked primary amine precursors presents 

another strategy to access nitrogen-decorated scaffolds. In this context, Huang and 

coworkers utilized a non-heme iron enzyme for benzylic azidation implementing sodium 

azide as the external azide source [19]. While all these examples showcase interesting 

directions for the design of novel synthetic routes, further protein engineering efforts to 

improve biocatalyst properties, including TTN and stability under process conditions, are 

necessary to facilitate their use at scale.

Emerging strategies for the efficient synthesis of non-canonical amino acids.

Key pillars in modern small-molecule pharmaceuticals and peptidomimetics are finding and 

improving therapeutic targets by the incorporation of noncanonical amino acids (ncAAs) 

or isotopically labeled derivatives [20]. Selective access to Cα and/or Cβ deuterated amino 

acids was achieved with a pyridoxal 5’-phosphate (PLP)-dependent two-enzyme system 

(DasD, DasE), providing labeled enantiopure amino acids on analytic and semi-preparative 

scales (>600 mg deuterated Ile, 0.5 mmol) [21]. Relying also on PLP-dependent enzymes, 

a synergistic photoredox-PLP biocatalytic approach was introduced by Yang and coworkers 

to facilitate the construction of ncAAs (Fig. 3b) [*22]. In this reaction, photocatalytically 

generated radicals engage in a stereoselective C–C bond forming reaction with a covalently 

bound substrate-enzyme intermediate. Extension of their work to glycine and α-branched 
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amino acids substrates enabled the enantioselective synthesis of α-tri and tetrasubstituted 

ncAAs exhibiting up to two contiguous stereocenters [23]. Related work by Hyster and 

coworkers also demonstrated the utility of engineered threonine aldolases as a platform 

to synthetically access α-tertiary amino acids using pyridinium salts as alkylating agents 

[24]. In a different study, Arnold and coworkers achieved enantioselective synthesis of 

azetidine products, bioisosteres of proline, using an engineered P450 variant with an axial 

serine substitution, classified as P411 enzymes, to mediate a one-carbon ring expansion of 

aziridines [25]. To further expand the set of chemically available proline bioisosteres, Renata 

and coworkers reported the construction of five- to eight-membered cyclic ncAAs based on a 

two-step chemoenzymatic cascade relying on a transaminase-mediated cyclization followed 

by a stereocontrolled PtO2 hydrogenation [26]. Again, using these catalysts to make other 

ncAAs for industrial purposes will require further enzyme engineering.

Synthesis and functionalization of carbonyl intermediates.

Several enzyme classes have been explored to expand the toolkit of organic 

transformations that can access and functionalize carbonyl-containing substrates and 

products. Flavin-dependent ene-reductases could be harnessed for the challenging chemo- 

and enantioselective C(sp3)–C(sp3) cross coupling of alkyl halides and nitroalkenes to access 

derivatized ketone products [27]. This reaction is proposed to proceed via a quaternary 

charge transfer complex in the presence of all reaction partners in the FMN active site. 

The same enzyme class was also utilized in the desymmetrization of enones to access 

enantioenriched cyclohexanones from either cyclohexanone or cyclohexadienone substrates 

[28]. Recently, engineered cytochrome P450s were further improved to enable α-C–H 

functionalization of cyclic amines via a carbene transfer reaction using diazo precursors 

on gram scales to attach carbonyl functional handles [29]. Also, a dual system comprised of 

a thiamine diphosphate (ThDP)-dependent radical acyl transferase and an organophotoredox 

catalyst facilitated the synthesis of α-chiral ketones (Fig. 3c) [*30]. The reaction is 

proposed to proceed via the formation of a Breslow intermediate by the condensation 

of the aldehyde with the ThDP cofactor. This intermediate is prone to oxidation and 

subsequent radical rebound with the alkyl radical to generate the carbonyl product. While 

these examples represent exciting new directions of implementing new-to-nature enzyme-

catalyzed transformations, scale-up challenges associated with photochemical processes 

must be overcome to enable efficient application at scale.

Construction of ring systems through C–C bond formation.

The synthesis of cyclic compounds via carbon-carbon bond formation represents a 

fundamental strategy to introduce complexity to molecular scaffolds. Lactones and lactams 

were accessed by P411 enzymes via an intramolecular carbene insertion strategy and by 

B12- and heme-dependent enzymes via a radical cyclization mechanism of tertiary alkyl 

halides with alkenes or arenes [31–33]. Hyster and coworkers reported a hydroamination 

reaction using ene-reductases to access a variety of enantiopure lactams and amides via 

a synergistic photo- and biocatalytic strategy (Fig. 3d) [*34]. High enantioselectivities 

are obtained by generation and subsequent coupling of the reactive amidyl radical with 

the alkene in the protein active site. Besides lactones and lactams, the efficient and 

stereoselective construction of small carbo-cyclic scaffolds is also synthetically relevant. 
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In most cases, relatively reactive carbene precursors (e.g. diazoacetate) are necessary to 

enable efficient construction of cyclopropane rings from alkenes [35]. On larger scales, the 

implementation of more stable carbene precursors for transfer reactions may be attractive 

due to their improved safety profiles. Arnold and coworkers reported the use of diazirine 

reagents in biocatalytic cyclopropanations as well as N–H, B–H, and Si–H insertion 

reactions [36]. Together with further improvement of enzyme stability and activities at high 

substrate and product concentrations, these developments increase the potential for ‘carbene 

transferases’ to be established in safe and sustainable industrial processes.

Halogenations for the installation of functional handles.

Derivatization of molecular scaffolds by the installation of halogen atoms is an important 

strategy to increase complexity and introduce functional groups. Lewis and coworkers 

demonstrated that the bromination and iodination of several arenes and an alkene can 

be catalyzed by a flavin-dependent halogenase AetF [38]. In a study by Lukowski 

and coworkers, another flavin-dependent halogenase, JamD, was identified to catalyze 

chemoselective bromination and iodination of terminal alkynes over electron-rich arenes 

(Fig. 3e) [37]. Impressively, the naturally occurring enzyme was shown to exhibit a 

broad substrate scope, affording simple and late-stage haloalkynes. The intramolecular 

construction of benzylic C(sp3)–F bonds using N-fluoroamide substrates was enabled by 

repurposing a non-heme iron epoxidase from Streptomyces viridochromogenes (SvHppE) 

[39]. In a different study, a native α-KGD hydroxylase was engineered to perform selective 

halogenation over hydroxylation of C(sp3)–H bonds in lysine [40]. Even though a variety 

of naturally occurring and engineered halogenases have been identified to perform useful 

transformations on aromatic scaffolds, enzymatic halogenation of unactivated C–H bonds is 

still in its infancy, with further biocatalyst engineering required in many cases.

Biocatalysts for Streamlined Synthesis of Complex Biomolecules

Synthesizing complex biomolecules often requires preactivated substrates and orthogonal 

protecting groups. These approaches generate waste and necessitate chromatographic 

purification of target compounds. Enzymes can circumvent these disadvantages by specific 

substrate orientation and thus selectively reacting with a single functional group among 

others. This molecular precision results in fewer synthetic steps, increased atom efficiency, 

and more sustainable processes. Below we highlight strategies that use enzymes for the 

synthesis of complex biomolecules such as natural products, peptides, and oligonucleotides.

Late-stage oxidation of natural products.

Natural product synthesis is a complex, multistep process usually requiring the manipulation 

of protecting groups. Biocatalysts provide a useful alternative to enable regio- and 

stereoselective control in the presence of bare functional groups (Fig. 1, Natural Products). 

Examples of late-stage modifications of natural products are inspired by native pathways, 

utilizing P450s or other oxygenases for oxidation of steroids and fatty acids. Alcalde and 

coworkers evolved a fungal peroxygenase to selectively hydroxylate fatty acids at the ω-1 

position [41]. A single mutation caused a narrowing of the active site, resulting in tighter 

binding of the fatty acid substrate and allowing for targeted hydroxylation. Similarly, a 
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steroid hydroxylase, CYP109B4, was discovered through genome mining to oxidize steroids 

at the C16 position. This regioselectivity was then altered using directed evolution to instead 

precisely hydroxylate at C15 [42]. In another example, Renata and coworkers streamlined 

the total synthesis of ansellone B by discovering and engineering a P450 monooxygenase 

capable of hydroxylating the C6 position of sclareol with six-fold improved catalytic activity 

compared to their initial variant [43].

Cyclization of peptides.

Cyclization of peptides is synthetically challenging because intramolecular reactions must 

compete with intermolecular couplings, and unprotected amino acid side chains can lead 

to undesired side reactions (Fig. 1, Peptides). In native systems, nonribosomal peptide 

(NRP) synthetases utilize thioester-linked peptides for cyclization. Wakimoto and coworkers 

designed an alternative leaving group, ethylene glycol, which could be easily installed on the 

resin support during solid-phase peptide synthesis [44]. Using this strategy, they discovered 

a wild type NRP cyclase (SurE) capable of selective head-to-tail cyclization of peptides 

containing N-terminal L-isoleucine and C-terminal D-leucine. After protein engineering, a 

SurE variant cyclized peptides without the terminal amino acid requirements, illustrating 

the evolvability of SurE. Another cyclization strategy, biaryl cross coupling with tyrosine 

side chains, was investigated by a group at Genentech [45] inspired by a complementary 

example for naphthol cross coupling by the Na rayan lab [46]. These few examples begin 

to set the stage for new and selective late-stage peptide modifications without the need for 

noncanonical amino acid incorporation.

Chemoenzymatic oligonucleotide synthesis.

Modified nucleic acid therapeutics are a class of molecules traditionally synthesized by 

solid-phase phos-phoramidite-based synthesis. This process requires densely protected 

monomers, generates significant waste during synthesis and purification, and yield 

deteriorates as oligo length increases. The Lovelock lab discovered a cascade of native 

enzymes that allows for polymerization of oligonucleotides and incorporation of unnatural 

monomers [*47]. Even without protein engineering, the scope of the native polymerases 

supports many noncanonical oligonucleotide building blocks (thiophosphate, locked, and 

2’-modified nucleotides) and could serve as starting points for future directed evolution 

campaigns (Fig. 1, Oligonucleotides), similar to what was achieved for incorporating 2’-

O-(2-methoxyethyl) nucleic acids in oligo synthesis [48]. To date, most oligonucleotide 

syntheses require a template strand for polymerization, and ways to incorporate unnatural 

nucleotide monomers remain to be explored.

Pollutant Degradation and Biomass Valorization Using Biocatalysts

Advances in biocatalysis also include using enzymes to break down environmentally 

persistent compounds and polymers. Man-made volatile methyl siloxanes (VMS) (Fig. 1, 

Persistent Pollutants) used in consumer products such as detergents and cosmetics are 

produced on megaton scale and are not naturally degraded by microorganisms. Arnold 

and coworkers engineered a cytochrome P450 to oxidize terminal carbons in selected 

VMS, leading to Si–C bond cleavage via the carbinol intermediates. Enzymatic cleavage 
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of this critical bond hints that biodegradation of siloxanes may one day be possible 

[*49]. Depolymerization of polyethylene terephthalate (PET) has been achieved using an 

engineered thermostable hydrolase capable of catalysis at the glass transition temperature of 

PET [50] (Fig. 1, Plastics). A major component of biomass, lignin can be depolymerized 

by chemical strategies, but feasible methods to convert those degradation products into 

valuable chemicals are needed. An engineered eugenol oxidase (EUGO) converts the most 

abundant lignin monomer, 4-n-propylguaiacol, into isoeugenol, a commodity chemical used 

for industrial production of fragrances, flavors, and polymers [51] (Fig. 1, Biomass).

Outlook

Biocatalytic strategies are increasingly recognized as attractive, sustainable alternatives 

to traditional organic chemistry approaches. Enzymes offer new solutions to synthetic 

challenges, enabling access to small, enantioenriched intermediates and complex 

biomolecules. Protein engineering efforts have facilitated the development of simplified 

synthetic routes that implement resilient, highly selective enzymes in cascade reactions. 

Beyond transforming the organic chemistry landscape, degradation of persistent pollutants 

and polymers have also been addressed with enzymes. Most of the biocatalysts described in 

recent reports, however, are of limited applicability. General shortcomings such as enzyme 

robustness, substrate scope, ability to work with high concentrations of substrate and 

product, and reaction yield need to be improved to successfully implement biocatalysis 

in industrial manufacturing campaigns [52]. The feasibility of this approach is amply 

illustrated by the examples reviewed here. Performing directed evolution more efficiently 

in combination with process engineering to streamline scale up will accelerate the 

implementation of biocatalysis. In general, the field will advance by exploiting new 

technologies, such as assay automation and machine learning-assisted directed evolution 

[53], all pointing toward the goal of making these processes more accessible, cost-effective, 

and easier to implement.
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Highlights:

• Engineered biocatalysts that access pharmaceutical products through more 

sustainable synthetic routes.

• Novel biocatalysts that construct enantiomerically enriched small-molecule 

intermediates.

• Complex biomolecules synthesized using enzymatic cascade reactions.

• Biocatalytic degradation of persistent pollutants and valorization of biomass 

to afford valuable compounds.
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Figure 1. 
Examples of chemoenzymatic approaches that pave the way to selectively construct 

synthetic targets in the pharmaceutical industry as well as in the context of small molecule 

and complex biomolecule synthesis. In addition to biosynthesis, biocatalysts provide new 

strategies for pollutant degradation and biomass valorization.
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Figure 2. 
Examples of biocatalysis used to produce APIs. (a) Stereoselective hydroxylation of 1 with 

α-KGD FoPip4H (2 g/L) to generate enantioenriched intermediate 2 for the production 

of belzutifan [5]. (b) Biocatalytic reductive amination of ketone 3 catalyzed by SpRedAm 

(1.9 g/L) for the synthesis of enantioenriched amine building block 4 on 230 kg scale for 

the synthesis of abrocitinib [9]. (c) An enzymatic cascade to access MK-1454 uses four 

enzymes and circumvents intermediate purification steps [14]. In one pot, guanylate kinase 

(GK, 0.1 g/L) and adenylate kinase (AK, 0.1 g/L) phosphorylate 5 and 6, respectively to 

yield intermediates 7 and 8 which are then phosphorylated by the same acetate kinase (AcK, 

75 mg/L). After subsequent addition of cyclic guanosine-adenosine synthase (cGAS, 2.2 

g/L), the final cyclization between 9 and 10 yields MK-1454. P = −PO3
−, Pi = −PO4

2−.
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Figure 3. 
Biocatalytic transformations for the construction of small, versatile building blocks. (a) 

Pyrobaculum arsenaticum protoglobin (ParPgb) catalyzed amination of benzylic C-H bonds 

and alkenes using hydroxylamine as aminating reagent [15]. (b) A combined photoredox-

PLP catalytic system for the construction of ncAAs relying on Pyrococcus furiosus 
tryptophan synthase β subunit (L-PfPLP) [22]. (c) Synthesis of α-chiral ketones relying 

on a dual organophotoredox and ThDP-dependent Pseudomonas fluorescens benzaldehyde 

lyase (PfBAL) [30]. (d) Intramolecular hydroamination for the formation of lactams using 

Bacillus subtilis flavin-dependent ene-reductase (YqjM) [34]. (e) Bromination of terminal 
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alkynes using Moorena producens flavin-dependent halogenase (JamD) [37]. GDH = 

glucose dehydrogenase, PtdH = phosphite dehydrogenase.
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