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Abstract

Background: We lack evidence on the cumulative effectiveness of machine learning (ML)-driven interventions in peri-

operative settings. Therefore, we conducted a systematic review to appraise the evidence on the impact of ML-driven

interventions on perioperative outcomes.

Methods: Ovid MEDLINE, CINAHL, Embase, Scopus, PubMed, and ClinicalTrials.gov were searched to identify randomised

controlled trials (RCTs) evaluating the effectiveness of ML-driven interventions in surgical inpatient populations. The

review was registered with PROSPERO (CRD42023433163) and conducted according to the Preferred Reporting Items for

Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Meta-analysis was conducted for outcomes with two or

more studies using a random-effects model, and vote counting was conducted for other outcomes.

Results: Among 13 included RCTs, three types of ML-driven interventions were evaluated: Hypotension Prediction Index

(HPI) (n¼5), Nociception Level Index (NoL) (n¼7), and a scheduling system (n¼1). Compared with the standard care, HPI led

to a significant decrease in absolute hypotension (n¼421, P¼0.003, I2¼75%) and relative hypotension (n¼208, P<0.0001,
I2¼0%); NoL led to significantly lower mean pain scores in the post-anaesthesia care unit (PACU) (n¼191, P¼0.004, I2¼19%).

NoL showed no significant impact on intraoperative opioid consumption (n¼339, P¼0.31, I2¼92%) or PACU opioid con-

sumption (n¼339, P¼0.11, I2¼0%). No significant difference in hospital length of stay (n¼361, P¼0.81, I2¼0%) and PACU stay

(n¼267, P¼0.44, I2¼0) was found between HPI and NoL.

Conclusions: HPI decreased the duration of intraoperative hypotension, and NoL decreased postoperative pain scores,

but no significant impact on other clinical outcomes was found. We highlight the need to address both methodological

and clinical practice gaps to ensure the successful future implementation of ML-driven interventions.

Systematic review protocol: CRD42023433163 (PROSPERO).
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Editor’s key points

� Despite there being numerous machine learning al-

gorithms in perioperative care, their clinical applica-

tion remains limited. This review identified three

machine learning-driven interventions (Hypotension
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system) that improve physiological outcomes but are

yet to demonstrate clinical benefits.

� There is statistical and clinical heterogeneity in

reporting effectiveness outcomes and limited

emphasis on implementation outcomes. Future work

should use standardised clinical outcomes to eval-

uate intervention effectiveness and incorporate

clinician feedback for real-world clinical translation.
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Over 300million people undergo surgery annually, with nearly

50 million in the USA. In total, 20% of surgical patients expe-

rience major postoperative complications, such as heart at-

tacks, infections, blood clots, and chronic pain.1,2

Furthermore, 30-day patient mortality rates following sur-

geries are between 1% and 5%, and 1-yr rates are between 5%

and 10%.3 Although a fraction of these complications cannot

be avoided, the majority can be prevented through pre-

emptive monitoring and early detection of clinical signs

contributing to these risks for complications.4,5

To this end, recent advances in machine learning (ML)-

driven models have been leveraged to augment perioperative

care delivery by enabling early diagnosis and risk pre-

dictions.4,6 ML-driven models have been developed to predict

surgical case durations7,8 and intraoperative and post-

operative complications.6,9,10

Several reviews have collated retrospective studies evalu-

ating the performance of ML-driven models supporting peri-

operative care. A narrative review11 of ML-driven model

validation studies within the context of thoracic surgery

highlighted that ML algorithms such as support vector ma-

chines, convolutional neural networks, and decision trees

could potentially enhance the efficiency in diagnosing and

classifying pulmonary nodules, enhancing surgical planning

and pre-anaesthetic evaluation of these patients. A scoping

review of ML-driven models in cardiac surgery anaesthetic

care identified that ML-driven models could potentially

improve perioperative care in three categories: prediction

analysis (e.g. mortality, hospital readmissions, and acute kid-

ney injury), haemodynamic monitoring, and automation of

echocardiography.12 The authors concluded that ML-driven

models did not show any benefit in predictive capability over

existing clinical scores but demonstrated remarkable perfor-

mance using dynamic variables, such as haemodynamic

monitoring and echo automation. A systematic review of ML-

driven models in neurosurgery found that ML-driven models

predicted neurosurgical outcomes, such as seizure freedom

time, survival, mortality, and symptom improvement, with a

median accuracy and an area under the receiver operating

characteristic curve (AUROC) of 94.5% and 0.83, respectively.13

A similar but broader systematic review of ML-driven models

in surgical settings found that these algorithms used for

postoperative predictive outcome models and risk stratifica-

tion were more accurate than validated prognostic scores and

traditional statistics.14 They evaluated standard MLmodels for

predicting perioperative complications, such as mortality,

cardiovascular complications, acute kidney injury, surgical

complications, and intensive care unit admission, and re-

ported that the best-performing models were random forest

and gradient boosting trees, with an area under the curve

(AUC) >0.90.
A recent systematic review by Arina and colleagues15 spe-

cifically examined the state of ML tools in predicting compli-

cations and prognostication within perioperative medicine.

This review encompassed a diverse array of study types,

including retrospective analyses, prospective studies, and

randomised controlled trials (RCTs). Of 103 included studies,

only 13 were prospective, with only one RCT. Although these

algorithms have shown promise in predicting postoperative

complications, reflecting the significant potential of ML to

improve patient outcomes through advanced predictive ana-

lytics, the review also highlighted a scarcity of high-quality

evidence regarding the effectiveness of ML interventions in

the perioperative setting. Despite the increasing number of
original research and reviews on ML-driven models in peri-

operative care, most reviews have primarily focused on

aggregating the evidence on the development and statistical

validation of ML-driven models, rather than on real-world

effectiveness and implementation studies.

To address this gap, we conducted a systematic review and

meta-analysis on evaluation studies of ML-driven in-

terventions in perioperative care to ascertain the impact of

ML-driven interventions on effectiveness and implementation

outcomes. We aggregate and appraise the empirical evidence

to offer insights into the use of ML-driven tools in periopera-

tive care and opportunities for futureML use, implementation,

and research directions.
Methods

The review followed the Preferred Reporting Items for Sys-

tematic Reviews and Meta-analyses (PRISMA) guidelines16 and

was registered with PROSPERO (CRD42023433163).
Search strategy

A medical librarian (MD) conducted a systematic search of

Ovid MEDLINE, CINAHL, Embase, Scopus, PubMed, and

ClinicalTrials.gov on January 24, 2023, to identify English-

language articles on ML and artificial intelligence (AI)-driven

interventions used in surgical settings. Combinations of query

terms and keywords included the following: (machine

learning OR artificial intelligence OR prediction index) AND

(surgery OR postoperative OR perioperative) AND (randomized

controlled trials OR observational study OR cohort study OR

feasibility study OR prospective study OR evaluation study OR

implementation study). Manual screening of references under

relevant articles supplemented the search. The full search

strategy is provided in Supplement S1.
Study screening and selection

Three reviewers (DM, GH, and XG) independently screened

article titles and abstracts for eligibility. Eligible articles were

then considered for full-text review. Reviewers independently

assessed full-text articles for inclusion using the PICOS

framework: P (participant population)dadult or paediatric

surgical patients; I (intervention)dML-driven perioperative

interventions; C (comparison)dRCTs with clinical trial regis-

tration numbers; O (outcome)dperioperative outcomes; and S

(study setting)dinpatient settings. Only English-language,

original research articles published in peer-reviewed journals

were included (see inclusion criteria in Supplement S2). We

excluded retrospective studies, studies on modelling and

design of tools, studies including both inpatient and outpa-

tient settings, studies reporting on nonsurgical procedures

(e.g. colonoscopy), and studies reporting only qualitative

findings (Supplement S3). Disagreements were discussed and

resolved with a fourth reviewer (JA). References from included

articles were also screened for eligibility.
Data abstraction and management

One reviewer (DM) extracted and recorded data on the study

population, design, setting, intervention details, comparison

group, and outcomes. Data discrepancies were reviewed and

adjudicated by a second reviewer (JA). The data abstraction

form is available in Supplement S4.

http://ClinicalTrials.gov
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Risk of bias assessment

Two reviewers (DM and GH) independently assessed the risk of

bias (ROB) of included studies using the Cochrane Collabora-

tion criterion for RCTs.17 A third reviewer (JA) reviewed ROB

scores for any disagreements that were resolved through team

discussion. RCTs’ ROB across categories was reported using

Review Manager 5 (RevMan 5) [Computer program]. Version

5.4.18

Data coding, synthesis, and analysis

The study characteristics were coded based on country, site

type and number, types of participants (e.g. patients and cli-

nicians), patient population, inpatient setting, surgery, study

design, ML-driven intervention type, characteristics and

functions supporting perioperative phases of care, and out-

comes of interest.

Meta-analysis

Ameta-analysis across studies was performed to ascertain the

cumulative effect of ML-driven interventions on outcomes.

Studies that reported similar outcomes (with two or more

studies) were included in the meta-analysis. Among these,

studies were excluded if they had insufficient reported data for

a pooled analysis. However, where possible, missing data such

as standard deviation (SD) were estimated through standard

error calculations using provided P-values,19 and mean and SD

were calculated through median and interquartile ranges

provided using highly reliable calculators.20,21 In addition, for

studies with missing data, all primary study authors were

contacted; however, we did not receive any responses. A

random effects model was used, and statistical heterogeneity

was assessed using the I2 test statistic. All analyses were

conducted using Review Manager 5.4.18

Vote counting

Vote counting was conducted for outcomes with a low number

of studies (fewer than two studies per outcome) and for sub-

jective or qualitative outcomes (e.g. survey-based subjective

assessments). The findings were synthesised based on the

direction of the effect and not the statistical significance or the

size of the effect. The number of effects showing benefit was

compared with the number showing harm. Studies showing

benefits were reported as ‘improved’ if the majority of effects

were favourable to the intervention group and ‘no difference’

if there was no effect.
Results

Study selection

Of the 13 245 articles identified from the search, 14 articles

from 13 original RCT studies met the inclusion criteria (Fig. 1).

Of the 14 articles, two were from a single RCT.22,23

Study characteristics

Table 1 presents the characteristics of the included studies. All

studies were published between 2019 and 2023, with the ma-

jority conducted at teaching hospitals in Europe, except for

three in the USA24e26 and one in Canada27 (Supplement S5).

Three major types of ML-driven interventions were iden-

tified among the 13 RCTs: Nociception Level Index (NoL),
Hypotension Prediction Index (HPI), and a scheduling system.

NoL and HPI were used intraoperatively, whereas the sched-

uling system was used preoperatively.24
Population

All studies targeted adult surgical patients. Patient character-

istics varied across studies by age, surgery type, and ASA

physical status (Table 1).
Interventions

Across the 13 RCTs, seven reported on NoL use,26e30,33,36 five on

HPI use,22,23,25,31,34,35 and one on a scheduling system.24 NoL

and HPI were used by anaesthesia teams intraoperatively for

pain and blood pressuremanagement, respectively. Schedulers

used a scheduling system to streamline surgery schedules.

Table 2 presents a summary of the ML-driven interventions.
Comparisons

All 13 RCTs compared ML-driven interventions with standard

care. Two studies by Funcke and colleagues29,33 included four

arms comparing NoL with two other pain monitors and with

the anaesthesiology teams’ clinical judgements. Wijnberge

and colleagues22 conducted a preliminary observational study

before using HPI. In this observational study, mean arterial

pressure (MAP) goals were maintained in the control arm ac-

cording to the clinical judgement of the anaesthesiologist.

Schneck and colleagues31 used a historical cohort’s data for

comparison with the intervention group to mitigate the po-

tential for Hawthorne bias.
Outcomes

Clinical outcomes from studies pooled for the meta-analysis

and vote counting are presented in Table 3. Details of clinical

outcomes are presented in Supplement S7.
Impact of machine learning-driven interventions on
clinical outcomes compared with standard care:
results from meta-analysis

Meta-analysis findings on ML-driven interventions’ impact on

significant clinical outcomes are presented in Figure 2 (see

Supplement S8 for additional outcomes). The study by Schenk

and colleagues32 was a sub-study of Wijnberge and col-

leagues.22 Thus, we merged the intraoperative data reported

by Schenk and colleagues32 into our analysis to avoid skewing

results. Schenk and colleagues32 assessed postoperative hy-

potension using HPI, so it could not be pooled into a meta-

analysis. The study by Stromblad and colleagues24 was

excluded from the pooled meta-analysis, given that the re-

ported outcomes and intervention were tailored explicitly for

use by schedulers. In addition, Fuica and colleagues36 and

Murabito and colleagues35 reported outcomes that could not

be converted into themean and SD, so they were not pooled for

meta-analysis.
Impact of machine learning-driven interventions on
hypotension outcomes

Time-weighted average hypotension. Among four studies

reporting on time-weighted average (TWA) hypotension, three

used the HPI monitor22,25,34 and one used NoL.26 No significant
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Titles and abstracts screened
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Articles meeting
inclusion criteria (n=14)

Studies meeting inclusion
criteria (n=13)

Duplicate citations excluded (n=4887)

Titles and abstracts excluded (n=8296)

Hand-searched articles (n=34)

Full-text articles excluded (n=82)
ML validation study (n=3)

Automated drug-delivery software (n=1)
No adult or paediatric surgical patient participants (n=3)

No clinical trial registration (n=15)
Not conducted in an inpatient surgical setting (n=10)

Protocol (n=2)
Not an ML- or AI-supported care intervention (n=29)

No perioperative outcomes reported (n=1)
Not an RCT (n=18)

Ovid
medline
(n=4715)

Embase
(n=4121)

Scopus
(n=3899)

Clinicaltrials.
gov (n=24) 

PubMed
(n=486)

Fig 1. PRISMA flow chart.
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difference was found between studies using ML-driven in-

terventions and standard care (n¼444, P¼0.25, I2¼83%)

(Supplement S8). Considering only studies using the HPI

monitor, there was no significant decrease in TWA hypoten-

sion (n¼362, P¼0.07, I2¼83%). Effective pain management us-

ing NoL can increase the duration of hypotension; therefore, it

was excluded from our analysis of ML-driven interventions on

blood pressure.

Area under curve mean arterial pressure <65 mm Hg. Four

studies reported on AUCMAP <65mmHg, of which three used

HPI22,25,34 and one used the NoL monitor.26 No significant dif-

ference was reported in the AUC MAP <65 mm Hg using HPI

and the NoL monitor compared with standard care (n¼444,

P¼0.31, I2¼85%). When considering studies using HPI, there

was no significant difference reported in AUCMAP <65mmHg

between the intervention and standard care groups (n¼372,

P¼0.06, I2¼81%) (Supplement S8).

Absolute hypotension. Six studies analysed the duration of

hypotension, of which four used HPI22,25,31,34 and two used

NoL.26,27 After combining analyses for intervention groups,

no statistical significance was found compared with standard

care (n¼559, P¼0.17, I2¼85%). Sub-group analyses revealed a

significant decrease in the duration of hypotension for the

HPI group compared with standard care (n¼421, P¼0.003,
I2¼75%). In contrast, studies using NoL monitors showed a

significant increase in the duration of hypotension, likely

attributable to improved pain management (n¼138, P¼0.02,

I2¼0%).

Relative hypotension. Three studies reported on relative hy-

potension. Compared with standard care, a significant

decrease in relative hypotension for the HPI group was

found22,31,34 (n¼208, P<0.0001, I2¼0%).
Hypertension

Of seven studies using HPI, two studies reported hypertension.

TWA hypertension (AUC MAP >100 mm Hg), absolute hyper-

tension, and relativehypertensionwere all significantly higher in

the HPI groups compared with standard care groups22,34 (Fig. 2).
Impact of machine learning-driven interventions on opioid
consumption

Intraoperative opioid consumption. No significant difference in

intraoperative opioid consumption was found between the

NoL monitor and standard care groups across six stud-

ies26e30,33 (n¼339, P¼0.31, I2¼92%) (Supplement S8).

Opioid consumption in the PACU. No significant difference in

opioid consumption in the PACU was found between the NoL



Table 1 Characteristics of included studies. HPI, Hypotension Prediction Index; MAP, mean arterial pressure; NoL, Nociception Level Index.

Study author, yr Population Surgery Setting Intervention Comparator (standard care) Conflict of Interest

Meijer and colleagues, 201928 ASA 1e3, Age �18
e80 yr

Major abdominal, urologic, or
gynaecological surgery

Academic, single
centre,
Netherlands

NoL Target controlled infusion
remifentanil increased or
decreased according to clinical
judgement

No

Funcke and colleagues, 202029 Age �18 yr, ASA 2 or
3

Radical retropubic prostatectomy Academic, single
centre, Germany

NoL Clinical judgement, as per the
anaesthesia team

No

Maheshwari and colleagues, 202025 Age �45 yr, ASA 1e4 Moderate/high-risk noncardiac
surgery

Academic, two
hospitals of the
same university,
USA

HPI MAP>65 mm Hg, as per the
anaesthesia team

Yes/Edward
Lifesciences

Meijer and colleagues, 202030 Age >17 yr, ASA 1e3 Elective laparoscopic
surgerydgynaecological,
general, and urological surgery

Academic and
referral centre,
Netherlands

NoL Clinical judgement, as per the
anaesthesia team

Yes/Medasense

Schneck and colleagues, 202031 Age �18 yr, ASA 1e3 Elective total hip arthroplasty Academic, single
centre, Germany

HPI MAP >65 mmHg, according to the
anaesthesia team

Yes/Edward
LifeSciences

Wijnberge and colleagues, 202022;
Schenk and colleagues, 202132

Age � 18 yr, ASA 3 Open or
laparoscopicdgynaecological,
gastrointestinal, or other
surgeries

Academic, single
centre,
Netherlands

HPI MAP>65 mm Hg, as per the
anaesthesia team

Yes/Edward
LifeSciences

Espitalier and colleagues, 202127 Age 18e75 yr, ASA 1
e3

Laparoscopic hysterectomy Academic, single
centre, Canada

NoL Clinical judgement, according to
the anaesthesia team

Yes/Medasense

Funcke and colleagues, 202133 Males >18 yr, ASA 2
or 3

Radical retropubic prostatectomy Academic,
Germany, single
centre

NoL Clinical judgement for bolusing
with remifentanil and changing
the infusion rate

No

Str€ombland and colleagues, 202124 Adults Gynaecological or colorectal
surgery

Academic, USA,
single centre, two
campuses

Scheduling
system

Pre-existing scheduling system
within electronic health records
supplemented by scheduler and
surgeon estimates

No

Tsoumpa and colleagues, 202134 Adults�18 yr, ASA 1
e3

Elective noncardiac surgery Academic, single
centre, Greece

HPI MAP >65 mm Hg, as per the
anaesthesia team

No

Murabito and colleagues, 202235 Adult �18 yr, ASA 1,
2, and 3

Elective major
laparoscopicdgeneral,
gynaecological, or other
surgeries

Academic, single
centre, Italy

HPI Institutional algorithm to
maintain MAP >65 mm Hg

Yes/Edward
LifeSciences

Ruetzler and colleagues, 202226 Age �21e85 yr, ASA
1, 2, or 3

Major open or laparoscopic
abdominal noncardiac
surgeries

Academic, US,
single centre

NoL Clinical judgement for
administering opioid

No disclosure

Fuica and colleagues, 202336 Adult, ASA 1e3 Major laparoscopic abdominal
eurologic or gynaecological
surgeries

Academic, single
centre, Israel

NoL Clinical judgement, according to
the anaesthesia team

No disclosure
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Table 2 ML-driven intervention details. HPI, Hypotension Prediction Index; MAP, mean arterial pressure; ML, machine learning; NoL, Nociception Level Index.

ML intervention Purpose Description Commercial monitor Algorithm Implementation in
included studies

NoL Objectively measures pain
in anaesthetised
patients and helps
personalise opioid usage
during surgery37

Uses a noninvasive finger
probe to acquiremultiple
parameters, such as
photoplethysmography,
galvanic skin response,
temperature, and
accelerometer data, and
generate a
dimensionless number
between 0 and 100. FDA
approved

PMD-200 (Medasense,
Israel)

Random forest model The studies maintained
NoL between 10 and 25
and administered
analgesia for an NoL
index greater than 25.

The studies varied in type
and dosage of opioid
used, anaesthesia type
(General Anaesthesia vs
TIVA), and time to
administer analgesia
after NoL >25 (see details
in Supplement S6)

HPI Predicts likelihood of
hypotensive events (MAP
<65 mm Hg) and allows
clinicians to pre-
emptively prevent it38

Uses invasive arterial
cannula to acquire
multiple waveform
features (amplitude,
slope, and complexity
features) to predict
hypotensive events. It
also provides advanced
haemodynamic
information, including
cardiac output, dynamic
arterial elastance, dP/
dtmax (systolic slope),
and stroke
volumedwhich
presumably helps
clinicians select optimal
treatments. FDA
approved

Haemosphere and EVD-
1000 (Edwards
Lifesciences, USA)

Logistic regression All studies used a
treatment algorithm
from additional
parameters derived from
the monitor. All studies
used thresholds >85 for
using the treatment
algorithm, except one
that used HPI >80. The
studies varied in their
HPI treatment
thresholds, treatment
algorithm, type of
pressors or inotropes
(see details in
Supplement S6)

Scheduling system Predicts operating room
case duration based on
various patient,
procedural, surgeon, and
operational factors

Uses more than 300 data
features involving
information of the
patient, procedure,
surgeon, and operational
factors to train an ML
model for gynaecology
and colorectal surgical
services at the Memorial
Sloan Kettering Center
and help predict
operating room case
duration

Not available Random forest The predictions were
generated a day before
the surgery and were
implemented and
published into the live
scheduling system by
schedulers for the next
day

1
1
6
4

-
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Table 3 Details of outcomes reported. PONV, postoperative nausea and vomiting; TWA, time-weighted average. *Outcomes included in the meta-analysis.
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Schneck
Tsoumpa
Wijnberge

Total (95% CI)

25
49
31

105
Heterogeneity: Tau2=0.00; �2=0.69, df=2 (P=0.71); I2=0%
Test for overall effect: Z=6.39 (P<0.00001)
Test for subgroup differences: Not applicable

0.35
3.63
3.44

0.78
4.14
4.51

24
50
29

103

6.71
10.13
10.15

22.5%
48.9%
28.6%

100.0%

7.86
10.18

8.58

–1.13 [–1.74, –0.53]
–0.83 [–1.24, –0.42]
–0.98 [–1.51, –0.44]
–0.94 [–1.23, –0.65]

–1 –0.5 0 0.5 1
Favours

[experimental]
Favours
[control]

Relative hypotension

Study or subgroup Mean SD Total Mean SD Total Weight
Std. mean difference
IV, random, 95% CI

Std. mean difference
IV, random, 95% CI

Experimental Control

Absolute hypotension

Study or subgroup
Espitaler
Maheshwari
Ruetzler
Schneck
Tsoumpa
Wijnberge

Total (95% CI)

33
105
35
25
49
31

210
Heterogeneity: Tau2=0.14; �2=12.18, df=3 (P=0.007); I2=75%
Test for overall effect: Z=2.95 (P=0.003)
Test for subgroup differences: Not applicable

4.9
9.42
9.42
0.83
9.37

12.02

Mean SD Total
7.2

12.26
12.36

1.83
11.68

19.2

33
108
37
24
50
29

211

3.4
11.83

4.13
12.03
33.14
34.77

Mean SD Total
0.0%

30.3%
0.0%

20.7%
26.2%
22.8%

100.0%

Weight
3.1

16.93
7.71

14.67
39.92
37.58

Std. mean difference
IV, random, 95% CI

Std. mean difference
IV, random, 95% CI

0.27 [–0.22, 0.76]
–0.17 [–0.44, 0.10]

0.51 [0.04, 0.98]
–1.07 [–1.67, –0.46]
–0.80 [–1.21, –0.39]
–0.76 [–1.29, –0.23]
–0.65 [–1.09, –0.22]

–1 –0.5 0 0.5 1
Favours

[experimental]
Favours
[control]

Experimental Control

Tsoumpa
Wijnberge

Total (95% CI)

49
31
80

Heterogeneity: Tau2=0.01; �2=1.22, df=1 (P=0.27); I2=18%
Test for overall effect: Z=2.84 (P=0.005)
Test for subgroup differences: Not applicable

1.01
0.1

1.17
0.16

50
29
79

0.4
0.06

59.3%
40.7%

100.0%

0.57
0.1

0.66 [0.25, 1.06]
0.29 [–0.22, 0.80]
0.51 [0.16, 0.86]

TWA hypertension

Study or subgroup Mean SD Total Mean SD Total Weight
Std. mean difference
IV, random, 95% CI

Std. mean difference
IV, random, 95% CI

Experimental Control

–1 –0.5 0 0.5 1
Favours

[experimental]
Favours
[control]

Espitaler
Fuica
Meijer 2

Total (95% CI)

33
36
25
94

Heterogeneity: Tau2=0.02; �2=2.46, df=2 (P=0.29); I2=19%
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Fig 2. Random Forest plots of significant outcome results. CI, confidence interval; AUC, area under the curve; MAP, mean arterial pressure;

TWA, time-weighted average.
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monitor and standard care groups across six studies26e30,33

(n¼339, P¼0.11, I2¼0%) (Supplement S8).

Impact of machine learning-driven interventions on pain
management

Mean pain score in the PACU. The mean pain score in the

PACU was significantly lower in the NoL group compared with

the standard care group27,30,36 (n¼191, P¼0.004, I2¼19%) (Fig. 2).

Maximum pain score in the PACU. No significant difference in

the maximum pain score in the PACU was found between the

NoL and standard care groups28,29,33 (n¼151, P¼0.31, I2¼0%)

(Supplement S8).

Pain score upon arrival at the PACU. No significant difference

in the pain score upon arrival at the PACU was found between

the NoL and standard care groups27e29,33 (n¼217, P¼0.37,

I2¼0%) (Supplement S8).

Impact of machine learning-driven interventions on the
duration of hospital and PACU stay

Length of hospital stay. No significant difference was found in

the length of stay in the hospital between the HPI and standard

care groups25,31,34 (n¼361, P¼0.81, I2¼0%) (Supplement S8).

Length of PACU stay. Nosignificant differencewas found in the

PACU stay between groups using either NoL or HPI compared

with standard care27e30,33 (n¼267, P¼0.44, I2¼0) (Supplement S8).
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machine learning.
Impact of interventions on clinical outcomes
compared with standard care

We included studies evaluating ML-driven interventions’

impact on postoperative complications (e.g. mortality, stroke,

and acute kidney injury), emergence of anaesthesia, hospital

readmissions, postoperative nausea and vomiting (PONV), and

incidence of hypotension. These outcomes had varying defi-

nitions across the studies, so could not be pooled into a meta-

analysis. Therefore, we used the vote counting method to

synthesise the direction of effect.

Impact of interventions on postoperative complications

Four studies22,25,34,35 investigated the impact of HPI on post-

operative complications (e.g. mortality, stroke, and acute

kidney injury). None of the studies found significant im-

provements in the incidence of complications. Each study had

distinct definitions of postoperative complications. Mahesh-

wari and colleagues25 observed patients for complications

during their hospital stay. Three studies assessed complica-

tions during the hospital stay through surveys or phone calls 1

month after surgery.

Impact of interventions on emergence from anaesthesia

Six studies26,28e30,33,36 using the NoL monitor investigated the

time taken for patients to emerge from anaesthesia. This

investigation was based on the theoretical consideration that

the NoL monitor might increase opioid consumption, poten-

tially leading to slower wake-ups. However, there was no

significant difference between the NOL monitor and standard

care groups. The definition of time to emerge from anaesthesia

varied across the studies. Two studies by Meijer and
colleagues28,30 and one study by Fuica and colleagues36 re-

ported it as the reversal of relaxant to extubation time. Two

studies by Funcke and colleagues29,33 defined it as the end of

narcotics to extubation time. Ruetzler and colleagues26 defined

it as the duration from the last minimum alveola

mailto:Image of Fig 3|eps
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concentration fraction of �0.3 to when the patient left the

operating room.

Impact of interventions on incidence of hypotension

Five studies22,26,31,34,36 investigated the incidence of hypoten-

sion using HPI and NoL. The incidence of hypotension was

significantly decreased with the use of ML-driven in-

terventions in four studies. One study using a NoL monitor36

did not show any improvement in the incidence of

hypotension.

Impact of interventions on postoperative nausea vomiting

Three studies reporting PONV did not show significant

improvement with the use of the NOL monitor. Ruetzler and

colleagues26 and Funcke and colleagues33 did not find any

significant difference in the number of patients who devel-

oped PONV in the PACU. Espitalier and colleagues27 measured

counts of PONV events on arrival and 24 h after surgery,

finding no significant difference between the intervention and

standard care groups.

Impact of interventions on hospital readmissions

Three studies22,25,35 reported hospital readmissions. No dif-

ference in hospital readmissions was found between the ML-

driven intervention and standard care groups.
Risk of bias in included studies

All studies were determined to have an overall low ROB (Fig. 3).

Study factors contributing to any ROB were related to incom-

plete outcome data reporting and blinding of outcome

assessors.
Discussion

Thirteen RCT studies investigating the effectiveness of ML-

driven interventions in perioperative care settings were syn-

thesised in this systematic review. All studies were published

after 2019 and conducted at academic institutions, with the

majority being in Europe, except for three in the USA24e26 and

one in Canada.27 All RCTs were single-centre studies, with

three conducted at different sites within a single centre.24,25,30

Three types of perioperative interventions were evaluated:

NoL, supporting clinicians in painmanagement decisions; HPI,

supporting clinicians in intraoperative blood pressure man-

agement; and a surgery scheduling system, supporting pre-

operative management of operating room resources. Edward

Lifesciences funded four22,25,31,35 of five studies investigating

HPI; similarly, Medasense sponsored two27,30 of seven NoL

studies, thus highlighting the industry’s role in commercial-

ising such ML-driven applications. We found that HPI signifi-

cantly reduces the incidence and duration of hypotensive

events, but not postoperative complications or hospital stay

duration, compared with standard care. This result may be

attributed to the insufficient statistical power among the

included studies to detect significant differences in post-

operative outcomes. Most studies showed a decreased inci-

dence of hypotension with HPI, but varying definitions

prevented a pooled meta-analysis. In contrast, we found an

increase in hypertension duration with HPI use, further high-

lighting the need for ML algorithm refinement to mitigate

adverse events and human-in-the-loop to verify ML-driven

clinical decision support outputs.
Our analysis of NoL monitoring for pain management

revealed no statistically significant differences in either

intraoperative or postoperative opioid consumption between

theNoL-guided groups and standard care. Still, the NoL-guided

groups had significantly lower mean pain scores in the PACU.

These results should be interpreted in the context of the

following considerations. First, significant variability in the

type of opioids used in the studies (e.g. ultrashort-acting

remifentanil, sufentanil, and fentanyl) may confound post-

operative pain scores and opioid consumption. Second, dif-

ferences in pain assessment methods and timing of

administration hinder conclusive findings to determine the

clinical benefit of NoL monitoring across studies. Improve-

ments in physiological outcomes using NoL and HPI may be

attributed to clinician performance bias, given their awareness

of the ML-driven interventions (i.e. the Hawthorne effect). Few

included studies22,31 mitigated clinician performance bias by

comparing with historical controls. However, the learning ef-

fect from these interventions should be noted; clinicians using

ML-driven interventions might have learned to manage pa-

tient pain levels and blood pressure better pre-emptively than

clinicians who did not use the interventions. In summary, HPI

and NOL have not shown any clinical benefit in improving the

length of PACU and hospital stay. Interestingly, few

studies25,27e31,33,34 reported on the length of hospital and PACU

stay, and these studies were not powered sufficiently to draw

definitive conclusions about their usefulness in decreasing the

length of stay in hospital or PACU. The scheduling system24

used to predict operating room case durations proved more

accurate than traditional methods (i.e. estimating durations

from electronic health records supplementedwith the surgical

team’s input). The scheduling system also improved opera-

tional outcomes, such as patient waiting times and presurgical

length of hospital stay. However, predictions using the

scheduling system were limited to two surgical services via

medical codes in the electronic health records. Any deviation

from procedures performed at the site would make case

duration estimates obsolete and not generalisable.
Implications for research and practice

Our review highlights six key insights from empirical studies

on ML-driven interventions in perioperative care. First, there

was limited standardisation in evaluating the effectiveness

of ML-driven interventions across studies and across in-

terventions. Although significant progress has been made in

ML model development and retrospective validation of ML

models across various clinical settings,6,9,10,39 the stand-

ardisation of evaluation metrics in clinical applications is

crucial for comparison and pooling of clinical outcomes. The

Standardised Endpoints in Perioperative Medicine (StEP)

initiative40 identified eight outcomes for measuring the

quality, safety, and improvement in perioperative care.

These outcomes include surgical site infection at 30 days,

stroke within 30 days, death within 30 days of surgery, death

within 30 days of cardiovascular surgery, readmission within

30 days, readmission to ICU within 14 days of surgery, and

length of hospital stay. Only three studies22,25,35 followed up

patients for up to 30 days and reported three STEP-COMPAC

outcomes, namely mortality, complications, and read-

missions. Future ML-driven intervention trials should be

designed to measure standardised outcomes (e.g. STEP-

COMPAC) to understand their cumulative impact on the

quality of care and to enable reproducibility and robustness
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in algorithm development, enhancing the reliability and

generalisability of research.41

Second, there was limited emphasis on implementation

outcomes across the included studies. Although ML-driven

interventions can demonstrate improved outcomes, they

would fail to sustain and scale if these interventions were

developed in silos, without paying attention to integration and

fit within clinical workflows. For example, the use of an elab-

orate and time-intensive algorithm to treat hypotension with

HPI may pose a challenge in the clinical workflow. Hybrid

effectiveness implementation trials embedded within the RCT

designs and mixed-methods approaches can assess both

clinical effectiveness andML intervention usability, feasibility,

and acceptability by clinicians. HPI and NoL have the potential

to revolutionise the standard anaesthesia practice, but they

still need considerable work to prove that they are better than

the current standard of care and can be seamlessly integrated

into the clinical workflow. Future studies should obtain feed-

back from clinicians to gauge perspectives onML acceptability,

feasibility, and appropriateness.42 The SALIENT framework by

Van der Vegt and colleagues41 provides some guidance on

implementing clinical AI in healthcare settings. It integrates

tasks and components, offering checklists for each stage to

support AI developers and healthcare leaders in real-time

deployment, aiming to optimise perioperative care delivery

through rigorous research and clinician engagement.

Third, despite the promise of ML-driven interventions in

transforming perioperative care, the included studies have

failed to adequately evaluate ML-driven interventions’ impact

on hard perioperative clinical and patient outcomes that align

with the quintuple aim43 of healthcare improve-

mentdenhanced patient experience, improved population

health through predictive analytics, reduced costs via opera-

tional streamlining, increased health equity with access to

healthcare, and enhanced clinician well-being through auto-

mation and decision support.

Fourth, to our surprise, none of the studies focused on ML-

driven interventions for paediatric surgical populations.

Although a recent review highlighted similar perioperative

ML-driven interventions for paediatric surgical patients (e.g.

adverse event and risk prediction, and depth of anaesthesia),

they are still in the development and validation phase. The

review further noted that interventions for paediatric surgical

patients were comparable to those for adult patients.44 How-

ever, it should be noted that neonates, toddlers, and older

children exhibit distinct physiological responses to surgery

and anaesthesia compared with adults, necessitating tailored

ML approaches that cannot be directly extrapolated from one

age group, therefore making it difficult to generalise these

algorithms.

Fifth, the interventions in our included studies were tested

mostly among patients with ASA physical status 1e3 under-

going elective noncardiac surgeries, excluding a large propor-

tion of complex, high-risk cardiac or emergency surgeries. The

scarcity of empirical research in complex or emergency sur-

geries could be attributed to the dynamic and fast-paced

perioperative environment in complex surgeries, making it

challenging to develop, validate, and implement new in-

terventions that are yet to show clinical benefit in routine

surgeries. We found a scoping review12 examining the extent

and nature of ML-driven interventions in cardiac surgeries.

The review identified 46 articles with a focus of ML-driven

interventions in three categories. The majority (n¼41) of in-

terventions focused on prediction analysis (e.g. readmission,
mortality, and acute kidney injury), three on haemodynamic

monitoring, and two on ultrasound guidance. However, most

of these applications are still in the development and valida-

tion stages and have not yet been tested in clinical practice.

Sixth, we would like to acknowledge that the ROBs related

to the inability to blind personnel to the intervention arm,

performance bias, and the learning curve may have intro-

duced variability in the results, making it challenging to draw

definitive conclusions about the efficacy of the ML-driven in-

terventions. These factors can lead to an overestimation of the

benefits of ML tools, as the observed improvements might be

partially attributed to the heightened attention and modified

practices of the clinicians rather than the interventions

themselves. To mitigate these issues, future research should

consider the following approaches. (1) Observational studies:

conduct observational studies in addition to RCTs before and

after the implementation of ML-driven interventions. Obser-

vational studies can provide insights into the real-world

application and impact of ML interventions without the arti-

ficial constraints of a controlled trial. They can help determine

whether changes in practice and outcomes persist over time

after the initial implementation of the technology. In addition,

comparingwith historical cohorts can help reduce the effect of

performance bias attributed to the inability to blind the

personnel in the intervention arm. (2) Training and education:

address the learning curve by providing comprehensive

training and ongoing support for clinicians using ML tools.

This can help standardise the use of these systems and reduce

variability in outcomes attributed to differences in user profi-

ciency. (3) Longitudinal studies: implement longitudinal

studies to assess the long-term impact of ML interventions on

clinical outcomes. These studies can help understand how the

benefits of ML tools evolve as clinicians become more familiar

with the technology. (4) Mixed-methods approach: use a

mixed-methods approach that combines quantitative and

qualitative research. This can provide a more comprehensive

understanding of how ML interventions affect clinical prac-

tice, including insights into the experiences and perceptions of

clinicians using these tools.

The systematic review by Arina and colleagues15 assessed

the reliability, validity, and performance of these ML models

using the Prediction model Risk of Bias Assessment Tool

(PROBAST). Among the 103 included studies, only a small

fraction (13%) had undergone external validation across mul-

tiple centres. This review underscores the limited general-

isability of the existing ML models and suggests that their

application in diverse clinical settings remains uncertain. The

review concluded that ML interventions in perioperative

medicine are still in their infancy, with significant room for

improvement, particularly in terms of model validation and

clinical application. In contrast, our study specifically evalu-

ated the usefulness of ML interventions in the perioperative

period. We focused on the impact of these interventions on

both physiological outcomes, such as pain and blood pressure,

and clinical outcomes. Our review found only 13 RCTs where

ML interventions were used perioperatively. Importantly, the

clinical and long-term benefits of these interventions remain

uncertain, as no study has focused on more pragmatic

outcomes.

Although the review by Arina and colleagues15 highlighted

the early development stage and lack of external validation in

AI applications for anaesthesiology, our study emphasised the

limited power of existing RCTs to detect significant improve-

ments in clinical outcomes. Moreover, we observed significant
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variability in how clinical outcomes, such as mortality and

morbidity, were measured across different studies. This

inconsistency further complicates the assessment of ML in-

terventions’ effectiveness.

In summary, both reviews underscore the need for more

robust, externally validated research to establish the efficacy

of ML interventions. However, our study places additional

emphasis on the necessity of standardising outcome mea-

sures and conducting more powerful RCTs to fully under-

stand the clinical and long-term benefits of ML in

perioperative care.

A narrative review by Hashimoto and colleagues45 identi-

fied 173 articles with six main clinical applications in anaes-

thesiology: depth of anaesthesia monitoring, adverse event

prediction, drug control and administration, pain monitoring,

operating room logistics, and imaging techniques in regional

anaesthesia. Similarly, another narrative review by Bellini and

colleagues46 also found the application of ML-driven in-

terventions in categories similar to those of Hashimoto and

colleagues.45 However, these reviews did not answer ques-

tions on the effectiveness or utility of such AI-based technol-

ogies in clinical practice but assessed the breadth of AI

research that has been conducted in anaesthesiology. In our

systematic review, we found that the implementation of the

ML-driven interventions only translated to three main cate-

gories: adverse event prediction, operating room logistics, and

pain monitoring.

We acknowledge our review limitations. First, our search

was limited to English-language articles and RCTs. Second,

observed data heterogeneity indicated variations in study

populations, methodologies, and outcomes. For example, we

had to standardise measures to means and SDs using the re-

ported information for the meta-analysis. Third, any limita-

tions reflected in the included studies are also limitations of

this review. Fourth, pooling primary and secondary outcomes

from different studies has contributed to the variability in the

results of our meta-analysis. However, the review offers sub-

stantial insights into the effectiveness of perioperative ML-

driven interventions and provides future directions for peri-

operative ML research and practice.
Conclusions

Our review found that randomised controlled trials using

HPI and NOL were helpful in improving physiological out-

comes by decreasing the duration of intraoperative hypo-

tension and mean PACU pain scores, respectively. However,

these trials were not powered enough to find any long-term

or patient-centred outcomes, such as mortality, morbidity,

and readmissions. The scheduling system showed potential

in improving operational outcomes, such as patient wait

time, but it involved only two surgical services of one hos-

pital and is not generalisable. In addition, there is a lack of

clinician feedback on using and implementing ML-driven

interventions in the trials. We also had difficulty in pooling

outcomes from different studies for meta-analysis as

various outcomes had different definitions across various

studies.

Advancing the implementation of machine learning-

driven interventions in healthcare requires us to address

critical challenges: standardising clinical outcomes, refining

intervention protocols, and integrating clinician feedback.

Establishing clear outcome measures, standardised pro-

tocols, and engaging clinicians throughout the process using
mixed-methods studies can enhance intervention effec-

tiveness and adoption. Embracing interdisciplinary collabo-

ration and leveraging implementation science frameworks

will be pivotal in navigating real-world complexities and

ensuring these innovations benefit diverse patient pop-

ulations. Ultimately, these efforts will create robust, scalable

solutions that align with clinical practice and contribute

positively to patient care outcomes in varied perioperative

care settings.
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