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Plant diseases are a critical driver of the global food crisis. The integration of advanced artificial intelligence 
technologies can substantially enhance plant disease diagnostics. However, current methods for early 
and complex detection remain challenging. Employing multimodal technologies, akin to medical artificial 
intelligence diagnostics that combine diverse data types, may offer a more effective solution. Presently, 
the reliance on single-modal data predominates in plant disease research, which limits the scope for 
early and detailed diagnosis. Consequently, developing text modality generation techniques is essential 
for overcoming the limitations in plant disease recognition. To this end, we propose a method for aligning 
plant phenotypes with trait descriptions, which diagnoses text by progressively masking disease images. 
First, for training and validation, we annotate 5,728 disease phenotype images with expert diagnostic text 
and provide annotated text and trait labels for 210,000 disease images. Then, we propose a PhenoTrait 
text description model, which consists of global and heterogeneous feature encoders as well as switching-
attention decoders, for accurate context-aware output. Next, to generate a more phenotypically appropriate 
description, we adopt 3 stages of embedding image features into semantic structures, which generate 
characterizations that preserve trait features. Finally, our experimental results show that our model 
outperforms several frontier models in multiple trait descriptions, including the larger models GPT-4 
and GPT-4o. Our code and dataset are available at https://plantext.samlab.cn/.

Introduction

   Plant diseases are one of the key factors in crop yield reduction; 
hence, effective diagnosis and management tools are essential 
for food security. According to statistics [  1 ], plant diseases 
reduce yields of crops such as wheat, rice, and corn by more 
than 17% and up to 30%. However, early detection of plant 
diseases is important to mitigate crop losses. Therefore, diag-
nosing plant diseases is essential for field management, and 
promoting computerized identification efficiently enables timely 
detection and diagnosis.

   To address the plant disease diagnosis problem, deep learn-
ing-based methods have become a mainstream solution for 
cost-effective disease management, replacing traditional manual 
diagnosis. These methods achieve high precision and fast diag-
nosis by utilizing large-scale data to learn high-quality disease 
phenotypic features, thereby adapting to various types of dis-
eases in different environments. In general, these deep learning-
based phonemic methods provide effective research ideas for 
plant disease diagnosis in smart agriculture. Specifically, phe-
notype-based methods for the diagnosis and management of 
plant disease identification, detection, and segmentation all 
show great potential.

   Visual networks, like convolutional neural networks (CNNs) 
[  2 –  4 ], visual geometry group (VGG) [  5 ,  6 ], and transformers 
[  7 ], are applied in the field of plant disease recognition. They 
also employ techniques such as transfer learning [  8 ,  9 ], deep 
feature fusion [  10 ], attentional mechanisms [  11 ], lightweight 
network design [  12 ,  13 ], and loss function optimization [  14 ] to 
enhance model accuracy. In plant disease detection, research-
ers commonly utilize techniques such as Nuru [  15 ], you only 
look once (YOLO) [  16 –  21 ], faster region-based CNN [  22 ], and 
DenseNet [  23 –  25 ] for locating diseases accurately.

   In the realm of plant disease segmentation, researchers uti-
lize methods including automatic image segmentation for pre-
cise delineation [  26 ,  27 ], semantic segmentation to accurately 
identify disease regions [  28 ], multiscale information processing 
to capture detailed features across different scales [  29 ,  30 ], and 
integrated learning frameworks aimed at comprehensive dis-
ease phenotype extraction from images [  31 ,  32 ]. Overall, these 
aforementioned recognition, detection, and segmentation stud-
ies can discriminate against crop diseases more accurately and 
locate them. However, due to the single source of data and 
simple usage scenarios, it is difficult for these methods to 
achieve effective plant disease diagnosis and management in 
real scenarios.
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   To address the single-modal problem, researchers explore 
the use of multimodal learning techniques to fuse information 
from a variety of sensors and data sources. These techniques 
are applied in medicine, human–computer interaction, smart 
agriculture, and large models.

   Although plant disease diagnosis shares similarities with 
medicine, the use of multimodal techniques is more effective and 
established in medicine than in plants. As shown in Fig.  1 , in the 
medical field, data from patients’ self-reported illnesses, medical 
instrumentation, and doctors’ analyses of their illnesses form a 
medical multimodal medical database, which provides support 
for intelligent diagnosis and treatment. Moreover, multimodal 
technology [  33 –  36 ] is used for learning these data to build arti-
ficial intelligence (AI) doctors [  37 ,  38 ] to assist doctors in all medi-
cal decisions and improve resource utilization. Overall, these 
multimodal methods show strong potential to handle complex 
datasets and cope with a wide range of environmental conditions, 
contributing to the efficiency and sustainability of production. 
In the field of botany, the application of text generation models 
primarily involves generating natural language descriptions, 
extracting key information from literature, and writing disease 
reports. Generative pretrained transformer (GPT) series [  39 –  41 ] 
models can provide descriptions of plant characteristics and diag-
nostic methods, helping users understand plants. Additionally, 
models like bidirectional encoder representations from trans-
formers (BERT) [  42 ] are used for quickly extracting important 
information from botanical literature. The application of these 
models enhances the efficiency of information retrieval and dis-
semination in plant research and education.        

   However, compared with strong AI doctors, the whole plant 
field lacks text description methods, which hinders the application 
of multimodal technology in plant disease. Therefore, con-
structing a plant disease text description method is extremely 
necessary.

   To this end, we propose a PlanText method to fill the gap, 
which can make the plant “speak” about its disease phenotype 
in this study. First, we collect 5,728 image phenotypic diagnostic 
reviews from 10 plant pathologists and hire 25 professionals in 
the field of plant diseases to annotate 21,000 new disease images 
with trait labels for PlanText model training and validation. 
Second, we propose a PhenoTrait text description model, which 
consists of a global and heterogeneous feature encoder and a 
switch attention decoder. The encoder extracts heterogeneous 
features and merges global features from disease images and 
description templates to provide a comprehensive representation 
of the data. The decoder uses heterogeneous features to dynami-
cally balance attention between visual and textual information 
to generate detailed and accurate feature descriptions, ensuring 
accurate and context-aware output. Third, we design a 3-stage 
masking-guided method to align plant phenotypes and trait 
descriptions. More specifically, we reconstruct the corpus in the 
first stage, to acquire the structural features of the discourse for 
the optimization of model performance. In the second stage, 
the model generates the specified corpus through phenotypic 
descriptors (e.g., “color” and “texture”). In the final stage, the 
discourse descriptions are generated by aligning the model’s 
visual and textual feature extractors. The core semantic structure 
is preserved during the generation process through these 3 stages, 
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Fig.  1.  Comparison between medical and plant disease diagnoses by humans and artificial intelligence (AI). (A) A doctor diagnoses a patient based on the patient’s 
history. (B) Medical instruments perform detailed tests, with recorded data training multimodal doctor models. (C) Plants are diagnosed using cameras and our model 
(PlanText). (D) Traits and phenotypes are aligned to generate large-scale multimodal plant disease diagnostic models. These multimodal models, initially developed for 
human healthcare, are now extended to plant disease diagnosis through our PlanText model.
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while image features are embedded into the generated text. We 
design a phenotypic trait label extraction method by searching 
for the optimal feature labels in the corresponding trait library 
and evaluate the generated phenotype descriptions by calculating 
their similarity to the real labels, which helps in validating the 
accuracy and professionalism of the generated labels. Finally, the 
comprehensive experiments show that our model outperforms 
GPT-4 [  43 ] as well as GPT-4o [  44 ], in terms of both semantic 
preservation and integration of visual information. Our model 
promotes the intelligent development of plant disease identifica-
tion and management, providing a new approach to botanical 
data augmentation.

   The contributions of this work are summarized as follows:
•  We propose the PlanText framework to improve the abil-

ity to generate detailed and accurate textual descriptions 
of plant disease phenotypes from images.

•  We build a multimodal image–text database of 21,000 
image–text pairs and 126,000 phenotypic labels for 63 
plant species and 310 diseases to aid in plant disease 
diagnosis and management.

•  We open-source contribute the PhenoTrait text descrip-
tion model that utilizes dynamic attention to generate 
accurate trait descriptions from disease images and text 
templates.

•  We design an innovative validation method for image 
description phenotypic trait label extraction to assess 
the accuracy of generated descriptions based on the 
corresponding phenotypic features.

Materials and Methods
   In this section, we introduce gradually masked guidance to 
align plant phenotypes with trait descriptions for disease image 
diagnostic text method (PlanText) in detail. The “ Dataset ” sec-
tion describes the dataset required for the experiment. The 
“ Methods ” section describes the framework of PlanText. The 
“ Object function ” section explains the objective function of 
PlanText with loss terms. The “ Phenotypic trait label extraction ” 
and “ Evaluation indicator ” sections report the details of the 
evaluation methods for the experiments.  

Dataset
   Both the construction of plant disease images and the labeling 
of datasets are crucial for improving the accuracy and efficiency 
of disease diagnosis. This process provides a basis for training 
and evaluating deep learning models to improve early disease 
detection and complex disease diagnosis, thereby increasing the 
efficiency of agricultural production. Research on deep learning 
recognition of plant diseases based on datasets is a captivating 
topic. For instance, the PlantVillage Dataset [  45 ] offers a collec-
tion of plant disease images with the aim of advancing research 
in plant disease recognition. The LifeCLEF [  46 ] plant observation 
data encompass images, sounds, and textual data for biodiversity 
monitoring and species identification research. Inspired by 
the application of computerized multimodal macromodels to 
medicine, medical professionals can quickly obtain diagnostic 
results from symptoms and medical device intelligence reports. 
Similarly, plant disease diagnosis can be obtained in real time 
from multimodal modeling. However, current datasets lack key 
textual descriptions of plant phenotypes, which hinders the 
application of large multimodal models for real-time plant 

diagnosis. To address this challenge, we employ a generative 
model of plant disease trait descriptions, augmenting expert-
provided statements to make them more comprehensive and 
applicable to a wider range of images. However, the current stud-
ies still suffer from the problem of insufficient model accuracy 
and data diversity. Therefore, we construct a comprehensive 
dataset that contains detailed plant disease images and labels to 
promote model training and enhance the accuracy and improve 
the reliability of disease diagnosis.  

Data source
   For pre-preparation, we collect a series of image datasets, which 
contain characteristics of plant pests and diseases. The image 
data comes from our PlantPAD [  47 ], filtering images from 
authoritative pathology sources, open-source community con-
tributions, and our accumulated field data. We also conduct 
in-depth studies of articles from authoritative pathology 
sources, providing detailed insights into trait characteristics 
such as color, tissue texture, and morphological changes.   

Expert annotation
   Our labeling work is divided into 2 steps as shown in Fig.  2 . As 
the first expert annotation, we consult 5 senior professors who 
are specializing in plant diseases, reference authoritative jour-
nals [  48 ], and books [  49 ,  50 ], for carefully analyzing disease 
image data. With their guidance and advice, we construct high-
standard plant disease annotation standards. The standards 
cover detailed features including color (black, green, yellow, 
brown, gray, red-brown, white), texture (spotted, striped, ring 
spot, netted spot, random spot), morphology (atrophy, wilt, 
rot, burn, perforation, normal), location (edge part of the blade, 
middle part of the blade), area (large area, middle area, small 
area), and address (field, lab). This comprehensive annotation 
not only enhances the specialization of the dataset but also 
improves the accuracy and the reliability of disease diagnosis. 
Meanwhile, in order to improve labeling efficiency and support 
multilanguage labeling, we develop a data annotation platform 
(the platform has built-in functions such as image display, text 
translation, and exporting of Word files; the code is at  https://
github.com/kej-shas/data-annotations ). Finally, we invite 10 
experts in the field to carefully analyze the images of plant dis-
eases, and 2 experts simultaneously mark the text annotation 
of each plant disease image.        

   After 10 days, we obtain 5,728 texts from 2,894 images of 
plant diseases. By analyzing the text annotation features marked 
by the experts, we extract the image trait features and utterance 
structure marked by the experts, ensuring that all preconditions 
for manual annotation are met.   

Human annotation
   In the second stage of the manual annotation process, to further 
enrich the dataset, we develop our platform for characterizing 
disease images, which facilitates annotation through text tem-
plates summarizing expert annotation information. We invite 
25 professionals in the field of plant diseases to analyze the 
images carefully with the expert annotation template informa-
tion and annotate the specific characteristics of each disease 
in each image. After 1 month of meticulous work, we create 
103,098 labels for 17,183 disease images, covering aspects such 
as color, texture, morphology, location, and area ratio. In this 
way, the accuracy and comprehensiveness of the dataset can 
then be ensured. Ultimately, we recombine these annotation 
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tags into the original expert text descriptions, resulting in more 
detailed and specific image text descriptions.

   The data collection and annotation efforts result in a com-
prehensive dataset of 17,183 plant disease images containing 
103,098 labels and 5,728 texts. As shown in Fig  3 , the dataset 
contains a variety of disease features including color, texture, 
morphology, location, and area ratio, ensuring a rich resource 
for training and evaluating deep learning models for plant dis-
ease diagnosis.            

Methods
PlanText framework
   To obtain consistent generation of plant disease image pheno-
types and trait descriptions, we propose the PlanText frame-
work, as Fig.  4  shows. First, the phenotype and the trait description 
template text are put into the PhenoTrait text encoding model 
for comprehensive and heterogeneous feature characterization. 
Second, the encoded features are fed into the decoder, which 
utilizes heterogeneous features and history constructs along 
with attention maps to generate detailed trait descriptions. 
Then, these descriptions are produced by dynamically optimiz-
ing the attention between image features and textual traits. In 
addition, we design a 3-stage mask bootstrapping strategy for 
training. Specifically, in the first step, disease phenotype images 
and text with masks are applied to reconstruct the proper 
names of feature descriptions and image phenotype traits. In 
the second step, we input phenotype labels with instructions 
and feature description templates to filter relevant features in 
the disease phenotype images according to the instructions. In 
the third step, the features of the disease phenotype images are 
aligned with the phenotype labels from the second step to com-
plete the alignment of the disease phenotype images with the 
phenotype label features. In the inference stage, we design a 
method to extract phenotypic trait labels. We employ a special 
token to populate trait text and generate a text template. This 
template is then used to search for trait description labels in 
the feature library, following the predicted sequence generated 
by the model. The similarity between the searched labels and 
the actual labels is calculated to measure the quality of the 

generated trait text. This approach ensures accurate metrics for 
evaluating the model. In addition, the template search allows 
us to control the labeling of all desired features, thus improving 
the applicability of the model.           

Global and heterogeneous feature encoder
   To extract the trait features of disease phenotypes for descrip-
tion generation, we design global and heterogeneous feature 
encoders. The main purpose of these encoders is to extract 
global disease image and description template latent variable 
information from the disease image and description text tem-
plate feature extractors. Heterogeneous feature extraction is 
also implemented to capture the cross-features between the 
image and text and enhance the decoder’s cross-focus on the 
difference features of the image and graphic text.

   Specifically, in the encoder module, as shown in Fig.  5 , we 
extract disease image features  Vi    and description template fea-
tures using pretrained image (Vision Transformer [ViT] [  51 ]) 
and text (GPT-2 [  40 ]) models, respectively. For disease image 
feature processing, we use a linear transformation  Wi    to map 
the features, which are extracted by disease image features, to 
a hidden space. The details are as follows:

    

where ReLU represents the rectified linear unit for nonlinearity 
and  Vi    is the output of the ViT [ 51 ]. Similarly, for the descrip-
tion template feature processing, we map the features to the 
same hidden space through linear transformation:
    

where ReLU represents the rectified linear unit for introducing 
nonlinearity and  Ti    is the output of the GPT-2 [ 40 ].        

   Next, we merge the disease image features and the descrip-
tion template features. After the linear transformation, we 
obtain the corresponding  Vs    and  Ts   . These features are concat-
enated and further processed with nonlinear activation to 
obtain the final global feature G:

(1)V �
i = ReLU

(
Wi ⋅Vi

)
,

(2)Ti
� = ReLU

(
Wt ⋅Ti

)
,
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Fig. 2. The 2 processes of dataset construction. Step 1: Two experts annotate diagnostic texts for the same image, extracting commonly used disease image description labels 
and generating expert-diagnosed text templates. Step 2: Employing crowdsourcing techniques, we manually label images and filled in labels into the templates, resulting in 
the creation of a comprehensive dataset.
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where  Wa   ,  Wb   ,  Wab   , and  Wac    are the learnable weight matrices 
of the model for feature transformation and fusion.

   Furthermore, these features are fused by tandem operations 
and further nonlinear activations to obtain overall strong fea-
tures. After summarizing the disease crossover features, we 
propose a multiple attention mechanism to align the descrip-
tion template features with the disease image features. After 
obtaining the aligned features, we project the concatenated 
features through linear transformation  Wp    to obtain the final 
heterogeneous features:

    

    

where MultiheadAttention refers to the multihead attention 
mechanism,  Glast    is the output feature of the last layer of GPT-2 
[ 40 ], and  Vlast    is the output feature of the last layer of the ViT 
[ 51 ]. The 2  Vlast    are the same to simultaneously use the same 
visual features in the multihead attention mechanism, enhanc-
ing the capture of relationships between images and text, origi-
nating from the feature maps of the image or the output of the 
encoder, and  Wp    is a parameter matrix used to map the spliced 
features to a new feature space.

   Overall, we focus on obtaining both global and heteroge-
neous features through feature alignment and fusion tech-
niques. We also reduce the complexity of description template 
generation by focusing in depth on image feature generation 
through text-guided modeling phenotype and trait alignment. 
External text and heterogeneous disease image features are also 
proposed to divide the trait text description task in the decoder 
into professional text generation and disease image feature 
description selection.   

Switch attention decoder
   In the phenotypic trait alignment task, integrating heteroge-
neous image and text features poses challenges, particularly 
due to the long-distance dependencies between subtle image 
features and textual descriptions. Traditional attention mecha-
nisms struggle to dynamically balance these contexts, often 

resulting in inaccurate descriptions. As shown in Fig.  6 , the 
conventional model for describing image features incorporates 
adaptive attention [  52 ], long short-term memory (LSTM), 
image attention, and residual networks to generate textual 
descriptions step by step. However, when the text becomes 
overly complex, there is a tendency to prioritize fitting the text 
features at the expense of capturing the image phenotype fea-
tures. To address this problem and facilitate dynamic switching 
between image and text contexts, we propose the switch atten-
tion decoder. This mechanism incorporates switching to effec-
tively balance multimodal information, enhancing the accuracy 
and context awareness of disease descriptions.        

   To convert the words and images in the text into dense vec-
tor representations, we obtain word embedding vectors from 
a pretrained word vector model and the mixture of hetero-
geneous features (H in Fig.  6 B). At each time step t, the current 
word embedding vector is concatenated with the global image–
text fusion feature fused to form the input  xt    for the current 
step. This step aims to combine contextual information with 
image–text information.

   We employ LSTM networks [  53 ] for decoding. These net-
works operate by taking the current time step’s input  xt    along 
with the previous time step’s state information  ht−1   . The LSTM 
then produces the current time step’s  ht    (hidden state) and 
updates states (cell state) accordingly.

     

   In order to enhance the model’s ability to capture long-
distance dependencies in text, the assisted attention mecha-
nism and the selection block need to determine when to 
focus on which parts of the disease image. The model intro-
duces a gating mechanism, where  gatet    is obtained through 
linear transformation and the sigmoid activation function. 
The gate is used to determine whether to retain information 
from the current cell state, generating the sentinel vector  st   . 
The vector can be used in subsequent attention mechanisms 
to help decide when the model should focus on which parts 
of the disease image, and the details are as follows:

    

     

   To achieve dynamic regulation of attention allocation, 
enhance the fusion of heterogeneous data such as image and 

(3)Vs =Wa ⋅ V
�
i , Ts =Wb ⋅ T

�
t ,

(4)G = ReLU
(
Wac ⋅ReLU

(
Wab ⋅Vs+WabTs

))
,

(5)aligned_ features =MultiheadAttention
(
Glast,Vlast,Vlast

)
,

(6)
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(
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)
,
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(

xt , states
)

.

(8)
gatet = �

(
affinex

(
dropout

(
xt
))

+affineh
(
dropout

(
ht−1

)))
,

(9)st = gatet × tanh
(
cellt

)
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   Fig. 3.   Comprehensive display of trait descriptions and word cloud. 
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text contexts and enhance alignment between phenotypes and 
traits. As shown in Fig.  6 , the switchable attention mechanism 
enhances traditional attention by introducing a switch value 
that dynamically controls the balance between image and text 
contexts. This mechanism reaches balance using computing 
attention scores between query and key vectors, scaling them, 
and applying a sigmoid activation to obtain attention weights. 
These weights are modulated by the switch value, enabling the 
model to selectively attend to relevant information from both 
modalities. This mechanism facilitates the effective fusion of 

multimodal features, enabling more robust and context-aware 
caption generation in complex tasks like image understanding 
and description. The details are as follows:
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extraction. The PhenoTrait model extracts features from disease images and descriptions with encoders and a switch attention decoder. The stepwise masking technique aligns 
phenotypes and traits by revealing concealed text, ensuring accurate descriptions. The template search method improves model evaluation and labeling control. PlanText is 
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where  Q′    and  K ′    represent linearly transformed query and key 
vectors, respectively.  Ws    is the linear layer for the switch value 
computation, and ⊙ denotes element-wise multiplication.  V ′

I
    

and  V ′
T

    are the visual and textual features split by the global 
feature G from the encoder layer, respectively.

   In order to integrate multiple attention mechanisms and mod-
ules, the generated outputs are optimized to enhance the perfor-
mance and effectiveness of the model in complex multimodal 
tasks. The selection block that we propose in our model combines 
various attentional mechanisms, including a sentinel mechanism 
for capturing distant dependencies, switchable attention for 
dynamically balancing image and text contexts, and image spatial 
attention for focusing on salient visual features. These compo-
nents are integrated to generate final scores for output captions, 
allowing the model to effectively leverage multimodal informa-
tion and produce accurate and context-aware captions in diverse 
scenarios. The specific expression is as follows:

    

    

    

    

    

    

    
where  ⊙    denotes element-wise multiplication and [:,:,−1] 
selects the last column of  �extt     to obtain  �t   .  Wv   ,  Wg   , and  Ws    are 
the linear layers.  Shat    denotes visual and text switches,  ht    denotes 
LSTM hidden values, and  st    is the sentinel module feature.   

Gradually masked guidance
   In the field of botany and computer vision, there is a demand for 
accurate descriptions of plant diseases. Traditional image descrip-
tion models compute losses in text during the decoding stage and 
focus on text generation to maximize scores, leading to a sub-
stantial reduction in attention to image features. This limitation 
hinders practical applications such as accurate disease diagno-
sis in plant images with limited datasets or accurate description 
of plant diseases based on visual features. As shown in Fig.  7 , 
we adopt the PlanText framework with a 3-stage strategy: a 
simplified visual extractor module (Mv), a text extractor mod-
ule (Mt), and a heterogeneous extractor module (Mh). We 
introduce a gradually masked guidance mechanism and lever-
age multimodal characteristics. The process primarily involves 
3 key steps:

1.  Random text mask. This is done in order to quickly 
acquire the basic ability for reconstructing image–text 
features and generate text. We replace some of the trait 
feature words in the expert-labeled trait description text 
with the character “{mask}”. The model performs sen-
tences that are repaired and reconstructed by disease 
image features with switch attention switch-related dis-
ease image phenotypes and utterance templates.

By incorporating this masking strategy, we enhance the 
model’s capability to generate accurate descriptions from 
images, which in turn enables the final model to effec-
tively shift its attention among various phenotypic fea-
tures, leading to improved textual descriptions that align 
closely with the underlying visual information.
2.  Image feature mask. After the previous step, we train the 

model to learn instructions that encompass both compre-
hensive and specific phenotype and trait label alignment 
features. Specifically, in GPT-2, the input phenotype label 
text simulates visual features (Ms), which simplifies the 
model’s task of learning commands to enhance alignment 
between image phenotypes and trait description labels. 
We replace “{mask}” in the description template section 
with feature description commands (such as “{color}”, 
“{texture}”, and “{morphology}”) to reconstruct the origi-
nal sentence based on the phenotypic labeling. The forced 
text extraction module (Mt) learns the features of the 
sentence template. We train the switch attention module 
to turn off textual description templates when encounter-
ing trait description commands.

This stage enhances the model’s overall capability by increas-
ing dynamic attention switching between images and text. It 
also improves the alignment of phenotypes and traits, con-
tributing to more accurate and relevant descriptions in plant 
disease identification.
3.  Text instruction-level mask. In the final stage, we achieve 

precise alignment of image and text features to enable 
the model to accomplish the final task of trait-accurate 
description. We freeze the Mt module and extract image 

(12)Shat = S⊙ V �
I + (1−S)⊙ V �

T
.

(13)zt =Wh ⋅ tanh
(
Wv ⋅Shat+Wg ⋅ht⊙1T

)
,

(14)zextt = wh ⋅ tanh
(
Ws ⋅ st +Wg ⋅ht

)
,

(15)�extt = softmax
([
zt ,z

ext
t

])
,

(16)�t = �extt [: ,: ,−1],

(17)�t = softmax
(
zt
)
,

(18)Chat = �t ⋅ st +
(
1−�t

)
⋅ �t ⋅ Shat,

(19)scores = mlp
(
dropout

(
Shat+Chat+hiddens

))
,

LSTM

Select 

MLP

Switch Attention

G

H

LSTM

MLP

Attention
V

ht−1

Y t−1

ytyt

argmaxargmax

Word embeddingWord embedding

SentinelSentinel

argmax

Y t−1

ht−1 ht

Adaptive attention Switch attention

ht

V: visual features
G: global feature
H: heterogeneous feature 
ht−1: 
Y t−1: 

A B

Fig.  6.  Comparison of different attentional decoders. (A) The adaptive attention 
[52] model is used to select important features dynamically among the given image 
region features to enhance the accuracy of description generation. (B) Our switch 
attention decoder further enhances multimodal feature fusion by introducing a 
switching mechanism that dynamically balances between image and text contexts 
to generate more accurate and context-aware descriptions.
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features using ViT [51]. The visual feature extraction 
module Mv is responsible for mapping the image features 
to the original text feature extraction. Meanwhile, the 
Mf module integrates the features extracted by the Mv 
and Mt modules. In this learning stage, we use the visual 
extraction Mv module to align outputs. Initially, atten-
tion focuses on activating image features to align with 
phenotypic features from images and descriptive text 
labels. When attention shifts to textual description fea-
tures, the Mt module preserves core semantic structures.

This phase substantially enhances the model’s ability to 
dynamically switch between image and text, resulting in 
tightly aligned descriptions that reflect expert knowl-
edge and terminology.

   In summary, key text features are extracted from plant disease 
sentence templates using level-by-level mask guidance to recon-
struct discourse and access expert logic and domain-specific 

terminology. Extracting trait feature text from plant disease 
images ensures that the generated descriptions are tightly aligned 
with labeled instructions. The utility and reliability of the model 
are progressively improved.    

Objective function
   In the first step of feature learning, our objective is to utilize 
image features for sentence restoration and reconstruction based 
on expert-annotated text inputs, aiming to rapidly acquire fun-
damental abilities in integrating textual and visual features and 
generating text. We can express the objective function of this 
step as minimizing the cross-entropy loss, where  lbs    represents 
the cross-entropy loss:
    

In the second step of image feature learning, our objective is to 
train the model to fill in missing parts of the original sentence 

(20)Object1 =minlbs, lbs = −
∑

i

yilog
(
ŷi
)
.

Red-brown, random spot,
burn, middle area, field

This is a {color} infested 
leaf with {texture}, the l
eaf shows …with 

GPT2

GPT2

This is a {color} infested 
leaf with {texture}, the l
eaf shows …

ViT

GPT2

This is a red-brown infest
ed leaf with random spot,
the leaf shows …

This is a red-brown infest
ed leaf with random spot,
the leaf shows …

Both sides of the ellipsoi
d {mask} leaf has 5% br
own spots and …

ViT

GPT2

Both sides of the ellipsoi
d green leaf has 5% brow
n spots and …

Sentence reconstruction learning and fine-tuning pretrained models

Template sentence fill-in task learning

Text template-guided image feature description

Red-brown, random spot,
burn, middle area, field GPT2

Freeze model

Hot model

Fig.  7.  The PlanText gradually masked guidance. 1) Random text masking, used for training the basic image–text integration model. 2) Image feature masking, replacing 
phenotypic features of images with trait labels to enhance textual descriptions. 3) Text instruction-level masking, precisely aligning image features with text descriptions to 
generate accurate descriptions of plant diseases. This strategy utilizes progressive masking and attention-switching mechanisms to improve diagnostic capabilities.
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based on features, compelling the Mt module to learn the fea-
tures of sentence templates to generate more realistic sentences. 
The loss function in this step is the same as in the first step:
    

In the final step, our objective is to align the features of text and 
image to enable the model to successfully accomplish the final 
description task. We adopt the cross-entropy loss  lfs    as the 
objective function to validate the generated results and intro-
duce the central moment discrepancy (CMD) loss  lfv    to maxi-
mize the difference in image feature extraction. The loss 
function can be expressed as
    

    

where N is the number of samples,  ‖⋅‖2    represents the L2 norm 
(Euclidean distance).  ynew    is the output of the Mv module, and 
 yold    is the output of the Mv module in the second step.

   By concatenating the values of the 2 loss functions, we intro-
duce 2 hyperparameters,  �    and  �   . The final objective function 
can be represented as

     

   The loss functions of each stage are similar in form, such as 
the cross-entropy losses  lbs   ,  lts   , and  lfs   , which allows them to be 
combined during optimization. To maintain the values of dif-
ferent loss functions on the same order of magnitude, we per-
form normalization. In the third stage, we eliminate the 
difference between the CMD loss  lfv    and the cross-entropy loss 
 lfs    by introducing the hyperparameters  �    and  �   . Thus, the final 
objective function can be expressed as

        

Phenotypic trait label extraction
   To improve the effectiveness and accuracy of text generation in 
all image captioning tasks, we design a phenotypic trait label 
extraction method, which is a template search inference method. 
First, we define a series of templates; each one specifies the 
desired structures and requirements for the generated text. 
During the text generation process, these templates guide the 
model to produce text that adheres to their specifications. Finally, 
we refine and validate the generated phenotypic feature labels to 
ensure that the output texts accurately reflect the structures and 
the requirements specified by the template.  

Template search
   Template search prediction algorithms are used to search for 
specific disease trait texts from generic descriptors (e.g., “color”) 
from a feature lexicon. As depicted in Fig.  8 , first, the input 
image is converted into a feature vector by an encoder. Then, 
the algorithm makes a deep copy of the description template 
texts and initializes relevant variables, including descriptor 
tokens for text traversal and a library of cached feature 

descriptions. These descriptor token dictionaries convert 
descriptors to their corresponding token values (e.g., “color” is 
indexed at 256; i.e., it is the 256th position in the sequence of 
the thermally encoded-word base, where token = 256).           

Label extracting
   Label extracting is applied to sort the scores of the labels in the 
thesaurus searched from the trait thesaurus to get the best trait 
description label. The algorithm progressively traverses each 
character of the template text, with the current character as  ti   , 
looking for a specific descriptor token. When the descriptor 
token  Ci    is found, the current caption sequence is updated, i.e.,
    

 tlast    is the starting position of the last traversal to the descriptor 
tokens in the text template. Then, the disease features extracted 
by the encoder and the current caption are inputted into the 
decoder to generate the word bank weights for the next step. 
According to the decoder model, the dimensions of the results 
are adjusted and the results are token-sorted.   

Template filling and costing
   Template filling and costing generates completed utterances by 
filling tags into the description and quantifies the cost that the 
model needs to acquire each tag acquisition for the utterance 
combined with the image features to get the best result for each 
model. During the trait key search, the algorithm traverses all 
the trait labels of the descriptor feature description library and 
searches for these labels in the sorted results. After a successful 
match, the current key value is updated and its index value is 
recorded to calculate the search cost (i.e., how many traversals 
are needed to find the current trait label). For example, when 
encountering the “color” descriptor, the method traverses its 
feature library to find the red, yellow, brown, etc., trait labels 
and searches for these labels in the output. The number of tra-
versals that is required to find these labels is recorded as the 
cost, along with the cost and the weight of the current label.   

Efficient caching mechanism
   To improve the efficiency of the algorithm, we design a cache 
logic processing to optimize computation and storage. After 
updating each caption, we traverse to the same descriptor char-
acter to retrieve the cached results of generated trait labels. The 
caching mechanism implements an efficient system to store 
computed results and speed up computation. For example, 
generated disease feature labels are cached to avoid repeated 
calculations of the same descriptors, thus improving the algo-
rithm’s operational speed.

(21)Object2 =minlts, lts = −
∑

i

yilog
(
ŷi
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Fig.8. The phenotypic trait label extraction diagram, incorporating trait label search. 
It maps images to feature vectors, dynamically updates captions through template 
traversal, and efficiently searches for trait labels to refine results.
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   Refer to Algorithm 1 for the specific algorithm. In simple 
terms, we first initialize an empty text sequence C and then 
iterate through the words of the input text X one by one. 
Whenever we encounter the start marker of a paragraph, we 
extract the words from the previous marker or text to the 
current position, forming a new paragraph  Pi   . We use the 
model to generate text for this paragraph, then fill in the key-
words as needed, and finally add the complete paragraph to 
the sequence C. We repeat this process until the end of the 
text, obtaining a complete text sequence C containing all the 
filled content ultimately.    

Evaluation indicator
   Traditional automated evaluation metrics (e.g., Bilingual Evaluation 
Understudy [BLEU] [  54 ], Recall-Oriented Understudy for Gisting 
Evaluation [ROUGE] [  55 ], and Metric for Evaluation of Translation 
with Explicit Ordering [METEOR] [  56 ]) are mainly used for 
evaluating machine translation and summary generation of 
plain text. These metrics cannot accurately judge image descrip-
tion generation tasks because they ignore the importance of 
image content to the description text, especially the lack of 
image description validation in the case of, e.g., plant disease 
trait descriptions and abstract descriptions. To address this 
problem, we have innovatively devised a technique called the 
phenotypic trait label extraction verification method. The 
method employs a phenotypic trait label extraction method 
that guides the model in generating the specific feature descrip-
tion labels we need, allowing us to evaluate the generated results 
more accurately.

    

   We adopt mathematical formulas to quantify the valida-
tion process. Suppose we have a set of disease feature labels 
 L =

{
l1,l2,… ,ln

}
   . Meanwhile, we have a database containing 

known disease features, denoted as  D =
{
d1,d2,… ,dm

}
   , 

where m is the number of disease features in the database. 
We define a validation function  V

(
li
)
   , which is used to deter-

mine whether the feature label  li    is accurate:
    

where  sim
(
li,di

)
    represents the similarity between the feature 

label  li    and the disease feature  di    in the database. The value range 
of  V

(
li
)
∈ [0,1]    represents the degree of accuracy of the feature 

label. The minimum value of  V
(
li
)
    is 0, indicating that the fea-

ture label is not similar to any feature in the database. The maxi-
mum value of  V

(
li
)
    is 1, indicating that the feature label is 

identical to a feature in the database.
   The proposed similarity can be calculated based on the 

semantic content of the feature labels and disease features in 
the database. By computing the average similarity between all 
disease feature labels and features in the database, we can obtain 
an accuracy score indicating the overall accuracy of the feature 
labels obtained through the template search method. The man-
ually labeled tags in the dataset tend to favor simple descriptive 
words. In the experiment, we simplify the sample space and 
feature library, making  L = D   ; that is, the feature search library 
is equal to the manually labeled feature library, ensuring maxi-
mum consistency of features.    

Results

Experimental details
   In the experiment, we adopt PyTorch version 1.12 and train 
the model on an Nvidia A40 graphics processing unit. The 
training dataset consists of 2,360 images and over 20,000 
manual labels. We use the stochastic gradient descent opti-
mizer for model optimization, setting 20 epochs and a batch 
size of 32. For the final objective function  Object3   , we adopt 
the hyperparameters  � = 1.2    and  � = 0.7   . Through the appli-
cation programming interfaces of OpenAI, we compare the 
performance of our model with cutting-edge different imple-
mentations describing generative models on several metrics, 
validating the superior performance of our model.   

The validation of PlanText
Performance comparison
   To validate the comprehensive performance, we compare the 
proposed PlanText with adaptive attention [ 52 ], LSTNet [  57 ], 
GPT-4o [ 44 ], GPT-4 [ 43 ], ClipCap [  58 ], and Bootstrapping 
Language-Image Pre-training (BLIP) [  59 ] models, and to ensure 
professionalism in this experiment, the textual part of our model 
is inputted using empty strings, and guided search templates 
are not present in the training set. According to  Table , we can 
conclude 3 points.

   Firstly, the unique design-space perception of the tradi-
tional excellent image description generation model LSTNet 
[ 57 ] allows it to perform well over regions, areas, and geo-
graphic locations of the disease. With the large models GPT-4o 
[ 44 ] and GPT-4 [ 43 ], the large model has high-performance 
scores on several feature descriptions but performs poorly on 

(27)V
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,
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texture due to the lack of knowledge learning of pathology 
images. 

   In comparison, while BLIP [ 59 ] excels in color (53.23) and 
texture (62.36) metrics and ClipCap [ 57 ] performs well in sev-
eral areas, our model obtains better results on all metrics, 
particularly in morph (56.69), area (73.39), and Addr (92.56). 
This demonstrates the effectiveness of our method in construct-
ing a robust strong link between image phenotypes and trait 
descriptions, substantially enhancing the quality of generated 
descriptions.

   Secondly, the experimental results clearly show substan-
tial differences between various shape descriptions. Detailed 
research on the results generated by different models reveals 
that disease locations on the leaf, area, and geographical loca-
tion perform better because these 3 features have larger dis-
tances, making the descriptions easier to distinguish. However, 
features such as color, texture, and morphology have smaller 
distances, making it difficult to distinguish multiple features, 
such as ring spots, netted spots, and random spots. ClipCap 
[ 57 ] and BLIP [ 59 ] utilize the Common Objects in Context 
(COCO) [  60 ] dataset for model pretraining, achieving good 
results in color and texture. Meanwhile, on the BLEU, ROUGE, 
and METEOR metrics, our model performs slightly lower than 
ClipCap [ 58 ] and BLIP [ 58 ] on the ROUGE metric, mainly due 
to the attention-switching mechanism affecting the generation 
capability of longer sentences. However, our model shows 
marked advantages in BLEU and METEOR. Our 3-stage 
approach can somewhat overcome this issue. On the one hand, 
the switch-select attention mechanism enhances the embed-
ding of descriptive text into the image descriptions. On the 
other hand, the model aligns the image phenotypes and traits 
by using a common feature space between trait labels and image 
samples to achieve better alignment.

   Finally, traditional models face substantial challenges in 
plant description. One reason is the lack of large-scale image–
text datasets similar to COCO [ 60 ] (over 330,000 images, 
200,000 labeled images, 5 captions per image). Additionally, 
while large models can serve as auxiliary tools, they often 
cannot address specific issues in vertical domains. Therefore, 
our approach is necessary to obtain better image descriptions 
that can assist in database creation, knowledge graph con-
struction, and the development of multimodal models for 
plants.   

Text-guided ablation
   To confirm the effectiveness of text bootstrapping for the model, 
we conduct a validation experiment.

   We remove the text feature extractor from the model during 
training, employing 4 different template sentences with the tem-
plate search validation method for a comparative experiment to 
compute the cost of searching for trait labels. We test 600 images 
of diseased leaves by extracting 6 phenotypic trait labels sorted 
by the cost required to extract them to the correct answer. The 
model with text guidance has a cost of 1 for disease in leaf posi-
tion and shape and 0 for everything else, while the model without 
text guidance has a cost of 14 for color and 0 for area. As shown 
in Fig.  9 , the model with textual guidance requires a substantially 
lower cost than the model without textual guidance. This effec-
tively illustrates that text steering helps the model to understand 
the image content better and reflect this understanding in the 
generated feature markers. On the other hand, we can see that 
the maximum value of the cost of using the text to guide the 
model to search for the correct labels is 2. This shows that our 
model obtains the best robustness on feature labels, and further 
demonstrates that our model makes it possible for the model to 
pay better attention to the dynamic balance between the disease 
image and the text by switching the attention on and off. Thus, 
text bootstrapping plays an active role in generating feature 
markers and improves the model’s performance in the task of 
image phenotype description.           

Visualization analysis
   In order to study how attentional mechanisms are involved in 
recognizing lesion areas on plant leaves, we generate a heat map 
of the self-attention matrix from the switch attention module 
in the decoder part of PlanText. As shown in Fig.  10 , these heat 
maps reflect the focus of the model’s attention on the image 
under the current text instruction. First, comparing the origi-
nal image with the attention heat maps of the instructional 
commands, we clearly observe marked hotspots in specific 
regions of the leaf image for different commands. The reason 
is that our model is able to effectively focus on critical regions 
during image processing, thus enhancing its ability to recognize 
plant diseases, proving the effectiveness of the switch attention 
mechanism we employed. Second, comparing the heat maps 
of different trait descriptors, our model’s image-switch attention 
effectively focuses on specific regions in each trait label 

Table. Comparison between the frontier model and our model on several phenotypic characteristics. Our model is better in several indica-
tors (boldface highlighting the best outcomes).

Model Color Texture Morph Sit Area Addr B@4 R-L M

 Adaptive [ 52 ]  14.35  42.41  9.74  65.84  46.82  77.74  14.32  8.65  9.17

 LSTNet [ 57 ]  21.03  11.17  19.77  83.54  44.66  89.26  25.12  28.25  16.85

 GPT-4o [ 44 ]  32.05  36.58  29.86  61.33  42.31  84.22  ND  ND  ND

 GPT-4 [ 43 ]  31.19  48.62  16.51  73.39  44.95  77.98  ND  ND  ND

 ClipCap [ 58 ]  47.70  57.83  38.79  82.37  60.37  85.59  32.32  34.35  32.86

 BLIP [ 59 ]  53.23  62.36  25.90  72.38  44.42  57.15  52.71  45.85  44.34

 Ours  32.11  48.62  56.69  83.34  73.39  92.56  68.88  32.26  54.50 

B@4, BLEU-4; R-L, ROUGE-L; M, METEOR; ND, no data
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A B

Fig. 9. Text-guided ablation, search cost map with text-guided (A) and without text-guided (B) modeling; the horizontal coordinate indicates the ID of the images (0 to 600), 
and the vertical axis represents the search cost, where higher values indicate increased search difficulty. Our model through the template search tags has a search cost. (The 
token search number refers to the number of tokens needed to locate the first tag. A higher search cost indicates a longer time required for the search. When the model relies 
heavily on image phenotype features, it may yield fewer distinct outputs. Consequently, as the search cost increases, the model is more likely to produce duplicate text and 
may neglect extensive extraction of image phenotypes.)
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extraction task. This demonstrates that our model performs 
well in the disease recognition task, with the switch atten-
tion mechanism playing a key role in ensuring the accuracy 
and robustness of the model. All in all, these observations 
further strengthen our understanding of our model’s perfor-
mance and provide strong support for the switch attention 
mechanism we employed.            

Application generalizability
Trait analysis of different diseases in apple
   To validate the applicability of our model to a single plant, as 
shown in Fig.  11 , we evaluate it on various apple diseases, 
including round spot, rust, gray spot, powdery mildew, scab 
disease, nitrogen deficiency, leaflet disease, black rot, phospho-
rus deficiency, spotted leaf litter, and herbicide phytotoxicity. 
During this evaluation, we compare our model’s performance 
to that of the highly regarded GPT-4 [ 43 ].        

   Across various apple diseases, our model demonstrates clear 
advantages. First, in terms of trait attributes, our model only 
slightly lags behind GPT-4 [ 43 ] for some specific disease traits, 
demonstrating its high information dimension and clear pre-
sentation of disease distribution on different apple leaves. 
However, when considering multiple apple diseases, our model 
outperforms GPT-4 [ 43 ] in all cases, thanks to its image-switch 
attention mechanism, which allows for more accurate differ-
entiation between diseases. Additionally, during testing, our 
model achieves a recognition speed of 12 frames per second 
on an Nvidia A10 graphics card, indicating lower cost and 

higher recognition speed, providing comprehensive, fast, and 
practical support for research and management decisions.   

Trait analysis of powdery mildew disease in different plants
   To assess the robustness of our model in identifying individual 
diseases, we evaluate the powdery mildew disease on various 
plants such as cherry, pumpkin, zucchini, bean, apple, peanut, 
hops, cucumber, melon, and Chinese toon, as shown in Fig.  12 . 
In the powdery mildew disease of different plants, the stacked 
bar chart accurately depicts the description accuracy of our 
model’s 6 features, while the line chart shows the cumulative 
accuracy of our model and GPT-4 [ 43 ] (to strengthen the 
experiment, we use strict accuracy instead of similarity, mean-
ing the feature label similarity can only be 0 or 1, with the 
cumulative accuracy ranging from 0 to 6).                        

   First, in terms of trait attributes, the stacked bar graphs show 
that although there is still room for improvement in recogniz-
ing morphological and area traits, the overall performance of 
our model is substantially better than that of GPT-4 [ 43 ], espe-
cially in terms of cumulative descriptive accuracy for various 
plant diseases. Second, comparing the accuracy of cumulative 
trait descriptions, our results outperformed GPT-4 [ 43 ] in 
terms of powdery mildew per plant. These 2 results effectively 
demonstrate that our model exhibits high accuracy in describ-
ing powdery mildew on different plants. Finally, when con-
sidering multiple apple diseases, our model outperforms 
GPT-4 [ 43 ] in all cases. This phenomenon demonstrates the 
robustness of the model in terms of trait and phenotype 
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This is a yellow leaf with random spot, the leaf shows atrophy symptoms, random spot is distributed on the leaf surface of middle part of blade, occupying about 
large area of the leaf, this photo was taken at field.

This picture shows a leaf of black with netted spot on it, the state of the leaf is atrophy, netted spot is found mainly on the leaf surface of edge part of blade, which 
takes up about large area, this leaf is found in field.

This photo shows a green leaf that is striped, atrophy at the leaf, striped part covering edge part of blade of the leaf surface and probably taking up middle area of the 
leaf, this leaf was photographed at lab.

Large area

Fig. 10. Switch attention visualization.
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alignment across plants, while also demonstrating a variety of 
different shortcomings.    

Defect analysis
Defect display of PlanText
   To compare the effectiveness of different methods in describing 
the same disease pictures, we assess their performance in per-
ceiving different types of attributes from a qualitative perspec-
tive. We selected several cutting-edge models to describe 
disease pictures, including adaptive attention [ 52 ], LSTNet [ 57 ], 
and GPT-4 [ 43 ] models and our PlanText model. We perform 
a qualitative analysis of the descriptions generated by each 
method, focusing on attributes such as color, region texture, 
and pathology morphology in the descriptions.

   Based on the results in Fig.  13 , we find that the methods per-
form relatively poorly in 3 attributes: color, region texture, and 
pathological morphology. This finding may be attributed to 
the model’s inadequate understanding of the subtle features of 
the plant in the image. First, in terms of color, there may be 
similarities with the background or variations in color due to 

lighting conditions, which makes it difficult for the model to 
accurately distinguish the true color of the corn leaf. Second, 
regarding area texture, leaf surfaces may exhibit complex texture 
structures and be affected by occlusion from other objects or 
interference from complex backgrounds, making it difficult for 
models to accurately capture texture details. In addition, the 
pathological morphology of leaves may be affected by disease, 
natural growth, or other factors that result in morphological 
changes or abnormalities, making it difficult for models to accu-
rately characterize the true morphology of leaves. As a result, 
these factors combined affect the model’s ability to accurately 
identify features such as color, regional texture, and pathological 
morphology, resulting in lower scores.

   In conclusion, our experiment shows that the existing meth-
ods have deficiencies in recognizing the color, regional texture, 
and pathological morphology of plant leaves in images.   

Data defect
   The accuracy and consistency of data labeling are critical to 
model performance. However, in practice, due to the subjectivity 

Fig. 11. Our model’s results in assessing various apple diseases.
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of the annotators and the diversity of descriptions, data annota-
tion often suffers from inconsistency, which affects the training 
effect and prediction accuracy of the model. In order to evaluate 
the performance of the models under different labeling condi-
tions, we select 4 different models for the experiments, including 
adaptive attention [ 52 ], LSTNet [ 57 ], GPT-4 [ 43 ], and our self-
developed model. Each model is labeled and tested in 6 aspects: 
color, texture, morphology, location, area, and address, respec-
tively. Additionally, we introduce a trust label as a reference to 
evaluate the labeling accuracy and consistency of the models.

   Fig.  14  shows the labeling results of each model for different 
features. Specifically, the adaptive attention [ 52 ] model 

blurrily distinguishes between gray and yellow in color anno-
tation. The LSTNet [ 57 ] model confuses stripes and wilts in 
texture annotation. The GPT-4 [ 43 ] model makes an error in 
annotating random patches in recognizing burned texture, 
and our self-research model correctly identifies white patches 
in color labeling. Through comparative analysis, we find that 
inconsistencies and vague descriptions in manual annotation 
lead to mismatches between phenotypes and traits. Specifically, 
during manual annotation, humans may favor visual impressions 
of color and texture, potentially overlooking widespread disease 
coloration. In contrast, the model relies solely on historical 
images for judgment, resulting in discrepancies between model 
predictions and manual annotation results. To address the prob-
lem of data labeling, we explore active learning methods to opti-
mize the model training process by selectively labeling difficult 
and critical samples through continuous interaction with the 

Fig. 12. Our model’s results on powdery mildew disease across different plants.

   Fig. 13.   Comprehensive model evaluations on leaf disease detection.

   Fig. 14.   Detailed analysis of model performances.
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model. At the same time, an incremental labeling strategy is used 
to gradually improve and refine the labeled data to adapt to the 
needs of the model and the changes of new data.     

Discussion

Model development and performance
   In this study, we develop a phenotype and trait description model 
that gradually masks bootstrap images to align plant disease text. 
To synchronize the gaps in the plant disease multimodal training 
dataset, we collect 21,000 disease images for annotation to con-
struct a large and rich dataset. Ultimately, we use this dataset to 
train our model to effectively characterize the features and condi-
tions of plant disease images based on the given images and 
templates guiding description generation.

   Experimental results show that our model is well trained 
using global and heterogeneous features to switch attention and 
dynamically balance disease phenotypic trait descriptions and 
textual context. The phenotypic trait descriptions generated by 
the final model are rich in content and are able to capture vari-
ous features of plant leaves effectively.

   Additionally, we utilize a phenotypic trait label extraction 
method to extract labels using the existing image caption 
model. Leveraging the retrieval capability of the large-scale 
language model, we offer reasonable suggestions and imple-
ment plans for plant disease control, providing valuable support 
for agricultural production.   

Data integration in intelligent agricultural systems
   Our approach combines image description models, such as our 
model or others, with phenotypic trait label extraction methods 
to generate plant disease image labels accompanied by detailed 
textual descriptions. After manual screening and validation, 
this process enables the creation of a comprehensive database 
with substantial potential applications in agriculture.

   Firstly, despite the wealth of expert-labeled data, relying solely 
on manual labor for database construction is impractical due to 
the time and expertise required for manual diagnostics. Therefore, 
combining expert annotation with image description models, 
and label extraction generation, followed by manual inspection, 
effectively reduces time and labor costs.

   Secondly, the database includes labels for various disease 
traits, facilitating the development of advanced machine-
learning models for automated plant disease diagnosis. This 
capability aids agricultural practitioners in detecting and 
treating diseases early, thereby enhancing crop yield and 
quality.

   Lastly, the labeled textual data derived from the image out-
puts in the database serve as inputs for developing smart agri-
cultural systems. Real-time monitoring of plant health optimizes 
agricultural production processes, minimizing resource wast-
age. Industry professionals can devise more scientific and effec-
tive strategies for disease control, thereby reducing losses.

   This research represents a valuable resource for plant health 
and agricultural management, providing robust support for 
future technological innovations and sustainable agricultural 
development.   

Future directions
   Future research directions are included but not limited to the 
following aspects (see Fig.  15 ):        

   Firstly, we can further improve the training algorithms 
and architectures of the model to enhance the accuracy and 
diversity of generated descriptions. For example, exploring 
the application of image segmentation techniques can par-
tition plant leaf images into finer-grained regions, enabling 
the model to describe the characteristics of each region 
more accurately.

   Secondly, we can further leverage the retrieval capabilities 
of large language models to extract more effective information 
about plant disease prevention and control from massive agri-
cultural literature and data. By integrating the model with real-
time data streams, we can realize a real-time intelligent decision 
support system, providing timely advice and guidance to farm-
ers and agricultural experts.

   Additionally, we can consider transforming our model into 
electrical signals to drive machines for real-time monitoring 
and control of plant diseases. By integrating with agricultural 
smart equipment such as drones or robots, automated agricul-
tural production management can be achieved, improving 
production efficiency and crop quality.

   Lastly, we can explore the potential applications of the 
model in other fields such as forestry and horticulture. By 
further optimizing the performance and application of the 
model, we provide more comprehensive and effective solu-
tions for a wider range of agricultural and botanical fields, 
promoting the modernization and intelligence of agricul-
tural production.   

Applicability of PlanText
   The PlanText framework provides a structured approach for 
aligning image data with textual descriptions, which is crucial 
for effective communication in agricultural contexts. To enhance 
its applicability, we recognize that certain methods within the 
framework may impose limitations. Therefore, we propose sev-
eral adaptability requirements to ensure that the framework can 
meet the diverse needs of practical applications.

   Firstly, the framework must accommodate a variety of crops 
and plant diseases. Different crops exhibit distinct phenotypic 
traits and may require tailored approaches to description gen-
eration. Future iterations of the framework could incorporate 
modular components that allow users to customize the model 
based on the specific crops and diseases being addressed. This 
modularity would enable practitioners to select relevant fea-
tures and characteristics pertinent to their agricultural context. 
Secondly, the adaptability of the PlanText framework should 
consider varying environmental conditions. Plant health is 
influenced by factors such as climate, soil type, and water avail-
ability. To make the framework more versatile, we can integrate 
environmental data inputs that inform the model about the 
conditions under which the plants are growing. By doing so, 
the model can provide more context-aware descriptions and 
recommendations. Additionally, user feedback mechanisms 
should be incorporated into the framework. Engaging end 
users, such as farmers and agricultural experts, in the iterative 
refinement of the model would allow the framework to evolve 
based on real-world challenges and needs. This participatory 
approach ensures that the generated descriptions remain rel-
evant and practical. Lastly, the framework should support inte-
gration with other agricultural technologies and data sources. 
By allowing seamless interoperability with existing agricultural 
management systems, sensor data, and other AI-driven tools, 
the PlanText framework can enhance its utility. This integration 
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will provide a holistic view of plant health and facilitate real-
time decision-making.

   In summary, while the PlanText framework offers a solid 
foundation for our model, enhancing its adaptability will sub-
stantially expand its applicability in various agricultural set-
tings. By addressing these adaptability requirements, we can 
better align the framework with the practical needs of users in 
the field, ultimately leading to more effective plant disease man-
agement solutions.   

Conclusion
   This study presents a model for describing plant diseases using 
a dataset of 21,000 annotated images, enhancing feature 
characterization. It integrates image descriptions and phe-
notypic labels to create a comprehensive database, facilitat-
ing automated disease diagnosis and early intervention. 
Future work will focus on improving model accuracy, integrat-
ing real-time data for decision support, and expanding applica-
tions to various agricultural fields. The PlanText framework 
aims to align image data with textual descriptions, requiring 
adaptability for different crops, environmental conditions, user 
feedback, and integration with existing technologies for effec-
tive plant disease management.    
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