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Abstract

Recent studies using the diffusion decision model find that performance across many cognitive
control tasks can be largely attributed to a task-general efficiency of evidence accumulation (EEA)
factor that reflects individuals’ ability to selectively gather evidence relevant to task goals. However,
estimates of EEA from an n-back “conflict recognition” paradigm in the Adolescent Brain Cognitive
DevelopmentSM (ABCD) Study, a large, diverse sample of youth, appear to contradict these findings.
EEA estimates from “lure” trials—which present stimuli that are familiar (i.e., presented previously)
but do not meet formal criteria for being a target—show inconsistent relations with EEA estimates
from other trials and display atypical v-shaped bivariate distributions, suggesting many individuals are
responding based largely on stimulus familiarity rather than goal-relevant stimulus features. We present
a new formal model of evidence integration in conflict recognition tasks that distinguishes individuals’
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EEA for goal-relevant evidence from their use of goal-irrelevant familiarity. We then investigate
developmental, cognitive, and clinical correlates of these novel parameters. Parameters for EEA and
goal-irrelevant familiarity-based processing showed strong correlations across levels of n-back load,
suggesting they are task-general dimensions that influence individuals’ performance regardless of
working memory demands. Only EEA showed large, robust developmental differences in the ABCD
sample and an independent age-diverse sample. EEA also exhibited higher test-retest reliability and
uniquely meaningful associations with clinically relevant dimensions. These findings establish a
principled modeling framework for characterizing conflict recognition mechanisms and have several
broader implications for research on individual and developmental differences in cognitive control.

Keywords: Diffusion model; Evidence accumulation; Inattention; Working memory; n-back

1. Introduction

Individual differences in “cognitive control” functions that facilitate goal-directed behav-
ior have been a central focus of basic cognitive science (Botvinick & Cohen, 2014; Friedman
& Robbins, 2022; Mashburn, Tsukahara, & Engle, 2020), research on human development
(Davidson, Amso, Anderson, & Diamond, 2006; Somerville & Casey, 2010), and clinical
research on the etiology of psychiatric disorders, including attention-deficit/hyperactivity dis-
order (Alderson, Hudec, Patros, & Kasper, 2013; Kofler, Rapport, Bolden, Sarver, & Raiker,
2010; Rapport et al., 2008; Willcutt, Doyle, Nigg, Faraone, & Pennington, 2005), substance
use disorders (Khurana, Romer, Betancourt, & Hurt, 2017; Squeglia & Gray, 2016; Stevens
et al., 2014), and psychosis (Bozikas & Andreou, 2011; Gold et al., 2019; Mesholam-Gately,
Giuliano, Goff, Faraone, & Seidman, 2009). Such work heavily relies on behavioral task-
based measures that are thought to index an individual’s ability to maintain goal-relevant
information and use that information to guide behavior.

A popular framework for studying individual differences in cognitive control involves
“conflict recognition” paradigms (Oberauer, 2005), in which participants are asked to main-
tain “target” stimuli that meet specific goal-relevant criteria in memory and are then asked
to distinguish them from stimuli that are familiar (i.e., have also been presented recently),
but do not meet these criteria. The n-back task, in which individuals are presented with a
sequence of stimuli and asked to respond as to whether these stimuli meet specific order-
based target criteria (e.g., being the stimulus presented two items previously in a “2-back”
task), is a principal example. Conflict arises in this paradigm from having two different kinds
of nontarget stimuli: “novel” stimuli, which have not been presented previously, and “lure”
stimuli, which have been presented previously during the trial block but do not meet explicit
criteria for being a target (e.g., a stimulus presented one trial back during the 2-back task).
Although novel stimuli can be easily rejected as nontargets due to their lack of familiarity,
lure stimuli present a greater challenge for rejection because their familiarity, which indicates
potential status as a target, directly conflicts with the goal-relevant evidence indicating
that they must be rejected. Lures are, therefore, essential for ensuring that participants are
actively maintaining goal-relevant information about stimulus-context bindings rather than
just responding on the basis of stimulus familiarity (Oberauer, 2005; Szmalec, Verbruggen,
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Vandierendonck, & Kemps, 2011). The n-back has emerged as one of the most commonly
used paradigms in studies of goal-directed cognition because it effectively taxes an individ-
ual’s ability to actively maintain and apply goal-relevant information and produces robust and
well-replicated functional activation patterns in neuroimaging (Jaeggi, Buschkuehl, Perrig,
& Meier, 2010; Lamichhane, Westbrook, Cole, & Braver, 2020; Owen, McMillan, Laird, &
Bullmore, 2005; Schmiedek, Hildebrandt, Lövdén, Wilhelm, & Lindenberger, 2009).

It is, therefore, unsurprising that the n-back has been included as one of the neuroimaging
paradigms in the Adolescant Brain Cognitive Development (ABCD)® Study, an open access,
multisite study that has recruited over 11,000 youth from 21 sites across the United States and
follows them throughout their adolescent years (Casey et al., 2018). ABCD provides a sig-
nificant resource for developmental cognitive neuroscience and allied fields due to its diverse
sample (Garavan et al., 2018; Gard, Hyde, Heeringa, West, & Mitchell, 2023), comprehen-
sive measures (spanning the domains of neuroimaging, cognition, mental and physical health,
and social and environmental context), and large sample size, which is critical for identifying
replicable and meaningful effects (Dick et al., 2021; Marek et al., 2022; Owens et al., 2021).

The ABCD n-back task includes two conditions that are completed during functional
magnetic resonance imaging (fMRI) data collection. In the 2-back condition, participants are
presented with a sequence of stimuli (pictures of faces making various affective expressions
and pictures of places) and are asked to respond as to whether the stimulus is a “target,”
defined as being the same stimulus as was presented two trials previously. In the “0-back”
task, participants are presented with similar stimulus sequences, but the criterion for a
stimulus being a target is defined as that stimulus being the same as a target stimulus that is
presented at the start of 0-back trial blocks (i.e., a classic recognition memory task). The more
difficult 2-back task is assumed to require greater maintenance of goal-relevant information
than the 0-back task, and the contrast between the 2-back and 0-back is, therefore, typically
interpreted as isolating the construct of “working memory,” although this characterization
has been challenged (Kane, Conway, Miura, & Colflesh, 2007; Schmiedek et al., 2009).

Indeed, traditional cognitive constructs like “working memory” are often rooted in verbal
theories that are loosely defined, which can make these theories difficult to test and the rel-
evant constructs difficult to distinguish from one another (Oberauer & Lewandowsky, 2019;
Verbruggen, McLaren, & Chambers, 2014; Weigard, Huang-Pollock, Brown, & Heathcote,
2018). A promising alternative to verbal theories is the use of formal cognitive process mod-
els, which provide clear, mathematically specified explanations for how individuals complete
cognitive tasks (Heathcote, Brown, & Wagenmakers, 2015; Oberauer & Lewandowsky, 2019;
Townsend, 2008; Turner, Forstmann, Love, Palmeri, & Van Maanen, 2017). One class of such
models, termed “evidence accumulation models,” have been notably successful at describing
data from a wide variety of paradigms across the cognitive and neural sciences (Heathcote
& Matzke, 2022; Smith & Ratcliff, 2004). The diffusion decision model (DDM) is one of
the most commonly applied evidence accumulation models for two-choice tasks. It assumes
that noisy evidence gradually informs a decision variable that drifts between two boundaries
representing each response option, and that a response option is selected when this variable
crosses one of the boundaries (Ratcliff, Smith, Brown, & McKoon, 2016). The DDM’s main
parameters include the drift rate (v), which indexes the efficiency with which the decision
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variable drifts toward the correct response boundary, the boundary separation (a), which
represents an individual’s level of response caution, and the nondecision time (Ter), which
accounts for time spent on peripheral perceptual and motor processes. The DDM and similar
EEA models have been used to describe the n-back task by assuming that the decision
variable is informed by goal-relevant evidence regarding stimulus-context bindings and that
a response option is selected when a critical threshold for either a “target” or “nontarget”
response is reached (Evans, Steyvers, & Brown, 2018; Oberauer, 2005; Pedersen et al., 2023;
Weigard et al., 2024). The drift rate (v) parameter is typically greatest with novel stimuli and
lowest with lure stimuli, with target stimuli intermediate (vnovel > vtarget > vlure).

More recently, integrations of evidence accumulation models with factor-analysis and
structural equation modeling (SEM) methods have enabled the investigation of higher-order
latent factors that drive individual differences in performance across a wide variety of cog-
nitive tasks, including the n-back. These studies have repeatedly found that the DDM’s drift
rate parameter forms a strong, trait-like general factor that consistently drives individuals’
performance across tasks that range from simple decisions to those that involve complex
goal-directed processing (Lerche et al., 2020; Schmiedek et al., 2007; Schubert & Frischkorn,
2020; Schubert, Frischkorn, Hagemann, & Voss, 2016; Stevenson et al., 2024; Weigard, Clark,
& Sripada, 2021). N-back task performance appears to be largely attributable to the same
general factor (Löffler, Frischkorn, Hagemann, Sadus, & Schubert, 2024). This factor has
been hypothesized to reflect an individual’s task-general efficiency of evidence accumula-
tion (EEA), or the general ability to efficiently gather goal-relevant information with which to
make adaptive decisions (Weigard & Sripada, 2021). EEA may be a key contributor to indi-
vidual differences in general cognitive ability (Lerche et al., 2020; Schubert & Frischkorn,
2020) and lower levels of EEA appear to be relevant to several forms of psychopathology
(Heathcote et al., 2015; Sripada & Weigard, 2021; Weigard et al., 2021), especially childhood
attention problems (Huang-Pollock, Karalunas, Tam, & Moore, 2012; Wiker et al., 2023;
Ziegler, Pedersen, Mowinckel, & Biele, 2016).

The current study was motivated by an attempt to replicate these individual difference
findings in the ABCD sample. We start by documenting a surprising pattern of associations
between standard DDM drift rate parameters estimated from n-back lure trials and drift
rates on other n-back trials that was not only inconsistent with these prior studies, but also
suggested that applications of factor analysis or SEM to these data would be inappropriate
due to violations of their assumptions. This pattern indicates that a nontrivial portion of the
ABCD sample is relying largely on stimulus familiarity rather than goal-relevant evidence to
complete the task. To help explain these anomalies, we next turn to a theoretical framework
presented by Oberauer (2005), who posited that individuals use two general types of evidence
to complete the n-back task: goal-relevant evidence related to stimulus-context bindings (e.g.,
the binding of the target stimulus to the context of being two spaces back in the 2-back
sequence) and goal-irrelevant evidence related to stimulus familiarity (whether the stimulus
was presented recently, regardless of whether it meets formal target criteria). Although
goal-irrelevant evidence for stimulus familiarity can facilitate performance on trials with
novel stimuli, which can be easily rejected as “nontarget” based on their unfamiliarity alone,
familiarity evidence cannot be used to distinguish between target and lure stimuli. Oberauer
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(2005) proposed that, as a consequence, individuals strategically adopt an asymmetric
evidence criterion: they require stronger familiarity evidence to make a “target” response
than to make a “nontarget” response. This strategic shift in evidence criterion effectively
reduces drift rates on target trials relative to novel trials. Furthermore, as familiarity evidence
on lure trials shifts the decision process toward the incorrect (“target”) response boundary,
this goal-irrelevant information further reduces drift rates on lure trials relative to target trials,
contributing to the typical pattern of observed n-back drift rates (vnovel > vtarget > vlure). We
use this framework as the basis of a new formal model of evidence integration in conflict
recognition paradigms that can be used to separate the influence of: (1) goal-relevant EEA, (2)
the degree to which individuals utilize familiarity evidence during the task, and (3) the degree
to which individuals adopt a more conservative criterion for making “target” responses than
for making “nontarget” responses on the basis of familiarity evidence. The resulting model
parameters yield several insights about mechanisms of performance on conflict recognition
paradigms, their development, and their relevance to clinical symptom dimensions.

2. Methods

2.1. ABCD sample

Baseline and year 2 follow-up data were drawn from the curated ABCD Study data release
version 4.0 (https://nda.nih.gov; DOI 10.15154/1,523,041). ABCD is a largescale consortium
study that has recruited 11,878 children, ages 9–10, across 21 study sites and is currently
following them throughout their adolescence. Participants were recruited with a sampling
strategy (described in detail in: Garavan et al., 2018) designed to recruit a sample that reflects
the diversity of the U.S. population as closely as possible. N-back data were collected during
neuroimaging at the baseline wave and the task was thereafter repeated at 2-year intervals.
The multisite ABCD Study was approved by each site’s Institutional Review Board (IRB)
as well as a central IRB at the University of California, San Diego. All ABCD participants
provide informed consent (parents) or assent (children).

ABCD curated trial-level n-back data were available for 10,042 individuals at the baseline
session and 7133 individuals at the year 2 follow-up session. Of these individuals, 8824 (88%)
and 6539 (92%) met our basic inclusion criteria for data quality: accuracy rate clearly greater
than chance (>0.55) and omission (i.e., nonresponse) rates of <0.25 on both the 0-back and
2-back tasks.

2.2. Independent age-diverse sample

To investigate age effects over a wider age range, we analyzed data from a separate sample
of people who completed the same n-back task in a recently published study (Skalaban et al.,
2022). For this study, a community sample of 175 participants between the ages of 8 and 30
were recruited from the metro area of a mid-sized U.S. city. Data collection was approved by
the local IRB. All adult participants provided written consent, and all minor participants pro-
vided written assent. Of these 175 participants, the original study excluded 10 participants for

https://nda.nih.gov
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having full-scale IQ <70, four participants who had task performance close to chance (<0.60,
following recommendations from ABCD release notes), eight participants due to an experi-
menter error, and three for dropping out of the study before completing a second appointment.
All 150 remaining participants (76 females) met the inclusion criteria we used for the ABCD
Study data, and we, therefore, included these 150 participants in the current study’s analyses.
The sample consisted of individuals from diverse racial and ethnic backgrounds: 39% White,
13% Black, 7% Hispanic, 9% Hispanic/Latinx, 3% Non-Hispanic/Latinx, 12% Asian, 2%
American Indian, 6% other/mixed-race, 9% not reported. Additional details of this sample
are reported in Skalaban et al. (2022).

2.3. ABCD n-back task

The ABCD n-back was designed to be an “emotional” variant of the traditional n-back
task and uses stimuli that, for a given task block, consist of images either of faces displaying
different affective expressions or images of places (e.g., buildings or parks). In both the 0-
back and 2-back conditions, images are presented in a serial order for blocks of 10 trials each,
of which two are target stimuli, 2–3 are lure stimuli, and the remainder are novel stimuli.
All stimuli are presented for 2 s followed by a 500 ms fixation cross. Targets for the 2-
back task are stimuli that are identical to the stimulus presented two spaces previously in the
sequence. Target stimuli for the 0-back task are presented to participants immediately prior
to the beginning of each block of 10 trials. Lure stimuli on both the 0- and 2-back tasks are
stimuli that were previously presented within the block but that do not meet formal criteria for
being a target. An example of a 0-back lure would be a stimulus that is presented for a second
time within the block but that does not match the target stimulus presented prior to the block.
Examples of 2-back lures include stimuli that were presented one, three, or four spaces back
in the sequence. Participants complete eight blocks of each condition, resulting in a total of 80
trials for both the 0-back task and 2-back task. Additional information regarding task timing,
stimulus images, and fMRI protocol is described in detail elsewhere (Casey et al., 2018).

2.4. Criterion measures

Given the documented importance of evidence accumulation processes for complex cogni-
tive abilities (Lerche et al., 2020; Schmiedek, Oberauer, Wilhelm, Süß, & Wittmann, 2007)
and childhood attention problems (Weigard et al., 2024; Wiker et al., 2023; Ziegler et al.,
2016), we sought to index relations between model parameters and several relevant criterion
variables.

General cognitive ability was indexed using raw scores of the overall Cognitive Function
Composite from the NIH Toolbox Battery (Akshoomoff et al., 2013; Weintraub et al., 2013).
This composite is a measure of performance across all tasks in the battery, spanning a wide
array of cognitive functions including processing speed, vocabulary, reading, working mem-
ory, episodic memory, and cognitive flexibility. The composite displays evidence of excellent
test-retest reliability (r = .96) in youth (Akshoomoff et al., 2013). Given that the n-back is
considered to primarily index working memory, we also investigated specific associations
of n-back model parameters with scores on the Toolbox List Sorting Working Memory Test.
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This task assesses participants’ ability to manipulate information in working memory by
presenting them with pictures of animals or food of different sizes and asking them to repeat
the list of items presented in the order of the smallest to largest item. Scores on this individual
test also show good reliability (ICC = 0.86) in youth and convergent validity in predicting
scores from other working memory measures (Tulsky et al., 2013).

In addition to these traditional cognitive measures, we also sought to determine whether
parameters from our evidence accumulation model of the n-back were related to measures of
EEA drawn from an entirely separate task: “go” trials of the ABCD stop-signal task (SST).
These trials feature a simple decision task in which participants decide whether an arrow is
pointing to the right or left side of the screen. We used archival DDM parameter estimates
from a prior study (Weigard et al., 2024) that fit a standard DDM to ABCD SST data. The
fitting procedures, which are described in detail in this prior study, were nearly identical to
the current study’s fitting procedures described in the section below (i.e., individual-level
Bayesian estimation using priors generated with an independent subset of ABCD partici-
pants). The DDM has been widely applied to the SST within ABCD (Epstein et al., 2023)
and elsewhere (Fosco, White, & Hawk, 2017; Howlett, Harlé, & Paulus, 2021; Karalunas &
Huang-Pollock, 2013) to index DDM parameters in the context of simple decision-making.
Here, we focus on the standard DDM’s drift rate (v) parameter as an index of EEA.

As parent and teacher reports of attention problems provide complementary information
(Cordova et al., 2022; Narad et al., 2015; Weigard et al., 2024), children’s attention problems
were indexed with both the parent-report data from the Child Behavior Checklist (Achenbach,
2001; Achenbach & Ruffle, 2000) and teacher-report data from the Brief Problem Monitor
(Achenbach, McConaughy, Ivanova, & Rescorla, 2011). The “Attention Problems” scale from
each of these measures includes items such as “can’t concentrate,” “inattentive or easily dis-
tracted,” and “impulsive or acts without thinking” that are rated on a 0−2 scale. Both Atten-
tion Problems scales have good internal consistency and test-retest reliability (α/r > .80) and
parent and teacher ratings on these scales show evidence of construct validity by relating to
Attention-Deficit/Hyperactivity Disorder diagnosis (Achenbach et al., 2011; Chen, Faraone,
Biederman, & Tsuang, 1994; Edwards & Sigel, 2015).

2.5. DDM analyses of the n-back

All models were estimated using Dynamic Models of Choice, a suite of functions in the R
language that allows for simulation and Bayesian estimation of the DDM and other models
of choice response time (Heathcote et al., 2019). We created informative priors for DDM
parameters in each ABCD condition and wave following prior work (Weigard, Matzke, Tanis,
& Heathcote, 2023). Specifically, we removed the data from a subset of 200 singleton ABCD
participants who had data that met inclusion criteria at both the baseline and year 2 waves, fit
a hierarchical Bayesian model to this independent subsample, and then obtained informative
priors for each model parameter by fitting truncated normal distributions to the full distri-
bution of all individual-level posterior samples from these hierarchical models (all priors are
displayed in Tables S1 and S2). This prior-generation strategy provides constraints on indi-
viduals’ parameter estimates without the drawbacks of using a fully hierarchical modeling
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approach with all participants (e.g., demands on computing resources and nonindependence
of individual-level estimates from hierarchical Bayesian models).

Before model estimation, we removed trials with response times < 200 ms as fast guesses.
The standard DDM fit to these data included drift rate parameters for each n-back trial type
(vnovel, vtarget, vlure), boundary separation (a), start point (z), nondecision time and its between-
trial variability (t0, st0), as well as a “go failure” (pgf) parameter to account for omissions
due to inattention. The pgf parameter assumes that, on a given trial, a participant will fail
to respond due to an attentional lapse with probability pgf. For example, a participant with
pgf = 0.08 will, on average, show omissions due to inattention on 8% of trials. Omissions
that alternately occur because participants’ responses fall outside of the 2-s response window
were also accounted for in the model’s likelihood function using methods developed in prior
work (Damaso et al., 2021). Specifically, we assumed that if a given set of DDM parameters
predicts that a subset of RTs would be greater than 2 s, the likelihood of omissions would be
proportional to the size of this subset of RTs. If a greater proportion of omissions is observed
than would be predicted by such RTs falling outside of the response window, the pgf parameter
would account for these excess omissions. We did not estimate the other DDM between-trial
variability parameters (sz, sv) due to the difficulties of doing so without large numbers of trials
(Lerche, Voss, & Nagler, 2017). Similarly, although the ABCD n-back contains stimuli from
different types of image categories, including places and facial expressions of different emo-
tions, we did not attempt to model performance differences between these categories because
doing so would lead to many experimental conditions having only a handful of trials, which
would likely cause substantial difficulties with estimating model parameters. The reparame-
terized model structure described below was identical to the standard DDM model structure
except where described below in the Results section.

Sampling for all model parameters was conducted with the differential evolution Markov
chain Monte Carlo method (Turner, Sederberg, Brown, & Steyvers, 2013) and convergence
was determined by the Gelman−Rubin statistic falling below 1.10 (Gelman & Rubin, 1992).
Model fit was assessed with posterior predictive plots (Supplementary Materials) and the
medians of posterior distributions for DDM parameter values were retained as point estimates
for subsequent analyses.

2.6. Data visualization and inferential analyses

All data visualization and analysis was conducted within R (R Core Team & others, 2013)
and all code for this study is openly available at: https://osf.io/tmzye/. Bivariate relations in the
ABCD data were visualized with smoothed scatterplots using the smoothScatter() function,
which produces smoothed density representations of data obtained with a two-dimensional
kernel density estimate. Smoothed scatter plots are useful when the number of individual par-
ticipants is large, as this causes points in traditional scatterplots to overlap with one another
and obscure trends in the data. 95% confidence intervals (CIs) for relevant Cohen’s d and
Pearson’s r values were estimated for the ABCD sample using a clustered bootstrapping pro-
cedure that accounts for the nesting of individuals within families and ABCD sites. For the
independent age-diverse sample, a standard (individual-level) bootstrapping procedure was

https://osf.io/tmzye/
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used to estimate 95% CIs for d and r values. Effects of age in the independent age-diverse
sample were estimated by regressing n-back model parameters on both linear and quadratic
age. Analyses of model parameter relations with criterion measures in ABCD were conducted
with mixed effects models using the gamm4 and MiMin R packages that accounted for nesting
by family and ABCD site and included age, sex, family income, highest parental education,
parent marital status, race, and ethnicity as covariates. Effect size (marginal r2) for these rela-
tions was estimated using likelihood ratio tests.

3. Results

3.1. Lure drift rates from the ABCD n-back task show atypical bivariate relations that
suggest the presence of familiarity-based responding

Fig. 1 displays smoothed scatterplots and correlation coefficients for associations between
standard DDM drift rate parameters estimated from target, lure, and novel n-back trial condi-
tions in the baseline (blue, below diagonal) and year 2 (red, above diagonal) data sets. Several
patterns in these associations are notable. In general, drift rates for target and novel trials (e.g.,
second and third rows/columns) show moderate to strong associations with one another and
with themselves across levels of n-back load. The scatterplots for these associations also con-
sistently display the shape of a bivariate normal distribution, suggesting that they can be easily
described by models that assume simple linear associations with normally distributed errors
(e.g., factor analysis models). These observations are consistent with prior work (Lerche et al.,
2020; Schmiedek et al., 2009; Schubert & Frischkorn, 2020; Schubert et al., 2016; Steven-
son et al., 2024; Weigard et al., 2021), identifying a general drift rate factor that influences
performance across many task conditions.

However, drift rate estimates from lure trials (first and fourth rows/columns) show weaker
and more variable associations with those from other trial types and most of these associations
fail to display the shape of a bivariate normal distribution, instead following an atypical v-
shaped pattern. This is most apparent in the baseline session, in which lure drift rates from
0-back and 2-back trials show very weak, or even negative, correlations with 2-back target
drift rates. The corresponding associations in the year 2 data are slightly stronger, but the
v-shaped pattern is still apparent. Beyond being inconsistent with the hypothesis of a general
drift rate factor, the atypical shape of these bivariate associations also suggests that standard
factor analysis models would, more generally, be inadequate to describe these data, given that
the associations clearly violate the distributional assumptions of these models.

The v-shaped pattern present across lure trial drift rate associations indicates that individ-
uals with lure drift rates greater than 0 generally display the expected positive relation with
other drift rates but that individuals with lure drift rates below 0 (indicating a pattern of evi-
dence accumulation that moves, on average, toward the incorrect “target” response boundary
on lure trials) generally display the opposite relation. This pattern can plausibly be explained
by the use of information about stimulus familiarity (Oberauer, 2005) as opposed to goal-
relevant stimulus features (i.e., whether the stimulus meets explicit criteria for being a tar-
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Fig. 1. Smoothed scatterplots of associations between drift rates from ABCD n-back task conditions in the baseline
(blue; below the diagonal) and year 2 (red; above the diagonal) data. Kernal density plots within the diagonal
compare the density of drift rate parameter estimates for the baseline (blue) and year 2 (red) data. Correlation
coefficients (r) for each association are displayed above each scatterplot.

get). If individuals are responding mostly based on familiarity, their lure drift rate would be
strongly negative, as lure stimuli would incorrectly be identified as targets, while their target
and novel trial drift rates would continue to be positive, as the familiarity strategy is effective
for trials in these conditions.
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In the following section, we formalize the assumption that individuals’ responses on the n-
back task are determined by a mixture of the efficiency of their evidence accumulation related
to goal-relevant stimulus features (i.e., EEA) and, alternately, their use of goal-irrelevant evi-
dence related to familiarity.

3.2. A novel formal model of evidence integration on the n-back task provides a principled
decomposition of individuals’ performance

We refit the DDM to the ABCD baseline and year 2 data using all modeling procedures
described above, but with one exception: rather than separately estimating the drift rates for
each of the three trial conditions, we assumed that these rates were differentially driven by
separate parameters with distinct process interpretations. We began with Oberauer’s (2005)
assumption that individuals use a combination of goal-relevant evidence related to stimulus-
context bindings and goal-irrelevant evidence related to stimulus familiarity. We assumed that
efficiency of accumulating goal-relevant evidence, represented by parameter e, drives drift
rates to the same degree across all three trial types, but that the overall rate for each trial type
is differentially impacted by goal-irrelevant evidence related to stimulus familiarity. Oberauer
(2005) posits that familiarity evidence from novel stimuli is typically treated as strong evi-
dence for a stimulus being a “nontarget,” but that familiarity evidence from repeated (target
and lure trial) stimuli necessarily provides more ambiguous evidence for a “target” response
as targets and lures cannot be distinguished based on familiarity alone. Hence, estimates of
familiarity evidence on trials with novel stimuli (fn) were allowed to differ from estimates of
familiarity evidence on trials with repeated (target and lure) stimuli (fr). Both types of famil-
iarity parameter derive from the same underlying familiarity evidence dimension and differ
only due to a participant’s strategic use of a familiarity-evidence criterion.

As “target” is the correct decision for target stimuli, positive values of fr would enhance
EEA toward the correct decision boundary for target trials. However, as “nontarget” is the
correct decision for lure stimuli, fr has an opposing effect on lure trials, driving the decision
process toward the incorrect decision boundary. Therefore, an increase in fr should cause an
increase in the observed drift rate on target trials and a corresponding decrease of the same
magnitude in the observed drift rate on lure trials. On the basis of these assumptions, we fit a
model in which the observed drift rates across novel, target, and lure trials were determined
by the following set of equations (see Supplementary Materials for a detailed derivation):

vtarget = e + fr

vnovel = e + fn

vlure = e − fr

The e, fn, and fr parameter estimates allow for the theoretical propositions of Oberauer
(2005) to be directly measured: accumulation of goal-relevant evidence related to stimulus-
context bindings (e), accumulation of the strong evidence for a “nontarget” response on trials
with unstudied (novel) stimuli (fn), and accumulation of the more ambiguous evidence for
a “target” response on trials with studied (target and lure) stimuli (fr). However, we then
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applied two additional transformations to the fn and fr parameters to better index theoretically
meaningful processes related to individuals’ use of familiarity evidence.

As individuals do not know, at the beginning of a trial, whether a stimulus is novel or
repeated, it is implausible that they would be able to deweight familiarity evidence from novel,
relative to repeated, stimuli during the processing of the trial. Rather, we contend that the ten-
dency for fn to be greater than fr is better characterized as the result of a “stimulus bias” (White
& Poldrack, 2014) in which individuals adopt a more conservative evidence criterion (i.e.,
require much stronger evidence) for making a “target” response on the basis of familiarity evi-
dence than for making a “nontarget” response on the basis of familiarity evidence. Criterion
shifts can be measured by subtracting drift rates across opposing stimulus categories (Ging-
Jehli, Arnold, Roley-Roberts, & DeBeus, 2022; Kloosterman et al., 2019), and we, therefore,
adopt the following transformation to index individuals’ familiarity evidence criterion (fc):

f c = fn − fr

Positive values of this familiarity criterion (fc) parameter indicate the expected adop-
tion of a more conservative criterion for “target” as opposed to “nontarget” responses,
whereas negative values indicate the opposite pattern and values close to 0 indicate a neutral
familiarity-evidence criterion. In addition to criterion settings, combined fn and fr values are
also determined by the overall strength of the impact of goal-irrelevant familiarity evidence
on an individual’s decision process (fs), which we index as the average of the familiarity rate
parameters:

f s = fn + fr

2

This familiarity strength (fs) parameter is likely jointly determined by an individual’s ability
to accumulate the goal-irrelevant evidence related to stimulus familiarity and by their strate-
gic choice of how strongly to weight familiarity evidence relative to goal-relevant evidence
specific to stimulus-context bindings. Although we cannot tease apart these two sources of
variation in the current model, we assume that individuals whose strategies place a greater
emphasis on goal-irrelevant familiarity-based evidence will show higher levels of fs.

In sum, this novel model of evidence integration on the n-back task yields three clearly
interpretable psychological-process parameters: the efficiency with which individuals accu-
mulate goal-relevant evidence (e), the strength of the impact of goal-irrelevant familiarity evi-
dence on an individual’s decision process (fs), and shifts in participants’ criterion for making
a “target” versus “nontarget” response on the basis of familiarity evidence (fc). These param-
eters also make principled predictions about individuals’ observed drift rates across n-back
conditions. An individual who is effectively utilizing goal-relevant evidence across all trials
(high e), de-emphasizing the use of goal-irrelevant familiarity evidence (low fs), and setting a
more conservative familiarity evidence criterion for “target” relative to “nontarget” responses
(high fc) would be expected to display the commonly observed pattern of vnovel > vtarget > vlure

(Oberauer, 2005). At the other end of the spectrum, an individual who is completing the task
using familiarity evidence alone (e = 0; high fs) and makes no criterion shift to account for
the ambiguity of familiarity evidence on target and lure trials (fc = 0) would have identical
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Table 1
Guide to the interpretation of the conflict recognition evidence integration model parameter values

Model parameter Definition Value range Value interpretation

Efficiency (e) Efficiency of accumulating
evidence relevant to the
explicit task goal

e > 0 Individual is utilizing goal-relevant evidence to
make choices

e = 0 Individual is not considering goal-relevant
evidence

Familiarity
Strength (fs)

Captures ability to utilize
familiarity evidence as
well as the strategic choice
of how strongly to weight
familiarity evidence

fs > 0 Individual is utilizing goal-irrelevant
familiarity evidence to make choices

fs = 0 Individual is not considering goal-irrelevant
familiarity evidence

Familiarity
Criterion (fc)

The degree to which
individuals adopt a more
conservative criterion for
making “target” relative to
“nontarget” responses

fc > 0 Individual requires more familiarity evidence
to make a “target” response than a
“nontarget” response

fc < 0 Individual requires more familiarity evidence
to make a “nontarget” response than a
“target” response

observed drift rates on target and novel trials and a negative observed drift rate of the same
absolute value on lure trials. This latter pattern would characterize the set of individuals who
drive the v-shape in the bivariate associations of lure drift rates with target and novel drift
rates (Fig. 1): those who have strongly negative rates on lure trials but strongly positive rates
on target and novel trials. Table 1 provides a reference guide for interpretation of the values
of each parameter.

Posterior predictive plots of model fit are displayed in Figs. S1 and S2 alongside compara-
ble plots for the standard DDM. As detailed in Supplementary Materials, these plots indicated
that both the standard DDM and the novel model provided an adequate fit to the data across
all samples. Because our novel model of evidence integration is essentially a three-parameter
transformation of the original three drift rate parameters, we did not expect the new model
to display better fit to individuals’ choice and RT data than the standard DDM. Therefore,
we do not engage in a formal model comparison using metrics that assess models’ fit to these
individual-level data features (e.g., information criteria). We emphasize that the reparameteri-
zation is not meant to provide a better description of choice and RT data at the individual level.
Rather, it is intended as a measurement model that provides a more theoretically principled
and interpretable description of individual differences in cognitive mechanisms by positing
a set of three underlying parameters that can account for individuals’ observed drift rates on
target, nontarget, and lure trials and can explain their patterns of interrelations, including the
unexpected v-shaped relation between target and lure drift rates.

Group distributions of model parameter estimates for the baseline (blue) and year 2 (red)
data sets are displayed in Fig. 2. Absolute values of e and fs were generally above 0 across n-
back load conditions, indicating that most individuals utilize both goal-relevant evidence (e)
and goal-irrelevant evidence related to stimulus familiarity (fs) to generate responses in the n-
back task. Most values of fc were also positive, suggesting that individuals generally display
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Fig. 2. Distributions of ABCD participants’ parameter estimates, including efficiency of evidence accumulation
for the goal-relevant choice (e), the strength of goal-irrelevant evidence related to familiarity (fs), the shifts in the
criterion for familiarity evidence (fc), across n-back load conditions and across the baseline (blue) and year 2 (red)
waves. Distributions are represented as violin plots, which are standard box plots that are embedded within kernel
density plots of the same data.
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the expected criterion shift in which they require stronger familiarity-based evidence to make
a “target” response than to make a “nontarget” response, given the ambiguity of familiarity
evidence for discerning target from lure stimuli. The 2-back task displayed consistently lower
e (baseline d = −1.18 CI = −1.13 to −1.22; year 2 d = −1.19, CI = −1.14 to −1.25)
and higher fs (baseline d = 1.51, CI = 1.44–1.59; year 2 d = 1.84, CI = 1.77–1.93) than
the 0-back, indicating poorer goal-relevant evidence quality and greater use of goal-irrelevant
familiarity evidence on the more difficult task. The 2-back task displayed moderately lower
fc than the 0-back task during the baseline time point (d = −0.40, CI = −0.35 to −0.46) but
there were no discernible load-related fc differences in year 2 (d = −0.02, CI = −0.07 to
0.10).

Fig. 3 illustrates the associations of the e, fs, and fc parameters with the observed values
of vlure from the standard DDM fit. Across both n-back load levels and both study waves,
observed vlure was strongly positively correlated with e, strongly negatively correlated with fs,
and positively correlated with fc. For the latter two parameters related to the use of familiarity
evidence, this relation appears to largely be driven by individuals with vlure < 0, who tend to
show the highest influence of familiarity-based evidence on the decision process (i.e., higher
fs) and who are less likely to show an adaptive criterion shift when considering familiarity
evidence (i.e., fc close to, or below, 0).

We next aimed to assess whether individuals’ e was associated with the parameters that
account for the influence of familiarity evidence and familiarity criterion shifts (Fig. 4). Asso-
ciations between e and fs were generally negative across both load conditions and study
waves, suggesting that individuals who were worse at accumulating goal-relevant evidence
displayed greater use of goal-irrelevant familiarity evidence. Plots of these associations show
similarity to an “L” or “inverse T” shape, suggesting that most individuals who rely strongly
on familiarity evidence do so because they are not effectively using goal-relevant evidence at
all (e close to 0). Associations between e and fc were notably weaker and less consistent.

3.3. Both EEA and the use of goal-irrelevant familiarity evidence display generality across
levels of working memory load

We next sought to assess whether parameters from our novel model of n-back evidence
integration showed evidence of task-generality by investigating how strongly individual dif-
ferences in these parameters were correlated across n-back load levels (Fig. 5). The e param-
eter displayed strong relations across n-back load levels during both waves, consistent with a
task-general factor for efficiency of goal-relevant evidence accumulation (i.e., EEA). Notably,
we found that, in each load condition, e estimates were nearly perfectly correlated with drift
rate estimates averaged across target, lure, and novel trials in the standard DDM fit (0-back
and 2-back r both > .99). This close correspondence is directly predicted by the evidence
integration model because solving for average v indicates that the e parameter is the dominant
influence (average v = 3e + fn). Therefore, average drift rates from the standard DDM in this
sample are likely to index the same general efficiency construct, consistent with prior reports
of strong correlations of average drift rates across n-back load conditions in another subset of
ABCD data (Weigard et al., 2024).
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Fig. 3. Relations between parameters from the novel DDM parameterization and observed lure drift rates (vlure)
from fits of the traditional DDM for the baseline (blue) and year 2 (red) sample.
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Fig. 5. Plot of parameter correlations across levels of working memory load for the baseline (blue) and year 2 (red)
samples. Black lines indicate linear regression lines for the associations of parameters across load levels.

The fs and fc parameters also consistently displayed moderate-to-strong associations across
n-back load levels, suggesting that individuals’ utilization of evidence related to stimulus
familiarity and their criterion settings for making decisions based on familiarity evidence
both show generalization across n-back conditions.

3.4. Only the e parameter shows evidence for robust developmental effects in ABCD and in
an independent sample

The distributions in Fig. 2 suggest that the e parameter shows more apparent differences
from the baseline to year 2 waves than the other two parameters. Effect sizes (d) for wave
effects were estimated for individuals with complete data across both waves (n = 5284) to
investigate the size of these trends. The e parameter showed large increases from the baseline
to the year 2 wave (0-back d = 0.87, CI = 0.81–0.93; 2-back d = 1.13, CI = 1.06–1.20).
Small to moderate decreases in year 2 were observed in fs (0-back d = −0.40, CI = −0.36
to −0.43; 2-back d = −0.21, CI = −0.17 to −0.25). The fc parameter for the 0-back task
displayed a moderate decrease in year 2 (d = −0.51, CI = −0.47 to −0.55) and only trivial
age-related changes were observed in fc for the 2-back (d = 0.03, CI = −0.01 to 0.06).

As the year 2 administration was ABCD participants’ second exposure to the task, it is
difficult to discern whether these observed wave differences are developmental in nature or
related to other factors, such as practice effects or the specific contexts of the two visits. In
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Table 2
Results from regression models regressing each n-back model parameter on linear and quadratic effects of age

Model parameter Regression coefficient Est. SE p

0-back Efficiency (e) Intercept −0.529 0.484 .276089
Age 0.251 0.055 1.12E-05
Age2 −0.006 0.001 9.48E-05

2-back Efficiency (e) Intercept −0.883 0.399 .028187
Age 0.218 0.045 3.72E-06
Age2 −0.005 0.001 3.91E-05

0-back Fam. Strength (fs) Intercept 0.177 0.142 .216397
Age 0.001 0.016 .956735
Age2 0.000 0.000 .583043

2-back Fam. Strength (fs) Intercept 0.655 0.233 .005591
Age −0.009 0.027 .743035
Age2 0.000 0.001 .848997

0-back Fam. Criterion (fc) Intercept 1.111 0.302 .000324
Age −0.047 0.034 .172890
Age2 0.001 0.001 .196826

2-back Fam. Criterion (fc) Intercept 1.318 0.412 .001711
Age −0.073 0.047 .122735
Age2 0.002 0.001 .166422

Abbreviations: Est., unstandardized regression coefficient; SE, standard error.

addition, as the ABCD waves covered a narrow age range, ABCD cannot currently be used
to gauge the overall developmental trajectory of the process model parameters. To address
these limitations, we fit the novel model to an independent age-diverse sample of 150 individ-
uals, spanning middle childhood through young adulthood, who completed the same ABCD
version of the n-back task.

Posterior predictive plots (Fig. S3) indicated that the model provided an excellent descrip-
tion of the n-back data in the independent age-diverse sample. Fig. 6 displays scatterplots
of 0-back (green) and 2-back (orange) model parameters from this sample by participants’
age. Key features of the above results were replicated in this independent sample, includ-
ing findings of decreased e (d = −1.09, CI = −0.90 to −1.30) and increased fs (d = 1.82,
CI = 1.61–2.09) in the 2-back condition relative to the 0-back condition. There were no sig-
nificant load-related differences in fc (d = −0.15, CI = −0.34 to 0.04). Participants in the
independent age-diverse sample also displayed significant and positive cross-load correla-
tions in all parameters (e r = .39, CI = 0.23–0.52; fs r = .35, CI = 0.21–0.47; fc r = .27,
CI = 0.15–0.38), providing further evidence for task-generality. Linear regressions (Table 2;
lines in Fig. 6) revealed significant linear and quadratic effects of age on e across both load
levels but no significant effects of age on the fs or fc parameters. These results suggest that
efficiency of goal-relevant EEA shows a strong maturational trend from childhood through
individuals’ mid-20s but that the observed age-related differences in ABCD fs and fc esti-
mates are instead likely driven by alternative factors, such as practice effects or experimental
context.
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3.5. Parameter e displays the best test-retest reliability and the strongest relations with
relevant cognitive and clinical criterion variables

Test-retest reliability correlations (r) across the 2-year gap in ABCD were estimated within
the 5284 individuals who had data from both time points to gauge the temporal stability
of parameters. Given that all parameters showed evidence of generality across n-back load
levels, we estimated reliability for parameters at each load level as well as for the average
across levels, which we assumed to index the task-general trait. Reliability for the e parameter
was close to, or above, the threshold typically considered “acceptable” for reliability (0-back
r = .47, CI = 0.44–0.49; 2-back r = .58, CI = 0.56–0.61; average r = .60, CI = 0.57–0.62),
which is notable given the 2-year measurement interval and the large degree of developmental
change apparent across this interval. Reliability for fs (0-back r = .29, CI = 0.24–0.34; 2-
back r = .34, CI = 0.30–0.37; average r = .40, CI = 0.34–0.44) and for fc (0-back r = .18,
CI = 0.14–0.21; 2-back r = .20, CI = 0.17–0.24; average r = .23, CI = 0.19–0.27) was
significantly greater than 0 but systematically lower than reliability for e. Therefore, although
all parameters show some level of stability across time, EEA for goal-relevant information
appears to show the greatest evidence of being a relatively stable trait.

To gauge the criterion validity of each parameter, we next investigated their associations
with measures of several cognitive and clinical constructs that have been previously asso-
ciated with n-back task performance and EEA. In the baseline sample of ABCD, we used
generalized additive mixed models that accounted for participants’ family, study site, and rel-
evant demographics to estimate the size of associations between the n-back model parameters
and each measure. As the e parameter was correlated with the fs and fc parameters (Fig. 4), we
include all three parameters in each regression simultaneously to ensure that relations between
parameters and a given criterion variable were not attributable to parameter intercorrelations.
Given the evidence for task-generality in each parameter, we focus here on parameter esti-
mates that are averaged across the 0-back and 2-back conditions as this increases power for
detection of associations with the task-general construct. However, we note that the pattern of
results is not substantially different when parameters from each n-back load condition were
investigated separately (Tables S3 and S4).

Results involving cognitive variables (Table 3a) indicate that the e parameter displays
moderate-to-large positive associations with general cognitive ability (20.1% of variance
explained), performance on a working memory task completed outside of the scanner (8.1%),
and EEA measured as drift rate from the simple “go” choice condition of the ABCD SST
(11.1%). The fs and fc parameters did not display substantial relations with either NIH Tool-
box measure (≤0.2% of the variance explained) but were both positively related to EEA mea-
sured on the SST (fs = 4.9%, fc = 1.3%), although these relations were both considerably
smaller than those of e.

Results involving clinical ratings of children’s attention problems (Table 3b) indicated that
the e parameter displays small-to-moderate negative associations with parent- and teacher-
reported attention problems (2.2% of parent-report variance explained, 4.6% of teacher-report
variance explained), while the fs parameter shows statistically significant, but very small
(0.1−0.4% of variance explained), associations with attention problems in the same direc-
tion as e.
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Therefore, although the e parameter shows robust associations that are consistent with prior
work on EEA’s task-generality and its importance for complex cognitive abilities (Lerche
et al., 2020; Schmiedek et al., 2007) and attention problems (Weigard et al., 2024; Ziegler
et al., 2016), the other two parameters show comparatively little evidence for criterion validity.
Taken together with evidence of better test-retest reliability for e, these results suggest that
EEA is a relatively stable trait that shows relevance for individual differences in cognition
and clinical dimensions, while the use of goal-irrelevant familiarity-based evidence—despite
being essential to describing n-back performance—is less likely to be a stable trait that is
relevant to the study of individual differences.

4. Discussion

Formal cognitive process models such as the DDM (Ratcliff et al., 2016) present a
promising method for characterizing mechanisms that drive individual and developmental
differences in goal-directed cognitive functioning. Previous work in this area has consistently
shown that the DDM’s drift rate parameter forms a task-general factor that appears to be a
key driver of individual differences in cognition (Lerche et al., 2020; Löffler et al., 2024;
Schmiedek et al., 2007) and that has been hypothesized to reflect individuals’ general effi-
ciency for accumulating goal-relevant evidence, or “EEA” (Weigard & Sripada, 2021). The
current study documents an unexpected pattern of associations involving the n-back task, a
popular conflict recognition paradigm, from the ABCD Study, a large and diverse sample
of youth, that initially appears inconsistent with these findings: drift rates on lure trials
show atypical v-shaped associations with other drift rates, suggesting many individuals are
responding based primarily on familiarity rather than goal-relevant stimulus features. This
pattern represents both a theoretical puzzle and a practical problem for standard methods that
characterize individual differences in terms of multivariate normal distributions.

Here, building on Oberauer (2005), we proposed a new model of the cognitive process
that combines two different knowledge representations—general stimulus familiarity and the
match of a stimulus to the goal of the n-back and other conflict recognition tasks—to provide
the input to a DDM. The model solves both the theoretical puzzle and methodological prob-
lem in terms of three parameters: efficiency of accumulation for goal-relevant evidence (e,
equivalent to EEA), the impact of goal-irrelevant evidence related to the stimulus familiarity
on the decision process (fs), and the degree to which individuals adopt a more conservative
criterion for making “target” responses than “nontarget” responses on the basis of familiar-
ity evidence (fc). Although all three parameters differ systematically between the 0-back and
2-back conditions, individual differences in each parameter show moderate to strong corre-
lations across conditions, suggesting that these processes generalize across n-back tasks of
different difficulty levels. We further found that only the e parameter exhibits strong test-
retest reliability, robust correlations with relevant cognitive and clinical criterion variables,
and clear evidence of maturational change, both in ABCD and in an independent age-diverse
data set. Overall, our results demonstrate the centrality of EEA (measured in this model as
the e parameter) as a reliable, clinically relevant individual difference dimension. They also
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suggest the need for care in disentangling EEA from concurrently operating familiarity-based
processing that is idiosyncratic and does not represent a task-general individual difference
dimension.

This work provides a novel extension of the theory first proposed by Oberauer (2005) in an
earlier study involving adults and leverages this theory to explain the pattern of data present
in ABCD’s sample of youth. Oberauer (2005) posits that individuals completing the n-back,
and similar “conflict recognition” tasks, rely on a combination of evidence related to bindings
between stimuli and relevant contexts (“is this the same item that was presented two spaces
back?”) and evidence related to familiarity (“have I seen this item recently?”). Novel stimuli
can be easily rejected on the basis of their unfamiliarity, but target and lure stimuli cannot
be distinguished on the basis of familiarity evidence alone. Individuals, therefore, tend to
employ a more conservative criterion for interpreting familiarity as evidence for a “target”
response than for interpreting unfamiliarity as evidence for a “nontarget” response, causing
their observed drift rates on target trials to be lower than those on novel trials. Familiarity
evidence moves the decision process toward the correct “target” boundary on target trials
but moves it away from the correct “nontarget” boundary on lure trials, further lowering the
observed drift rate on lure trials.

Consistent with this theory, our model’s parameter estimates indicate that individuals typi-
cally utilize a combination of evidence relevant to the n-back task’s goal of responding based
on stimulus-context bindings (reflected in e) and evidence related to the goal-irrelevant dimen-
sion of stimulus familiarity (reflected in fs). Parameter estimates also indicate that individuals
tend to adopt a more conservative memory criterion for making a “target” response than
a “nontarget” response on the basis of familiarity evidence (fc >0), which is a character-
istic example of a “stimulus bias” as explained in the DDM framework (Ging-Jehli et al.,
2022; Kloosterman et al., 2019; White & Poldrack, 2014). Individuals’ use of goal-irrelevant
familiarity evidence was greater in the 2-back condition, which could be partially explained
by the substantially poorer quality of goal-relevant evidence (e) on the 2-back relative to
0-back task (given that the stimulus-context bindings in the 0-back are much easier to main-
tain). Better quality evidence on the 0-back would reduce participants’ need to rely on a
familiarity-based strategy. This overall pattern suggests that individuals’ performance on tasks
that have high working memory demands—or higher “recognition conflict” as described by
Oberauer (2005)—displays two key mechanistic differences with performance on tasks that
have low working memory demands: poorer quality evidence about goal-relevant stimulus-
context bindings (lower e) and greater reliance on goal-irrelevant familiarity-based evidence
(higher fs).

Critically for modeling of individual differences, this novel formalization can account for
the atypical v-shaped bivariate associations present in the ABCD sample. Individuals with
negative vlure tend to show poorer accumulation of goal-relevant evidence (e close to 0),
greater reliance on goal-irrelevant familiarity-based evidence (higher fs), and a lack of the
adaptive criterion shift for familiarity-based evidence (fc close to 0). The v-shaped pattern of
associations between vlure and the other drift rate parameters is, therefore, driven by the fact
that, when e and fc are close to 0, increases in the fs parameter drive vtarget and vnovel higher but
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drive vlure in the opposite direction, leading vlure to be a negative value of a similar magnitude
to vtarget and vnovel.

The fs and fc parameters are correlated across n-back load levels, suggesting that indi-
viduals who rely on familiarity-based strategies tend to do so across multiple conditions of
the n-back task. As expected, the e parameter was strongly correlated across load levels,
consistent with prior work on the task-general factor of EEA (Lerche et al., 2020; Löffler
et al., 2024; Schmiedek et al., 2007; Weigard & Sripada, 2021). By explicitly formalizing
the assumptions of a general EEA factor and separate parameters related to individuals’ use
of familiarity-based evidence, our cognitive process model accomplishes what typical fac-
tor analysis models alone cannot do because the observed pattern of drift rate data violates
their assumption that variables’ linear associations can be described by a multivariate normal
distribution. The resulting measurement model can be used to index these distinct cognitive
mechanisms in isolation or—as the e parameter’s associations across load levels do meet the
assumptions of multivariate normality (Fig. 5)—can be integrated with factor analysis models
to index broader factors, such as EEA, that drive performance across tasks beyond the n-back.
Indeed, we found evidence that e shows robust associations with EEA measured from a sim-
ple task without any apparent working memory demands (“go” choices from the ABCD SST)
supporting the task-generality of this parameter.

Another key implication of our findings is that they challenge the common assumption
that tasks with different levels of working memory demands measure qualitatively different
cognitive constructs: for example, that the 0-back measures “sustained attention,” whereas
the 2-back measures “working memory” (Avery et al., 2020; Kardan et al., 2022; Lin et al.,
2023; Rahko et al., 2016). In contrast, the process model decomposition in the current study
suggests that performance differences between the 2- and 0-back tasks can be parsimoniously
attributed to quantitative differences in the same general cognitive mechanisms that act across
n-back load conditions. Furthermore, the size of the cross-load associations of each of the
novel parameters (Fig. 5) appears to be similar to, or greater than, the size of their test-retest
reliability correlations across the 2-year ABCD measurement interval (Results Section 3.5),
suggesting that most, if not all, of the stable trait-like variance in these mechanisms is shared
across the 0-back and 2-back tasks. Therefore, attributing individual differences in perfor-
mance at different n-back load levels to fundamentally distinct cognitive constructs appears
unnecessary. Intriguingly, prior work in ABCD shows that performance in 2- and 0-back tasks
is differentially predicted by functional connectivity-based neuromarkers derived from pre-
dictive models of “working memory” versus “sustained attention” task performance (Kardan
et al., 2022), suggesting that there may be qualitative differences in the brain network features
that support performance at different levels of n-back load. However, the current study’s find-
ings suggest that it is worth considering how variation in dimensional cognitive mechanisms
at different n-back load levels may account for these findings.

Furthermore, the current results highlight general efficiency of goal-relevant evidence accu-
mulation (e) as the n-back model parameter that has the clearest trait-like properties (rel-
atively high stability across ABCD’s 2-year measurement interval), criterion validity, and
relevance to neurocognitive maturation. The e parameter, measured across both n-back load
levels, showed robust relations with individuals’ general cognitive ability, working memory
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performance measured on a separate task, and parent- and teacher-reported inattention that
are consistent with prior research on the importance of the broader construct of task-general
EEA for cognitive ability (Lerche et al., 2020; Schmiedek et al., 2007) and childhood attention
problems (Weigard et al., 2024; Ziegler et al., 2016). The e parameter’s substantial nonlinear
association with age (Fig. 6) suggests that EEA displays rapid maturation in early adoles-
cence that gradually slows in later adolescence and peaks around age 20. Notably, this trend
is highly consistent with the maturational trend identified for a task-general factor of executive
functioning in recent work that spans several developmental samples (Tervo-Clemmens et al.,
2023), suggesting that EEA could be a key contributor to this task-general factor. Overall,
these findings underscore the importance of the EEA construct for interpreting associations
of n-back task performance with other cognitive measures and with clinical symptom dimen-
sions. More broadly, they suggest that EEA is a key driver of the maturation of goal-directed
neurocognitive functioning, a hypothesis that can be more precisely tested in future research.

If the fs and fc parameters are less trait-like, less clearly linked to development, and less
likely to show meaningful relations with criterion variables, what could variability in these
parameters be attributed to? As both parameters reflect individuals’ use of evidence from the
goal-irrelevant dimension of stimulus familiarity, it is possible they could largely be attributed
to individuals’ idiosyncratic choices about the strategies they use for the task. The generally
negative associations of e with fs (Fig. 4) suggest that at least some of the variance in individ-
uals’ use of familiarity evidence can be attributed to people with lower levels of e utilizing
a more familiarity-based strategy to compensate for their generally poorer performance.
However, we also highlight the intriguing finding that fs is instead positively related to EEA
measured on a simple decision-making task (SST “go” choices, Table 3a). As we note when
introducing the model, fs could be jointly determined by (1) an individual’s ability to accumu-
late goal-irrelevant evidence related to stimulus familiarity and by (2) their strategic choice
of how strongly to weight familiarity evidence. We speculate that the fs parameter’s positive
relation with EEA on the SST could reflect the component of fs related to gathering evidence
for simple decisions, while its negative relation with e on the n-back reflects the component
of fs related to the strategic use of familiarity evidence, although this explanation would have
to be more stringently tested using experiments that can dissociate the components of fs.

The modest decreases in fs and fc between the baseline and year 2 ABCD waves, in the
absence of any clear maturational trends in the independent age-diverse sample, hint at the
possibility of practice effects across study visits. For example, practice-related increases in
overall task performance (i.e., in e) or in comfort with the task procedures may cause indi-
viduals to reduce their reliance on familiarity-based evidence (fs). However, the long 2-year
interval between sessions, as well as data from an accelerated adult version of the ABCD
Study that shows little evidence for practice effects (Rapuano et al., 2022), argue against
this possibility. Another possibility is simply that the small age-related increases identified in
ABCD were not identified in the smaller age-diverse sample due to differences in statistical
power. As the current study only examined a limited set of potential correlates of fs and fc,
further research would be necessary to better characterize the factors that can account for
variation in these mechanisms.
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Beyond the broader theoretical implications described above, the current findings also have
practical implications regarding the measurement of EEA and other cognitive mechanisms on
the ABCD n-back task. As predicted by our model, we found that drift rate from the standard
DDM, averaged across target, lure, and novel trial conditions, was nearly perfectly correlated
with the model’s e parameter. Hence, the use of the standard DDM without this novel repa-
rameterization model appears sufficient to measure EEA if this is the primary construct of
interest. However, the measurement model proposed here offers two key advantages. First, it
allows additional parameters that underlie task performance (fs and fc) to be quantified, which
would facilitate research investigations in which individuals’ familiarity-based strategy use, or
differences in strategy use between n-back load conditions, is of interest. Second, it addresses
a critical barrier to integrating cognitive process models of the n-back with factor analysis
models aimed at identifying broader cross-task factors. Standard DDM drift rate parameters
from different n-back trial conditions are clearly inappropriate for such models because the
observed v-shaped associations with vlure violate these models’ assumption of simple linear
relations between variables with normally distributed errors. In contrast, associations of the
e, fs, and fc parameters across load levels appear to meet this assumption (Fig. 5), which
would allow our novel reparameterization of the DDM to be integrated with factor analysis
and SEM methods. Critically, this is not only true for traditional “two-step” approaches, in
which cognitive model parameters are estimated first and then entered into subsequent factor
analysis or SEMs (e.g., Lerche et al., 2020; Schmiedek et al., 2007; Weigard et al., 2021), but
also for promising new methods that allow for simultaneous estimation of cognitive model
parameters and cross-task factor structures (Stevenson et al., 2024; Wall et al., 2021).

Although the current study focused on conflict recognition in a specific working memory
paradigm, the current findings should also be considered within the context of the broader
debate about the roles of recollection and familiarity processes in recognition memory more
generally. A key focus in this area has been evaluating the relative evidence for two influential
accounts that largely make similar predictions about empirical benchmark effects from recog-
nition memory tasks (e.g., the shape of receiver-operator characteristics). “Dual-process sig-
nal detection” (DPSD) models do so by assuming recognition memory responses can depend
on two processes: (1) a recollection process in which stimuli with exceptionally strong mem-
ory evidence are accepted as targets, and (2) a signal-detection process in which stimuli for
which recollection fails are compared to a criterion along a familiarity evidence dimension on
which target and lure stimuli are assumed to have identical variances in their evidence strength
(Yonelinas, 1994, 2002). “Unequal-variance signal detection” (UVSD) models account for
the same empirical benchmarks by assuming that memory strength is instead compared along
a single evidence dimension in a signal-detection process for which variability in the tar-
get distribution is larger than variability in the lure distribution (Glanzer, Kim, Hilford, &
Adams, 1999; Wixted, 2007). Despite the UVSD model’s focus on a single evidence dimen-
sion, Wixted (2007) proposed a unifying framework in which recollection and familiarity are
distinct sources of memory evidence that are additively combined to determine the memory
strength of targets on this single dimension. This framework provides a compelling explana-
tion for the greater variance of the target distribution than the lure distribution in the UVSD
framework, as target evidence is impacted by variance from both the familiarity and recollec-
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tion evidence distributions, while lure evidence is impacted by variance in familiarity alone.
However, vigorous debate over the relative merits of the DPSD and UVSD models continues
(Kwon, Rugg, Wiegand, Curran, & Morcom, 2023; Mickes, Wais, & Wixted, 2009; Parks &
Yonelinas, 2007). Relevant to the current study, evidence from applications of the standard
DDM to recognition memory paradigms has generally supported predictions of the UVSD
model (Osth, Bora, Dennis, & Heathcote, 2017; Starns, Ratcliff, & McKoon, 2012; Starns &
Ratcliff, 2014).

Our novel conflict recognition model makes similar assumptions to Wixted’s (2007) inte-
grative version of the UVSP model in that it assumes that goal-relevant evidence and famil-
iarity evidence are additively combined to form a single evidence signal. We note that the
assumption of additive recollection and familiarity evidence has been similarly adopted in
prior models of working memory tasks because its parsimony facilitates the modeling of
response time data (Oberauer & Lange, 2009). As in this prior work, it is important to
acknowledge that, although our model is consistent with an additive UVSD model, the success
of our model does not necessarily provide support for UVSD over DPSD because a formal
version of the DPSD model was not explicitly compared. However, we note that the current
study’s findings suggest that an additive two-process model is sufficient to describe key empir-
ical patterns of individual and developmental differences in conflict recognition performance,
which at the very least supports the plausibility of the additive UVSD model proposed by
Wixted (2007). Furthermore, the two-process front-end model of drift rates that is proposed
in the current study could be easily adapted to more traditional recognition memory tasks and
could potentially be altered to reflect the alternate assumptions of the DPSD model in order
to allow for tests of these leading recognition memory models’ competing predictions.

One potential limitation of our work is that we primarily focused on a single variant of
the n-back task that features stimuli with emotional facial expressions on a subset of trials
and we were unable to model the potential impact of these emotional stimuli on performance
due to the small number of trials available once performance is split across both stimulus
type (target, lure, novel) and image category (happy, fearful, and neutral faces and places).
Although we cannot definitively claim that our findings from the ABCD emotional n-back
task will generalize to other tasks, there are three reasons to believe that these findings are
nonetheless highly likely to do so. First, behavioral and neural data from the ABCD emo-
tional n-back task have strong similarities to those from traditional n-backs. Early validation
of the ABCD task confirmed that it elicits canonical patterns of neural activation associated
with standard n-backs and replicates the expected effects of cognitive load on behavior (Casey
et al., 2018). Subsequent work demonstrated that these neural responses to working mem-
ory demands show strong convergent validity by predicting working memory performance
both within the scanner and in a separate task, whereas neural responses to emotional, versus
nonemotional, stimuli showed no relevance to performance (Rosenberg et al., 2020). Another
recent study linking EEA to neural activation during both the ABCD n-back and the Human
Connectome Project (HCP) n-back paradigm, which has an identical design to the ABCD task
but does not feature emotional stimuli, found that all major results were directly replicated
across the ABCD and HCP tasks (Weigard et al., 2024). Hence, although the emotional stim-
uli on the ABCD task elicit unique patterns of neural activation, these stimuli seem to have
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no discernable impact on the task’s construct validity with regard to measuring cognitive per-
formance and its neural basis. Second, the prior literature on EEA demonstrates that drift rate
parameter estimates show evidence of a strong general factor across tasks with vastly different
types of stimuli and cognitive demands (e.g., verbal vs. spatial tasks, simple decision-making
vs. executive functioning, etc.) (Eisenberg et al., 2019; Lerche et al., 2017; Löffler et al.,
2024; Schmiedek et al., 2007; Stevenson et al., 2024; Weigard et al., 2021). Therefore, it is
highly plausible that the e parameter measured on this specific task largely reflects the broader
factor of EEA, which appears to generalize to other n-back tasks (e.g., Löffler et al., 2024)
and beyond. Finally, consistent with this prior literature, we find that the e parameter shows
strong associations both with out-of-scanner working memory performance and with EEA
measured on the ABCD SST, a relatively simple task with no apparent memory demands.
Taken together, the combined findings of this prior literature and the current set of analyses
strongly suggest that our results will generalize beyond the ABCD n-back task and that they
largely reflect a task-general mechanism necessary for efficient cognitive performance.

In summary, the current study identified an atypical pattern of individual difference
associations among measures of performance in different conditions of the ABCD n-back
task and proposed a formal process model, inspired by earlier work on the n-back and other
conflict recognition paradigms in adults (Oberauer, 2005), that accounts for this pattern. In
particular, the model assumes performance is determined by a combination of accumulation
of goal-relevant evidence (“EEA”) and strategically modulated reliance on goal-irrelevant
evidence related to stimulus familiarity. Findings from this process model demonstrate that
EEA is a task-general factor that is relevant to neurocognitive development and clinical
symptom dimensions, whereas the use of familiarity-based evidence is likely more related
to idiosyncratic strategy use, context, or practice effects. Results highlight the benefits of
formal cognitive process models for measuring distinct mechanisms of conflict recognition
task performance. Moreover, they pave the way for the integration of task-specific process
models with broader models of cross-task factor structures in ABCD and other data sets that
are critical for characterizing the mechanisms of individual and developmental differences in
cognitive control.
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Stevenson, N., Innes, R. J., Gronau, Q. F., Miletić, S., Heathcote, A., Forstmann, B. U., & Brown, S. D. (2024).
Using group level factor models to resolve high dimensionality in model-based sampling. Psychological Meth-
ods. Advance online publication. https://doi.org/10.1037/met0000618
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