
Multi-omics insights implicate the
remodeling of the intestinal
structure and microbiome in
aging

Shaohua Chen1,2†, Chengbang Wang2†, Xiong Zou2, Hanwen Li2,
Guanglin Yang1,2*, Xiaotao Su2,3* and Zengnan Mo2,4*
1Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China, 2Center
for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized
Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi
Medical University, Nanning, Guangxi, China, 3Department of Neurology, First Affiliated Hospital of
Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China, 4Institute of Urology
and Nephrology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University,
Nanning, Guangxi, China

Background: Aging can impair the ability of elderly individuals to fight infections
and trigger persistent systemic inflammation, a condition known as
inflammaging. However, the mechanisms underlying the development of
inflammaging remain unknown.

Methods:We conducted 16S rRNA sequencing of intestinal contents from young
and old C57BL/6J mice to elucidate changes in gut microbiota diversity and
microbial community composition after aging. Aging-related differential bacterial
taxa were then identified, and their abundance trends were validated in human
samples. The variances in intestinal barrier function and circulating endotoxin
between groups were also assessed. Furthermore, widely targetedmetabolomics
was conducted to characterize metabolic profiles after aging and to investigate
the key metabolic pathways enriched by the differential metabolites.

Results: Our findings demonstrated an increase in relative proportion of
pathogenic bacteria with age, a trend also revealed in healthy populations of
different age groups. Additionally, aging individuals exhibited reduced intestinal
barrier function and increased circulating endotoxin levels. Widely targeted
metabolomics revealed a significant increase in various secondary bile acid
metabolites after aging, positively correlated with the relative abundance of
several aging-related bacterial taxa. Furthermore, old group had lower levels
of various anti-inflammatory or beneficial metabolites. Enrichment analysis
identified the starch and sucrose metabolism pathway as potentially the most
significantly impacted signaling pathway during aging.

Conclusion: This study aimed to provide insights into the complex interactions
involved in organismal inflammaging through microbial multi-omics. These
findings lay a solid foundation for future research aimed at identifying novel
biomarkers for the clinical diagnosis of aging-related diseases or potential
therapeutic targets.
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Introduction

The incidence of various tumors and chronic diseases grows
along with the aging process and longer life expectancy. Previous
research has shown that aging individuals have a systemic, chronic,
non-infectious inflammatory state characterized by elevated levels of
pro-inflammatory cytokines in the systemic and tissue
compartments, as well as sustained chronic immune system
activation (Ferrucci and Fabbri, 2018), known as inflammaging,
which is linked with onset of various aging-related phenotypes and
degenerative diseases (Franceschi et al., 2018). Inflammaging arises
from multifactorial processes involving several physiological
systems, including the immune, endocrine, digestive, and urinary
systems (Dugan et al., 2023). While extensive research has focused
on the molecular mechanisms of inflammaging, the traditional
experimental approach has impeded comprehensive and objective
characterization of the complex interactions between different
organs. Furthermore, the communication mechanisms and
regulatory networks among different organs have been frequently
disregarded, resulting in an inaccurate portrayal of the overall
landscape of inflammaging, contributing to the limited
applicability of these findings in clinical settings.

The human gut microbiota constitutes a vast and highly specific
habitat composed of trillions of bacteria (Santoro et al., 2018). The
gut microbiota and host have a stable mutualistic interaction. The
host provides a safe habitat for gut microbiota, while gut microbiota
facilitates nutrient absorption required by the host through
fermentation and prevents pathogen colonization (Ragonnaud
and Biragyn, 2021). However, compelling evidence has revealed
the alterations in the gut microbiota in aging individuals, with a drop
in the abundance of beneficial bacteria or an increase in proportion
of specific microbial taxa with pro-inflammatory phenotypes
(Bodogai et al., 2018). The human intestine harbors
approximately 3.9 × 1013 bacteria, which is equivalent to the total
number of human cells, and the gut microbiota has tens of millions
of genes, a hundred times more than the genes in the human genome
(Qin et al., 2010). The majority of these genes are non-redundant
microbial genes enriched in various primary metabolic pathways,
demonstrating the high metabolic potential of the gut microbiota
(Tierney et al., 2019). The metabolites produced by the gut
microbiota can directly influence the local microenvironment and
modulate organ functions, taking a crucial stage in maintaining
internal homeostasis as well as immune regulation (Wilmanski et al.,
2021), as well as forging a reciprocal connection with intestinal
epithelial cells (Funk et al., 2020). Often, aging is accompanied by
metabolome changes, which is closely linked to neurocognitive
dysfunction and various aging-related diseases (Yoshimoto et al.,
2021). However, the systemic alterations in inflammaging and their
correlation with the gut microbiota remains to be elucidated. Indeed,
research in this field has the potential to advance precision medicine
by deepening the understanding of gut microbiomics, discovering
novel biomarkers for clinical diagnosis, and identifying potential
therapeutic targets.

Herein, we conducted a systematic analysis of gut microbiota
and their functions across different age groups by 16S rRNA
sequencing, delving into the mechanism involving inflammaging
from standpoint of gut microbiota, and shedding light on age-
related changes in gut structure. Furthermore, using widely targeted

metabolomics analysis, we investigated variations in the metabolic
profile of gut microbiota between groups, providing an overview of
the differential metabolites detected after aging. In a nutshell, we
elucidated the mechanism of inflammaging using the gut microbiota
as a focal point, laying a solid foundation for the discovery of novel
biomarkers for age-related diseases and the exploration of potential
therapeutic targets.

Materials and methods

Collection and processing of samples

After 1 week of adaptation feeding, 15 mice, consisting of
8 young and 7 old, were euthanized for blood sampling from
their orbits, which were stored at room temperature for 30 min,
and then centrifuged at 3,000 rpm for 20 min at 4°C to extract
plasma, which was stored at −80°C for subsequent experiments. The
abdominal skin of themice was then incised to fully expose and open
the lower digestive tract, from cecum to anus, and the length from
colon to anus was measured. The intestinal segment was excised,
placed in Carnoy’s fixative solution for alcian blue staining. Next,
feces from the colon were collected for subsequent sequencing.
Finally, the intestinal segments were longitudinally cut and
immersed in PBS to thoroughly wash away feces before being
embedded in formalin fixative for hematoxylin-eosin (HE),
immunofluorescence (IF), and immunohistochemistry (IHC)
staining. The study workflow is depicted in Figure 1.

Paraffin embedding and HE staining

Fresh colon tissues were preserved in paraformaldehyde fixative
and then transferred to a dehydration chamber. The tissues were
dehydrated using a series of alcohol gradients, followed by two 10-
minute washes in xylene. Subsequently, the tissues were immersed in
molten paraffin, cooled, solidified, and sliced into four-μm thick
sections using a microtome. The sections were floated on warm
water to flatten, transferred to glass slides, and oven-dried. The
sections were then immersed in two different xylene solutions for
20 min each, followed by incubations in 100% ethanol and 75%
ethanol, respectively. The sections were stained in hematoxylin
solution, differentiated in 1% hydrochloric acid ethanol,
counterstained with eosin for 5 min, and dehydrated in alcohol.

Alcian blue staining

To preserve the integrity of the mucus layer, only colon
segments between consecutive feces were collected and fixed in
Carnoy’s fixative for 48 h. Next, the samples were immersed in two
different methanol solutions for one hour each, followed by two
separate one-hour immersions in 100% ethanol. The samples were
incubated in xylene and embedded in paraffin. Paraffin blocks were
and dried in the oven. The sections were then sequentially immersed
in two different xylene solutions for 20 min each, followed by 5-min
incubations in 100% ethanol and 75% ethanol, respectively, then
rinsed with water. The sections were stained in alcian blue solution
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A for 15 min and alcian blue solution B for 3 min, rinsed with water,
dehydrated, and mounted with neutral resin for microscopy
examination.

IHC and IF staining

Tissue sections were deparaffinized in xylene and ethanol for
IHC staining. Antigen retrieval was performed in boiling EDTA
buffer, and the sections were blocked. The sections were incubated
with primary antibodies, followed by secondary antibodies labeled
with biotin and peroxidase-labeled streptavidin. Tissue slices were
treated identically for IF staining, then incubated with fluorescent-
labeled secondary antibodies and counterstained with DAPI. As a
final step, the sections were mounted on anti-fluorescence
mounting medium.

Enzyme-linked immunosorbent assay (ELISA)

As described previously, lipopolysaccharide (LPS) and
lipopolysaccharide-binding protein (LBP) concentrations in
plasma were quantified using ELISA (Su et al., 2024). Standards
were prepared, and samples were diluted correspondingly before
loading onto an ELISA plate. Color development was induced
following incubation and washing steps.

16S rRNA sequencing data processing
and analysis

16S rRNA sequencing data were first extracted from raw reads.
The barcodes and primer sequences were removed, and reads from
each sample were concatenated to generate raw tags. Subsequently,
low-quality and short-length sequences were filtered out to generate
clean tags (CTs). These CTs were matched with species annotation
databases to remove chimeric sequences, yielding final effective tags
(ETs). Next, the UPARSE algorithm was employed to cluster ETs
from all samples into operational taxonomic units (OTUs) with 97%

sequence similarity. Taxonomic annotation at different levels was
performed using Mothur method and SILVA138 database. The data
was normalized, and the relative abundances of microbial
communities at different taxonomic levels were visualized using
the “ggplot2”, “ggalluvial”, and “reshape2” R packages. Following
that, alpha and beta diversity between different samples was
calculated using the QIIME software.

Differential microbial community identifications at various
taxonomic levels were analyzed and visualized using Welch’s
t-test and the Linear Discriminant Analysis Effect Size (LEfSe)
analysis. The differential microbial taxa were validated using
human gut microbiota data from the GMrepo database, which
comprises 71,642 human gut microbiome data from 353 datasets,
including 132 human-related phenotype data (Wu et al., 2020). The
PRJEB11419 dataset was used for validation, which is part of the
American Gut Project (AGP) and includes data from
11,336 volunteers across 42 countries or regions, including the
United States, the United Kingdom, and Australia (McDonald
et al., 2018). To minimize effect of health conditions, past
diseases, and medication history on microbial abundance, we
further screened the samples in the dataset using the following
criteria: (a) healthy volunteers without inflammatory bowel disease
or diabetes; (b) no antibiotic usage over the past year; (c) availability
of complete personal information data; (d) 16S rRNA sequencing
data meeting quality control standards.

Besides, to perform a more rigorous validation of differential
abundance results at the genus level, the “LinDA” (Linear Models for
Differential Abundance Analysis) R package was employed as a
supplementary tool to support findings from Welch’s t-test and
LEfSe, specifically addressing concerns regarding high false-positive
rates associated with methods lacking integrated multiple testing
correction. LinDA was configured with a significance threshold set
at α = 0.05, a prevalence cutoff at 0.1, and a library size cutoff of
1,000 to exclude low-abundance OTUs. Additionally, Winsorization
was applied to minimize the influence of outliers on the dataset,
enhancing result reliability. This approach allows for a
comprehensive assessment of genera by leveraging LinDA’s
multiple testing correction capabilities, thus complementing the
findings obtained through traditional methods.

FIGURE 1
Overall workflow of the study.
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Sample handling and extraction for widely
targeted metabolomics analysis

Samples of intestinal contents (20 mg) were transferred to pre-
labeled centrifuge tubes after multi-point sampling. The samples
were homogenized with a steel ball at 30 Hz for 20 s and centrifuged
at 3,000 rpm for 30 s at 4°C. Next, 400 μL of 70% methanol-water
extraction solution containing internal standards was added to
ensure consistent extraction efficiency across samples. After
vortexing at 1,500 rpm for 5 min, the samples were centrifuged
at 12,000 rpm and 4°C for 10 min. The resulting supernatant was
transferred to new centrifuge tubes and stored at −20°C for 30 min.
Finally, the supernatant was centrifuged again at 12,000 rpm for
3 min at 4°C before analysis.

Chromatography and mass spectrometry
acquisition parameters

The instrumentation system used in this study consisted of
ultra-performance liquid chromatography (UPLC) coupled with
tandem mass spectrometry (MS/MS). Qualitative analysis was
conducted using a self-built targeted standard database that
included over 3,000 metabolites from various chemical groups,
including amino acids, organic acids, nucleotides, carbohydrates,
lipids, phenolic compounds, vitamins, and bile acids. These
metabolites were used to establish theoretical Q1 (MS1), Q3
(MS2), and retention time (RT) databases. Subsequently,
biological samples were directly analyzed qualitatively and
quantitatively based on the information stored in the databases.
Metabolite identification was based on RT, and precursor-product
ion pair information. Quantification was performed using the
multiple reaction monitoring (MRM) mode of triple quadrupole
mass spectrometry, which allowed for precise detection and
quantification of target metabolites by filtering out non-target
ions. Chromatographic peak integration and calibration were
performed using MultiQuant software, with each peak area
reflecting the relative content of the respective substance.

Data processing and analysis of
metabolomics

Metabolomics data was preprocessed and analyzed using the
“MetaboAnalystR” package. Firstly, the relative metabolite content
data matrix was standardized using the Normalization function.
Following that, principal component analysis (PCA) was conducted
to examine the sample distribution. Orthogonal partial least squares
discriminant analysis (OPLS-DA) was used to determine the
significance of each metabolite’s variable significance in the
projection (VIP) value and determine overall differences across
groups. Subsequently, differential metabolites were determined
using VIP ≥1 and absolute Log2fold change (Log2FC) ≥ 1.

Furthermore, in our quest to explore the correlation between gut
microbiota and metabolites, we embarked on a correlation analysis.
Initially, we pinpointed metabolites that exhibited significant
differences and extracted the relevant data for the analysis. We
then harnessed the rcorr function from the “Hmisc” package to

compute the correlation matrix and its P values, applying the
Bonferroni method for multiple testing correction. Finally, we
visualized the significant correlations using “ggplot2” to generate
a heatmap that displays the relationships between the differential
microbiota and metabolites. Here, the differential microbiota refers
to the two genera identified by LEfSe and the intersection between
those identified by LinDA and Welch’s t-test.

Statistical analysis

Student’s t-test or Welch’s t-test was used for normally
distributed data, whereas Wilcoxon rank-sum test was used for
non-normally distributed data. P < 0.05 was considered for
statistically significant.

Results

Alpha and beta diversity of gut microbiota
diversity in young and old mice

To investigate the effect of aging on gut microbiota, we collected
colon contents from a total of 15 mice, consisting of 8 young
(2–3 months) and 7 old (20–22 months), for 16S rRNA
sequencing. These ages correspond to approximately 20 and 60-
year-old of chronological age in humans, respectively (Dutta and
Sengupta, 2016). As depicted in Figure 2A, 1744 OTUs were
detected in the old mice, while 1,458 OTUs in the young mice,
and 1,308 OTUs were shared by both groups. The rarefaction curves
plateaued when the number of species retrieved from each sample
was maximum, suggesting adequate sequencing depth
(Supplementary Figure S1A). We analyzed richness and diversity
of gut microbiota communities in different ages using α-diversity,
including observed species, Chao1, Simpson, PD whole tree, ACE,
goods coverage, and Shannon (Figures 2B–H). The old group
outperformed the young group in terms of Observed species,
Chao1, and PD whole tree indices (P < 0.05), suggesting
increased microbial diversity and community richness (Fu et al.,
2020). These results demonstrated that aging significantly increased
richness and diversity within the microbiota, consistent with
previous research (Hoffman et al., 2017).

The microbial community composition between groups was
compared using beta diversity. We conducted principal co-ordinates
analysis (PCoA) based on the UniFrac distances and selected the
first three principal coordinate combinations for visualization.
Figures 3A, B depict PCoA visualizations based on unweighted
and weighted UniFrac distances, respectively, demonstrating
differences between samples from young and old groups.
Similarly, non-metric multi-dimensional scaling (NMDS) analysis
revealed that old mice exhibited a more concentrated distribution,
while samples from the young group showed relatively dispersed
clusters with a stress of 0.150 (Figure 3C). The subsequent Adonis
analysis demonstrated significant differences in microbial
composition between groups (R2 = 0.163, P = 0.005).
Furthermore, Anosim analysis using Bray-Curtis distance values
compared microbial community structures in samples, yielding
statistically significant differences between groups (R = 0.3473,
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FIGURE 2
Alpha diversity of gut microbiota in young and old groups. (A) The Venn diagram displayed overlapping and distinct OTUs between groups. (B–H)
Comparisons of alpha diversity of gut microbiota in the intestinal contents between groups. *P < 0.05, and **P < 0.01.

FIGURE 3
Beta diversity of gut microbiota in young and old groups. (A) PCoA based on unweighted UniFrac distances. (B) PCoA based on weighted UniFrac
distances. (C)NMDS analyses based on Bray-Curtis distance values (Adonis: R2 = 0.163, P = 0.005). (D) Anosim based on Bray-Curtis distance (R = 0.3473,
P = 0.008).
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P = 0.008) (Figure 3D). These findings suggested that aging altered
gut microbiota composition in mice, with high individual variation
between samples in the young mice.

Microbial composition at phylum and genus
levels in young and old mice

Taxonomic information on microbiota was retrieved using
representative OTU sequences. Firmicutes, Bacteroidetes,
Proteobacteria, Desulfobacterota, and Actinobacteriota were the
top five abundant phyla, with the relative abundance of top ten
taxa in both groups visualized using a Sankey diagram (Figure 4A).
Interestingly, compared to the young group, relative abundance of
Bacteroidetes decreased while that of Desulfobacterota increased in
the old group, which is consistent with previous research on age-
related changes in gut microbial profiles in crab-eating macaques
(Wei Z. Y et al., 2022). The relative abundance ranking of the top
10 taxa at the phylum level in each sample from the young and old
groups was also analyzed as depicted in Figure 4B, with Firmicutes
and Bacteroidetes being the predominant phyla. Koren and
colleagues found significant transitions in the ratio of Firmicutes
to Bacteroidetes with aging (Binyamin et al., 2020). However, our
results revealed otherwise (Supplementary Figure S1B).

In addition, we evaluated the distribution characteristics of gut
microbiota at the genus level. Lactobacillus, Lachnospiraceae_
NK4A136, Dubosiella, Allobaculum, Turicibacter, A2,
Ileibacterium, Alistipes, Mycoplasma, and Lachnospiraceae_UCG-
001 were among the genera with relatively high relative abundance.
Lactobacillus and Lachnospiraceae_NK4A136 were the most
abundant genera in the gut microbiota of young and old mice,
respectively (Figure 4C). The relative abundance ranking of the top

10 taxa at the genus level in each sample from the young and old
groups is depicted in Figure 4D.

Identification and validations of differential
microbiota taxa

The differential microbiota taxa at the genus level between
young and old mice were evaluated based on intergroup
differential analysis using Welch’s t-test (Figure 5A). We
identified 21 differential genera that were remarkably more
abundant in the old group, whereas Candidatus_Stoquefichus
was the sole differential genus significantly enriched in young
mice. Recent studies suggest that Candidatus Stoquefichus is
more prevalent in young mice and may play a role in
reversing age-related changes (Yu et al., 2024). Among
differentially abundant genera in old mice, we identified a
variety of potentially harmful and opportunistic pathogenic
genera, including Oscillibacter (Chen et al., 2019) and
Monoglobus (Chen et al., 2022) associated with increased
intestinal permeability abnormalities, the pro-inflammatory
Family_XIII_AD3011_group (Zhang et al., 2021) and
Lachnoclostridium (Cai et al., 2022), and pathogenic bacteria
closely related to ischemic stroke and chronic kidney disease, viz.,
Eubacterium_nodatum_group (Chen et al., 2022). Two
microbiota taxa at the genus level were identified by LEfSe,
including A2 and Turicibacter (Figure 5B). Figure 5C presents
a cladogram depicting the phylogenetic distribution of these
microbiota taxa. The differential genus Turicibacter, in
particular, has been shown to exhibit pro-inflammatory
characteristics (Ma et al., 2018), and its enrichment in the
guts of elderly individuals has been reported (Liu et al., 2020).

FIGURE 4
Microbial composition of gutmicrobiota at the phyla level of old and young groups. (A) The top ten phyla abundance in the old and young groups. (B)
The top ten phyla abundance in each sample. (C) The top ten genera abundance in the old and young groups. (D) The top ten genera abundance in
each sample.
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To validate whether the aging-related variability in the
abundance of differential genera is analogous to that in humans,
we analyzed 16S rRNA data from healthy individuals of different age
groups available in GMrepo database, with the PRJEB11419 dataset
used for validation. After sample filtering, as mentioned in the
methodology section, we acquired 16S rRNA sequencing data of
1,357 healthy individuals, with samples collected from 20 countries,
primarily including the United States, the United Kingdom,
Australia, and Canada. The selected samples were divided into
four different age groups, followed by the analysis of associations
of relative abundance of harmful and opportunistic pathogenic
genera with aging. We limited our analysis to Oscillibacter and
Lachnoclostridium because some microbiota taxa were not detected.
Samples with missing data for the target genera were excluded, and
the relative abundance of genera was statistically compared across
different age groups. The trend of Oscillibacter with age is depicted
in Supplementary Figure S2A, revealing higher relative abundance
in the 56–83 age group compared to individuals in the 1–18 and
19–35 age groups. Similarly, Lachnoclostridium exhibited a close
correlation with age, with higher abundance in the 19–35 age group
compared to the 1–18 age group, and a trend of increase in the
36–55 age group compared with the 1–18 age group, while the

difference was not statistically significant (P > 0.05) (Supplementary
Figure S2B). Furthermore, to elucidate the correlation between the
aforementioned harmful genera and diseases, we performed LEfSe
analysis based on multiple disease datasets from the GMrepo
database. As outlined in Supplementary Figure S2C, Oscillibacter
was overrepresented in various autoimmune diseases such as
ulcerative colitis, Crohn’s disease, rheumatoid arthritis, Behçet’s
syndrome, ankylosing spondylitis, and colorectal cancer datasets.
Turicibacter and Lachnoclostridium were also found to be
significantly enriched in datasets of ulcerative colitis and irritable
bowel syndrome, respectively.

Next, bacteria at the genus level associated with aging were
identified using the LinDA R package, which revealed that
38 microbial genera were significantly overrepresented, while two
were downregulated, in aged mice. The results are visualized in the
volcano plot (Supplementary Figure S3A) and detailed information
of all differential genera identified by LinDA is presented in
Supplementary Table S1. Notably, Welch’s t-tests and LEfSe
analysis. Specifically, the two genera identified by LEfSe (A2 and
Turicibacter) and 16 genera identified by Welch’s t-test were
validated in LinDA’s results (Supplementary Figure S3B), further
supporting the reliability of these findings.

FIGURE 5
Identifications of differential microbial taxa between young and old group. (A) Differential microbial taxa at the genus level based on Welch’s t-test.
(B) Differential bacterial taxa associated with aging were recognized by LEfSe algorithm. (C) Phylogenetic tree of differential microbial taxa recognized
by LEfSe.
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Investigation into the functional alteration of
gut microbiota and their biological
significance under aging conditions

To investigate the functional alterations in gut microbiota under
aging conditions, phylogenetic investigation of communities by
reconstruction of unobserved states (PICRUSt) were conducted
to predict the functional profiles of microbiota, and subsequently
analyzed their biological significance. The functional analysis
revealed that aging significantly compromised functions related
to genetic information processing and human diseases at the
level 1 KEGG classification (Supplementary Figure S4A).
Additionally, aging markedly increased cellular motility and
environmental adaptation, while downregulating functions
associated with replication and repair (Supplementary Figure
S4B). These findings demonstrated that the weakening of DNA
repair function during organismal aging may be correlated with
changes in the relative abundance and functional alterations of
microbiota. Furthermore, we detected a relative decrease in
functions related to enzyme family and nucleotide metabolism
(Supplementary Figure S4B), both of which are classified as level
1 KEGG metabolic hierarchy. It is well-documented that microbial
metabolites play a crucial stage in influencing aging process and
regulating various organs, potentially impacting host aging and
longevity through diverse mechanisms.

At the level 3 KEGG classification (Supplementary Figure S4C),
the old group exhibited downregulation of functions associated with
various DNA repair pathways, including DNA repair and
recombination proteins, nucleotide excision repair, and
homologous recombination. Intriguingly, aging significantly
altered the functional phenotypes related to bacterial motility
proteins, bacterial chemotaxis, peptidoglycan biosynthesis, and
flagellar assembly. We hypothesize that the gut microbiota of the
old group may possess stronger individual and collective migration
abilities, potentially contributing to changes in gut microbiota
diversity and the prevalence of gut microbiota displacement in
elderly individuals (Keegstra et al., 2022). Finally, variations were
found in functions related to metabolic pathways such as Purine
Metabolism, Pyrimidine Metabolism, and Glycosyltransferases.

Aging-related decline in intestinal barrier
function and its correlations with
inflammaging

Compelling evidence indicated that structural abnormalities and
impaired barrier function in the intestines of aging individuals,
contributing to the advent of “leaky gut” dysbiotic phenotype,
yielding excessive immune activation and massive release of pro-
inflammatory cytokines, namely inflammaging (Ragonnaud and
Biragyn, 2021). Nevertheless, the correlation between microbiome
alterations and related phenotypes remains elusive. To address this
question, we first examined the morphological structures of mice of
different ages. As such, we evaluated the length from colon to anus in
each mouse (Figure 6A), indicating that this segment of the digestive
tract was longer in old mice (P < 0.01).

Crypts are ecological regions containing various cell types
(Hohman and Osborne, 2022), such as intestinal epithelial cells

that maintain the integrity of epithelial barrier (Yoshimoto et al.,
2021), goblet cells that produce mucin to form the mucus layer
(Paone and Cani, 2020), and intestinal stem cells with differentiation
capabilities (Barker et al., 2007). Subsequently, we examined the
crypt structures of the intestines through HE staining. As depicted in
Figure 6B, crypts of aging individuals were frequently accompanied
by inflammatory cell infiltration, but those of young mice were
overall intact. In addition, the crypts of the old mice were longer and
wider than those of the young mice, according to the statistical
analysis of both groups (Figure 6B), which contradicts the intestinal
structural alterations found in mouse models of colitis and other
diseases (Fan et al., 2021).

The intestinal barrier function is maintained by two layers of
different structures, with the mucus layer formed by mucin-
secreting goblet cells constituting the first essential line of defense
against pathogenic microorganisms as well as various digestive
enzymes (Ali et al., 2020). Alcian blue staining of the intestinal
sections, as shown in Figure 6C, revealed the reductions in the
thickness of the mucous layer in the old group. To corroborate the
variances in the number of goblet cells between groups, we assessed
the expression levels of MUC2 protein using IHC, with the results
revealing the mitigated expression of such protein in the old mice
(Figure 6D), consistent with the conclusions drawn from alcian blue
staining. In addition, to the first barrier described above, the tight
connections between intestinal epithelial cells constitute the second
physical barrier, regulating the transport of ions, metabolites, and
macromolecules outside the cells (Ali et al., 2020). Moreover, ZO-1
was assessed using IF, which demonstrated that the old group had
lower ZO-1 expression levels than the young group (Figure 6E).

Subsequently, we assessed the levels of LPS in the serum of
young and old mice. In Gram-negative bacteria, LPS forms a major
component of the cell wall. Studies have demonstrated that
increased intestinal permeability in aging individuals causes
bacterial translocation, resulting in elevated levels of LPS in the
circulation, which leads to excessive immune activation and the
formation of an inflammaging state (Zhang et al., 2022). The ELISA
findings revealed that the levels of circulating LPS in the old group
were significantly higher than in the young mice (Figure 6F).
Furthermore, we evaluated the levels of LBP in the circulation,
which is a binding protein for LPS and is a crucial link in the
downstream activation of inflammatory signaling pathways (Wang
et al., 2021), and found a significant increase in circulating LBP levels
in old mice (Figure 6F).

In this section, we systematically demonstrated aging-related
changes in intestinal structure, along with 16S rRNA sequencing
results, elucidating the mechanisms of inflammaging, and indicating
that abnormalities in intestinal barrier function, resulting in
microbiota translocation, endotoxins, and entry of various
macromolecules into circulation, may be responsible for
phenotypic alterations and increased susceptibility to diseases.

Metabolome profiling and identifications of
differential metabolites in young and
old mice

Our PICRUSt predictions of gut microbiota function revealed
a significant age-related change in metabolic profile of gut
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microbiota. Therefore, widely targeted metabolomic profiling of
intestinal contents was conducted from young and old mice using
UPLC-MS/MS. Figure 7A displays significant differences in
intestinal contents between groups as determined by OPLS-DA
analysis. Subsequent model validation through permutation
testing (n = 2000), Q2 = 0.708, R2Y = 0.955, P = 0.018,
indicated good fitting accuracy of the OPLS-DA (Figure 7B).
Figure 7C shows the top 15 metabolites ranked by their VIP
scores in the OPLS-DA analysis. These metabolites exhibited
higher VIP scores in the respective group, with taurolithocholic
acid showing the highest VIP score in the young group. Figure 7D
illustrates the S-plot of the OPLS-DA model, which provides a
visual representation of the relationship between metabolites and

the main components derived from the OPLS-DA analysis. Next,
differential metabolites between different age groups were
identified based on the absolute Log2FC ≥ 1 and VIP ≥1 as the
threshold. Specifically, 63 metabolites were upregulated and
54 were significantly downregulated in the intestinal contents
of old mice as visualized on volcano plots (Supplementary Figure
S5). Next, the relative abundance of the 63 upregulated differential
metabolites in the old group and their corresponding level
1 KEGG classification were displayed on a heatmap. The
metabolites were primarily enriched in “lipid” and “amino
acid” categories (Supplementary Figure S6A). Of note, we
found that several secondary bile acids were significantly
increased in old group, including “lithocholic acid”,

FIGURE 6
Aging-related alterations in intestinal structural and barrier function. (A)Comparison of length from colon to anus between young and old mice (n =
11). (B) HE staining showing crypt structures in the intestines of young and old mice, with at least 30 complete crypts analyzed per mouse (n = 7). (C)
Comparison of mucus layer thickness in the intestines between young and old mice (n = 4). (D) IHC staining for MUC2 protein in intestinal sections from
young and old mice, with average optical density (AOD) used to quantify staining intensity (n = 6–7). (E) Expression levels of ZO-1 protein in the
intestines of young and oldmice, measured using relative fluorescence intensity for group comparison (n = 4). (F)Comparison of plasma endotoxin levels
in young and old mice (n = 9–10). *P < 0.05, **P < 0.01, and ****P < 0.0001.
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“ursodeoxycholic acid”, “isolithocholic acid”, and
“dehydrolithocholic acid”, indicating that aging may be
accompanied by enhanced production of certain secondary bile
acids to some extent.

Similarly, the 54metabolites which were downregulated with age
were visualized (Supplementary Figure S6B), most of which
belonged to the “organic acids”, “amino acids”, “carbohydrates”,
and “bile acids” of the level 1 KEGG classification. Interestingly,
some of the metabolites downregulated in aged individuals are
known to have anti-inflammatory or beneficial effects. For
example, phytosphingosine possesses potent anti-inflammatory
activity in vitro (Montenegro-Burke et al., 2021), taurolithocholic
acid, which function as an anti-aging agent by improving
mitochondrial function (Beach et al., 2015), indole-3-carbinol,
which ameliorates gut dysbiosis phenotype in colitis mice models
and increases the abundance of beneficial bacteria (Busbee et al.,
2020), and indole-3-lactic acid, which inhibits the production of
inflammatory cytokines and exerts dual anti-tumor effects
(Sugimura et al., 2021).

Enrichment analysis of differential
metabolites and visualization of key pathways

To identify the signaling pathways influenced by these age-related
metabolites, we performed KEGG enrichment analysis using the
upregulated and downregulated metabolites. The results indicated
that “starch and sucrose metabolism” may be the most significantly
affected signaling pathways during the aging process (P < 0.05), with
four differential metabolites associated with this pathway.
Supplementary Figure S7A indicated that this pathway contained
four differential metabolites, including Trehalose, Maltose, Trehalose,
and UDP-Glucose, all of which were significantly downregulated in the
old group (Supplementary Figure S7B). Notably, similar impairments in
this pathway have been linked to metabolic dysfunctions in conditions
like diabetes (Yuan et al., 2022), suggesting that disturbances in sugar
metabolism may not only contribute to metabolic disorders but also be
associated with aging. Furthermore, previous studies have
demonstrated that trehalose exhibits neuroprotective effects in
disease models, such as stroke (Forte et al., 2021). Collectively, our

FIGURE 7
OPLS-DA of widely targetedmetabolomic profiling of intestinal contents from young and old mice using UPLC-MS/MS. (A) The distribution of each
sample in the young and old groups; (B) Permutation testing of OPLS-DA. (C) Top 15 metabolites ranked by VIP values in the OPLS-DA; (D) S-plot of
OPLS-DA.
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findings suggest that agingmay significantly impair the gutmicrobiota’s
ability to metabolize various sugars. This impairment could potentially
contribute, to some degree, to an increased susceptibility to various
aging-related diseases.

Correlation analysis between aging-
associated differential genera and
metabolites

After characterizing the metabolites in the intestinal contents of
young and aged mice, we further explored their correlations with

aging-associated differential genera by performing a Spearman
correlation analysis. To address multiple testing, we applied the
Bonferroni correction to control for potential false positives, thereby
identifying robust associations between gut microbes and
metabolites. This analysis specifically examined the correlations
between differential bacterial genera and upregulated metabolites
in old mice (Figure 8), with differential genera defined as those
identified by LEfSe and the intersecting results from LinDA and
Welch’s t-test. We observed a strong positive correlation between
the aging-associated upregulated genus Lachnospiraceae_UCG-006
and the secondary bile acid metabolite dehydrolithocholic acid, with
a notably high correlation coefficient. Previous studies have

FIGURE 8
Spearman correlation heatmap showing associations between aging-associated bacterial genera and both upregulated (red-labeled) and
downregulated (blue-labeled) metabolites in old mice. Differential genera, defined by the results from LEfSe and the intersection of LinDA and Welch’s
t-test, were analyzed with Bonferroni correction to identify robust correlations. Significant correlations are indicated by *P < 0.05, **P < 0.01, and ***P <
0.001, with color intensity reflecting correlation strength.
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highlighted the role of Lachnospiraceae in bile acid metabolism,
suggesting that the increased abundance of this genus may be linked
to elevated levels of secondary bile acids (Sorbara et al., 2020).
Evidence suggests that excessive production of secondary bile acids
may promote the accumulation of ROS and senescence-associated
secretory phenotype (SASP), which has been implicated in the
occurrence of various disease phenotypes (Yoshimoto et al., 2013).

Subsequently, we conducted Spearman correlation analysis
between differential bacterial genera and downregulated
metabolites in old mice (Figure 8). Mainly, we evaluated the
correlation between downregulated metabolites in the Starch and
Sucrose Metabolism pathway and the abundance of differential
genera. Interestingly, we observed a significant association
between the aging-upregulated, pro-inflammatory genera Family_
XIII_AD3011_group and Lachnoclostridium with various
downregulated metabolites from the Starch and Sucrose
Metabolism pathway. We speculate that gut microbiota dysbiosis
during aging may lead to altered abundances of bacteria carrying
genes encoding carbohydrate-active enzymes.

Discussions

According to projections by the WHO, the population aged
above 65 will be the fastest-growing age group by 2050, and the
proportion of this age group in the global population is expected to
increase from 9% in 2020 to 16% in 2050. Population aging is a
growing concern, and many countries around the world are now
prioritizing proactive strategies to address it. Recent advancements
in gut microbiota research are helping to shed light on the crucial
role these microbes play throughout our lives. Notably, several
factors affect gut microbiota, including diet, ethnicity, living
environment, genetic factors, and even mode of delivery
(Parizadeh and Arrieta, 2023), all of which can profoundly
influence the compositions of various microbial communities. In
addition, age is an important biological variable influencing gut
microbiota (Salazar et al., 2017).

Here, our findings revealed a significant increase in alpha
diversity within the gut microbiota of old mice, indicating an
association between aging and microbial richness. The results of
beta diversity analysis also demonstrated that aging is associated
with changes in microbial communities. Additionally, we observed
an enrichment of harmful and opportunistic pathogens in the aged
group. Among them, the microbial genus Family_XIII_AD3011_
group has been shown to possess strong pro-inflammatory abilities.
Similar to our findings, Zhang et al. observed an increase in this
bacterial genus in mice exposed to high benzene doses. Furthermore,
they found a strong link between this genus and both the toxic
reactions in the hematopoietic system and the levels of the pro-
inflammatory cytokine interleukin-5 (Zhang et al., 2021). Similarly,
Xiao et al. (2021) found that this genus was enriched in patients with
cancer-related fatigue. Furthermore, Lachnoclostridium was found
to be upregulated in diseases such as atherosclerosis (Cai et al.,
2022), depression (Radjabzadeh et al., 2022), and colorectal cancer
(Wang et al., 2019). Research by Cai et al. (2022) showed that
Lachnoclostridium contains trimethylamine (TMA) lyase sequences,
and produce TMA which increases the formation of atherosclerosis.
TMA can be converted into trimethylamine N-oxide (TMAO) in the

liver to stimulate immune-mediated inflammatory responses via
metabolic reprogramming. Interestingly, function predictions of gut
microbiota based on PICRUSt showed that the microbial genes
related to “bacterial motility proteins”, “bacterial chemotaxis”,
“peptidoglycan biosynthesis”, and “flagellar assembly” were
enriched in old mice. Of particular interest, “bacterial
chemotaxis” is a foraging strategy that allows bacteria to locate
nutrient or energy sources. Current research suggests that this ability
helps bacterial populations expand within their existing
environment and even colonize new ones (Keegstra et al., 2022).
Similarly, bacterial flagella facilitate rapid cell movement via
rotation. Thus, we speculate that gut microbiota in aging
individuals may exhibit enhanced migration capability,
undergoing chemotaxis movement induced by metabolites
circulating in the bloodstream (Dufrêne and Persat, 2020).

Furthermore, we observed structural alterations in the intestines
of aging individuals. Analysis of intestinal tissues from the old group
showed a decrease in goblet cell numbers, a thinner mucus layer, and
disrupted tight junctions between epithelial cells. LPS is a molecule
that is embedded in the cell wall of Gram-negative bacteria (Di
Lorenzo et al., 2022). It can trigger strong inflammatory responses
(Ghosh et al., 2015). Initially, LPS binds physically to LBP, which
then transports LPS to toll-like receptor 4 (TLR-4) on the surface of
immune cells via the membrane receptor CD14. This leads to
activation of the immune system by inducing signaling factors
such as myeloid differentiation factor 88 (MyD88) and
interleukin receptor-associated kinase, promoting inflammatory
response (Di Lorenzo et al., 2022). Collectively, LPS and LBP
which are enhanced following microbiota displacement by
impaired barrier function, indicate a connection between aging
gut phenotypes and inflammaging.

Advances in gut microbiota profiling have yielded two key
insights: the unique composition of microbial communities at
various taxonomic levels, and the role of microbial metabolites in
both healthy and disease processes within host. Within mucosal
layer, microbial communities can affect the host by actively secreting
metabolites or by-products derived from bacterial death, which
contributes to the maintenance of local intestinal homeostasis
(Zhou et al., 2021). Moreover, metabolites can passively cross the
mucus layer of the intestinal epithelium and the barrier formed by
tight junction proteins between intestinal epithelial cells, to regulate
multiple organs (Li et al., 2018). From a physiological perspective,
the proximity of the small intestine to the stomach creates local
acidic and oxygen-rich environment, where Paneth cells secrete
antimicrobial peptides, which limit bacterial growth, especially
anaerobic bacteria. In contrast, in the colonic region, changes in
the local environment increases the abundance of gut microbiota,
thereby altering the metabolism of carbohydrates, dietary fibers, and
resistant starches in the host (Donaldson et al., 2016). Gut
microbiotas produce numerous metabolites by breaking down
nutrients, including short-chain fatty acids (SCFAs), bile acids,
and polyamines These metabolites are indispensable in
maintaining host metabolic and endocrine homeostasis. Aging
can alter the metabolites, which may serve not only as potential
markers of the degree of aging but also as factors that can reverse
aging phenotypes or treating age-related diseases. However, the
metabolic alterations associated with the aging process are not
well completely understood. Herein, we used widely targeted
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metabolomic profiling of gut microbiota from mice of various ages
using UPLC-MS/MS. The impact of aging on the microbial
metabolome was also investigated. Based on PCA and OPLS-DA,
we observed significant differences inmetabolic features between the
young and old mice. In total, 63 metabolites were upregulated and
54 metabolites were downregulated in the old mice, belonging to ten
different KEGG classifications.

Interestingly, several secondary bile acids, including lithocholic
acid, ursodeoxycholic acid, isolithocholic and dehydrolithocholic
acid, were increased in old group. Conversely, conjugated bile acids
like taurolithocholic acid and taurohyocholic acid were
downregulated in this group. Secondary bile acids are produced
from primary bile acids excreted into the intestine under the action
of gut microbiota through dehydrogenation and decarboxylation
(Ridlon et al., 2006). Conjugated bile acids, formed by glycine or
taurine attaching to free bile acids, reflect both the host’s
physiological state and the composition of gut microbiota
(Guzior and Quinn, 2021). Wei D. et al. (2022) demonstrated
that the abundance of Escherichia coli increased significantly in
old mice, which enhanced the degradation of tauroursodeoxycholic
acid to taurochenodeoxycholic acid, the latter of which increase the
production of TMAO in the liver, yielding hepatic fat accumulation.
Various secondary bile acids associated with gut microbiota have
been implicated in the occurrence of various diseases such as
colorectal cancer (Cao et al., 2017), diabetes (Lamichhane et al.,
2022), and renal failure (Wang et al., 2020). Undoubtedly, these
results indicated that aberrant bile acid metabolism may reflect
changes in aging and suggesting that the gut microbiota-bile acid
regulation axis can be used to treat various age-related diseases.

Among the differential metabolites, we also observed disparities
in the abundance of various tryptophan metabolites, including
indole-3-lactic acid, indole-3-carbinol, and indole-3-ethanol.
Tryptophan, an essential amino acid, can only be obtained
through dietary intake. Once absorbed in the small intestine,
specific bacterial strains expressing tryptophanase enzymes can
break down tryptophan into indole derivatives within the gut.
These metabolites play a role in the immune system by activating
the aryl hydrocarbon receptor (AHR), promoting the host’s anti-
inflammatory response, which modulates homeostasis of the host
and gut microbiota (Roager and Licht, 2018). Studies have indicated
that the expression level of proteins involved in metabolism decrease
with age. Compared to infancy, a 50% decrease in relevant protein
levels was observed between ages 11–31, and a decrease of over 90%
was observed between ages 34–54 (Ruiz-Ruiz et al., 2020). This study
revealed that old mice had significantly lower levels of indole-3-
lactic acid and indole-3-carbinol compared to young mice.
Interestingly, research suggests that specific bacteria found in
breast milk and the infant gut can produce indole-3-lactic acid
in vitro and may also exert anti-inflammatory effects on intestinal
epithelial cells (Meng et al., 2020). Similarly, indole-3-carbinol was
reported to have beneficial effects. For instance, indole-3-carbinol
treatment improved local inflammatory responses in colitis mice,
thereby increasing the abundance of Gram-positive bacteria
producing SCFAs in the intestine (Busbee et al., 2020), and in a
model of staphylococcal enterotoxin-induced liver injury (Busbee
et al., 2015). Therefore, we postulated that alterations in tryptophan
metabolism may occur during aging and promote the generation of
inflammaging in a gut microbiota-dependent manner.

We systematically investigated global profile of gut microbiota
during aging. Although our study has revealed important clues,
there are some limitations that should be acknowledged. First, we
did not establish a causal link between age-related alterations in gut
microbiota or metabolites and inflammaging using functional
experiments. Furthermore, aging, as a specific intermediate
phenotype, may have specific effects on microbiota in certain
diseases (such as cancer). However, we did not investigate the
association between aging and diseases in this paper. Finally,
there are differences between humans and mice, implying that
mice-based studies may not accurately reflect changes in humans.

Conclusion

Overall, this study aimed to provide insights into the complex
interactions involved in organismal inflammaging through
microbial multi-omics. These findings lay a solid foundation for
future research aimed at identifying novel biomarkers for the clinical
diagnosis of aging-related diseases or potential therapeutic targets.
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