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�
 ABSTRACT 

Although immune checkpoint blockade therapy has shown promising 
results in a small subset of patients with colorectal cancer with high 
microsatellite instability, the majority of patients with colorectal 
cancer do not respond to immune checkpoint blockade therapy. The 
main obstacle to the success of immunotherapy in cancer treatment is 
the exhaustion of tumor-infiltrating lymphocytes (TIL). Elucidating 
the spatial organization of immune checkpoints within the tumor 
microenvironment (TME) could pave the way for the development of 
novel prognostic tools and therapeutic strategies to enhance antitu-
mor immune responses. To clarify the spatial and functional diversity 
of TILs in the colorectal TME, we performed multiplexed IHC to 
examine the exhaustion of TILs in the TME, the expression of PD-1 
and T-cell immunoglobulin and mucin domain–containing protein 3 
(TIM-3), which are major biomarkers of T-cell exhaustion, and least 
absolute shrinkage and selection operator method–Cox analyses of 
the correlation between colorectal cancer prognosis and TME 

features. For proof of concept, the antitumor efficacy of TIM-3 and 
PD-1 dual blockade in colorectal cancer was further evaluated in a 
CT26 s.c. tumor model of human colorectal cancer. We found that 
the spatial context of PD-1 and TIM-3 successfully predicted the 
overall survival of patients with colorectal cancer independent of 
tumor–node–metastasis stage. Dual targeting of PD-1 and TIM-3 in 
mouse tumor models inhibited tumor progression and reduced T-cell 
exhaustion, indicating a potential strategy for improving the clinical 
treatment of colorectal cancer. 

Significance: The identification of specific spatial patterns of immune 
checkpoint expression that correlate with overall survival in patients with 
colon cancer suggests a potential prognostic tool for risk stratification 
and treatment selection. These findings pave the way for the develop-
ment of novel therapeutic strategies to enhance antitumor immune 
responses. 

Introduction 
Colorectal cancer is the third most common cancer in the world, with in-
creasing morbidity and mortality (1, 2). Recent studies have suggested that 
the tumor immune microenvironment (TIME) plays a pivotal role in colo-
rectal cancer progression and is considered an important prognostic bio-
marker (3–6). For example, the immune score, which is based on the CD8/ 
CD3 ratio in the tumor microenvironment (TME), has achieved effective 
results in predicting the prognosis of patients with colorectal cancer (7). 
However, the profiles of immune cells in the colorectal cancer microenvi-
ronment and their interactions with clinical outcomes have not been clearly 
established, which warrants further investigation. 

Therefore, multiplex IHC (mIHC) has recently been applied to explore the 
TIME in head and neck tumors, pancreatic cancer, and lung cancer (8–10). 
By taking advantage of this state-of-the-art technology, we can perform in 
situ analysis of the spatial distribution characteristics of each subgroup of 
immune cells. The application of mIHC also allows investigation of the 
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interplay of tumor cells and immune cells on a single slide, which provides a 
new strategy for in-depth study of the TIME. With the emergence and 
development of mIHC staining techniques, more comprehensive informa-
tion about immune cell subgroups can be obtained. 

In this study, we used mIHC techniques to develop a more refined and 
personalized new risk prediction system for colorectal cancer. Com-
monly, the least absolute shrinkage and selection operator method 
(LASSO) is used to select significant variables from high-dimensional 
marker data (11, 12). The LASSO Cox proportional hazards model was 
then applied for complex, multifactor survival analyses (12). We con-
structed a mIHC-based risk score system incorporating 21 spatial 
pathologic features, covering most of the significant immunologic and 
pathologic features, to predict survival outcomes. Nomograms were also 
established to increase the clinical utility of the risk score system for 
predicting outcomes. As a proof of concept, mouse models of human 
colorectal cancer demonstrated the antitumor effect of co-blocking 
TIM-3 and PD-1 by synergistically reversing the exhaustion of T cells. 

Materials and Methods 
Study population and tumor specimen collection 
We collected data from patients with histologically confirmed colorectal 
cancer who underwent curative surgical resection at the Department of 
Gastrointestinal Surgery, West China Hospital, Sichuan University, 
China, between March 2009 and December 2016. The project was ap-
proved by the West China Hospital Medical Committee (2020-374). All 
patients provided written informed consent. The included patients had 
not received any type of neoadjuvant therapy, radiotherapy, targeted 
therapy, or immunotherapy before surgery. The clinical and pathologic 
parameters of the included patients were obtained from the patient’s 
electronic medical records. For this study, all the specimens were 
regraded according to the eighth edition of the American Joint Com-
mittee on Cancer tumor–node–metastasis (TNM) grading system by a 
pathologist. Clinical follow-up was updated in November 2020. Tissue 
microarrays (TMA) were constructed for the collected samples. In 
standard paraffin sections, the tumor regions were histomorphologically 
analyzed. TMAs were prepared with a 1 mm tissue core and 5 μm 
thickness via standard procedures. One representative core from primary 
tissue was used to construct TMAs for each patient. 

IHC staining 
All involved tissue samples were processed into paraffin, and paraffin- 
embedded tissues were cut into 5 μm pieces. For IHC, the slides were im-
mersed in antigen retrieval buffer (GeneTech), and antigen retrieval was then 
performed in a microwave oven for 20 minutes. Then, 2% BSA (BioFroxx) 
was used for blocking for 10 minutes, and primary antibodies (details of the 
antibodies are described in Supplementary Table S1) were diluted in PBS 
containing 1% BSA and applied overnight. A secondary antibody (Thermo 
Fisher Scientific) was added after the slides were washed for 30 minutes. 
After the slides were washed, 3,3’-Diaminobenzidine solution (GeneTech) 
was added for coloring. Counterstaining was performed via hematoxylin, 
and the slides were immersed in xylene after dehydration in an ethanol 
gradient. Finally, the slides were mounted with neutral balsam. The slides 

were scanned at 20�magnification using a PANNORAMIC 250 scanner (3D 
HISTECH). 

mIHC 
mIHC staining was performed using an Opal 7-color kit (Akoya Biosci-
ences). Briefly, the sections were dewaxed with xylene for 20 minutes. Then, 
ethanol was used for rehydration. Microwave treatment was performed for 
antigen retrieval with antigen retrieval buffer. Next, all the sections were 
cooled at room temperature for 30 minutes. Endogenous peroxidase activity 
was blocked using Antibody Diluent/Block (Akoya Biosciences) for 10 min-
utes at room temperature. The slides were incubated for 1 hour at room 
temperature with primary antibodies (details of the antibodies are described 
in Supplementary Table S1), for 20 minutes at 37°C with secondary reagents, 
and for 10 minutes at room temperature with Opal working buffer. The 
above procedures were repeated for other antibodies, and the antibodies 
were removed by microwave treatment before another round of staining was 
performed. Nuclear staining was performed via incubation with 4’,6-dia-
midino-2-phenylindole (DAPI; Akoya Biosciences) for 5 minutes at room 
temperature. 

Image analysis and spatial feature classification 
The slides were visualized via the Vectra Polaris system (Akoya Biosciences), 
and a multispectral image of the whole slide was scanned with a 20� ob-
jective lens. Multispectral image unmixing was performed via QuPath soft-
ware (version 0.5.1). Briefly, DAPI-positive cells were identified via the “cell 
detection” command, and each single-channel intensity threshold was se-
lected via “object classification.” We determined positive cells with a “load 
classifier” (loading multiple classifiers at the same time can generate different 
phenotypes; for example, we can generate a CD8+PD-1+ phenotype by 
loading “CD8” and “PD-1”) and counting proportions by dividing the 
channel-positive cell counts (Supplementary Fig. S1A and S1B). All the 
detected cells were subsequently divided into different subgroups for further 
analysis, and defective TMA cores or areas with ruptured or folded tissue 
were reanalyzed or excluded. Spatial distance is calculated as the “distance to 
centroid distances 2D.” The phenotype maps were analyzed with HALO 
software (Indica Labs). Briefly, the spatial analysis module is a suite of four 
algorithms that identify the proximity and relative spatial distribution of cells 
and objects across whole-slide images, tissue boundaries, or serial sections. 
In this study, we used the infiltration analysis of the spatial analysis module 
to generate phenotype maps. 

Phenotype map analysis 
In phenotype maps, the high CD8+ T-cell infiltration phenotype refers to the 
CD8high cluster (last 25% of the CD8+ T-cell percentage), and the low CD8+ 

T-cell infiltration phenotype refers to the CD8low cluster (least 25% of the 
CD8+ T-cell percentage). 

Clustering analysis of patients 
To investigate whether spatial immune cell status is associated with the 
prognosis of 189 patients (Supplementary Table S2), we performed hierar-
chical clustering analysis. We calculated the percentage of 21 spatial immune 
cells among the total cells to construct the spatial feature cluster matrix for 
each sample. We used the get_dist function from factoextra (v1.0.7, https:// 
github.com/kassambara/factoextra) with the maximum method to calculate 
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the pairwise distance matrix for these patients. The hclust function from the 
R package stats (v4.0.2) with ward. D2 linkage was then used to perform 
hierarchical clustering on this matrix. The resulting dendrogram was divided 
into three clusters with a ratio of 20:17:152, effectively categorizing the pa-
tients into three distinct groups on the basis of their spatial immune cell 
statuses. The clustering results were visualized via the R package Complex-
Heatmap (v2.7.9; ref. 13). 

Prognostic analysis of clustering groups 

To explore whether there are prognostic differences among the different 
clusters, we performed a pairwise survival difference analysis on the clus-
tering results. Kaplan Meier (K M) curves were used to compare the prog-
nostic differences between the groups via the survfit function of the R 
package (https://cran.r-project.org/web/packages/survival/index.html). 

LASSO–Cox analysis 

Defining the training and validation cohorts 

The 189 patients were randomly divided into a training set and a validation set at 
a 6:4 ratio by a sample function from the R package base (v4.0.2). The training 
set was used to determine the survival-related factors and establish the nomo-
gram. The validation set was used to verify the nomogram. Missing values in the 
data for any variable were filled in with the median of that variable. 

Construction of the prediction nomogram 

The LASSO algorithm is a linear regression algorithm that can perform 
feature selection. A total of 21 spatial immune cells in the total immune cell 
population and one TNM stage feature were used to construct the prognostic 
model. LASSO regression was subsequently performed to further narrow 
down the above features to five by the cv.glmnet function of the R package 
glmnet (v4.1-2; ref. 14) with 10-fold cross-validation, which was determined 
by the minimum parameter (λ). Five features were further included in the 
multivariate Cox regression analysis. We found that there was no significant 
correlation between the variables by calculating Pearson’s correlation coef-
ficient pairwise, which was displayed via the corrplot function from the R 
package corrplot (v0.90; ref. 15). A Cox proportional hazards regression 
analysis was then performed using the coxph function from the R package 
survival4 (v3.2-13, https://github.com/therneau/survival). The risk scores 
were subsequently calculated by multiplying the expression level of the 
spatial immune cell statuses and the multivariate Cox proportional hazards 
coefficient. The detailed formula was as follows: 

Risk Score ¼ ð1:31� CD8þ distal statusÞþ

ð5:66� CD8þPD-1þ distal statusÞ þ ð2:15� PD-1þTIM-3þ distal statusÞ þ
ð�1:63�CD8þPD-1þ intratumoralÞ þð0:88� TNM stage statusÞ

On the basis of the final results of LASSO–Cox regression, a novel nomo-
gram including all four spatial features and one TNM stage feature was 
developed to predict the 1-, 3-, and 5-year OS of patients with colorectal 
cancer. The nomogram output was displayed via the nomogram function 
from the R package rms (v6.8-0, https://cran.r-project.org/web/packages/ 
rms/index.html). 

Validation and comparison of the prediction nomogram 
To measure the performance of the nomogram and compare it with the 
nomogram based solely on the TNM stage, both training and validation sets 

were used. The time-dependent ROC curve (timeROC) and the AUC were 
calculated via the R package timeROC (v0.4; ref. 16) to assess the predictive 
efficacy of the prognostic signature at 1-, 3-, and 5-year intervals. We cal-
culated the risk scores for all patients and compared these scores between 
patients with different outcomes and found that the risk scores of patients 
with a survival outcome of 1 were significantly higher than those of patients 
with a survival outcome of 0. Furthermore, patients were divided into high- 
and low-risk groups on the basis of the median risk score. K M curves were 
used to compare the prognostic differences between the two groups via the 
survfit function of the R package survival (v3.2-13). 

Tumor models 
The CT26 cells (RRID: CVCL_7254) were purchased from Cell Bank, Chi-
nese Academy of Sciences, and maintained at 37°C with 5% CO2 in RPMI 
1640 medium (HyClone) supplemented with 10% heat-inactivated FCS 
(Gibco), penicillin (Gibco), and streptomycin (Gibco). In this study, Myco-
plasma detection was negative, and the cell line was proven by short tandem 
repeat authentication. Six to eight weeks old female BALB/c mice were used 
for the s.c. tumor model. Briefly, CT26 (2.5 � 105) cells in 50 μL of Matrigel 
(Corning) were injected subcutaneously into each mouse’s right flank. Tu-
mor volume [length � (width2)/2] was assessed by caliper measurements 
every other day, and cohorts of mice were randomized into different treat-
ment groups according to tumor volume. Each tumor was cut in the middle 
equally into two parts so that each part had the same spatial features; one 
part was used for downstream flow cytometry analysis, and the other part 
was used for mIHC. All animal studies were approved by the West China 
Hospital Animal Ethics Committee (2020361A). 

Neutralizing antibodies 
αPD-1 (RMP1-14; Cat. # BE0146, RRID: AB_10949053, Bio X Cell) and 
αTIM-3 (RMT3-23; Cat. # BE0115, RRID: AB_10949464, Bio X Cell) mAbs 
were given by i.p. injection every 4 days at 10 mg/kg to block PD-1 and 
TIM-3. Isotype controls (Cat. # BE0089, RRID: AB_1107769, Bio X Cell) 
were used at the same concentration as those in the control group. 

Flow cytometry 
Single-cell suspensions were obtained by incubating minced tumor tissues 
with 3 mg/mL collagenase A (Roche) and 1 mg/mL DNase I (Roche) in 
RPMI 1640 medium at 37°C for 30 min. The resulting cell suspensions were 
passed through a 40-µm cell filter and treated with 1� red blood cell lysis 
buffer (Invitrogen). Finally, the suspension was washed with PBS and 
counted for flow cytometric analyses. Briefly, the cells were incubated with 
Fixable Viability Stain (BD) to gate viable cells. The samples were then 
washed with flow cytometry staining buffer (PBS containing 2% BSA), and 
the Fc receptor was blocked with TruStain FcX (anti-mouse CD16/32) an-
tibody (BioLegend). The cells were incubated with cell-surface antibodies for 
30 minutes at 4°C. The cells were then washed twice with flow cytometry 
staining buffer. Details of the antibodies used are described in Supplemen-
tary Table S3. The cells were then washed twice with permeabilization buffer 
and resuspended in flow cytometry staining buffer. 

Statistical analysis 
We used t tests for measurement data and χ2 tests for count data for two 
variables. LASSO regression was used to filter and select variables. 
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Multivariate Cox regression analyses were used to assess the predictive value 
of each risk factor. The predictive efficacy of the prognostic signatures was 
evaluated with the K–M curve and timeROC. Pearson correlation analysis 
was used to assess the correlation between two variables. The procedures 
involved in this study were performed with R software (v 4.0.2), and 
P < 0.05 was considered statistically significant. 

Data availability 
All the data used to understand and assess the conclusions of this research 
are available in the main text and supplementary materials. All other data 
and codes are available in Code Ocean (https://codeocean.com/capsule/ 
8443977/tree/v1). 

Results 
Patient characteristics and the mIHC panel 
The cohort originally comprised 250 patients diagnosed with colorectal 
cancer. However, 36 patients were excluded because of incomplete follow-up 
data or a lack of clinicopathologic parameters. An additional 25 cases were 
excluded from analysis owing to disqualification of paraffin-embedded 
formalin-fixed tissue samples. Finally, a total of 189 patients with untreated, 
advanced colorectal cancer were subjected to multiplex immunofluorescence 
(mIHC) analysis to evaluate the TIME in human patients with colorectal 
cancer. Patient selection and workflow are presented in Fig. 1A. The median 
age of the enrolled patients was 58 years (range, 38–80), and the median 
overall survival (OS) time was 42 months (range, 2–85). 

T-cell exhaustion is characterized by elevated expression levels of PD-1 
and TIM-3 (17) on CD8+ T cells, and recent evidence suggests that their 
crosstalk regulates immunotherapy efficacy. In this study, we standard-
ized a mIHC panel for PanCK (tumor cells), CD8 (T cells), PD-1, and 
TIM-3 to evaluate the infiltration of CD8+ cytotoxic T lymphocytes 
(CTL) and the status of immune checkpoints (Fig. 1B). Consistent with 
previous studies (18), we found a significant difference in CD8+ T-cell 
infiltration among colorectal cancer tumors (Fig. 1C; Supplementary Fig. 
S2). Importantly, CD8+ T cells also presented different spatial distribu-
tion patterns in populations with high CD8+ T-cell infiltration. Most of 
the infiltrated CD8+ T cells were distributed in the stroma region, and 
only a few infiltrated into core regions of the tumor, suggesting the 
necessity of deep exploration of the spatial TIME. 

Spatial heterogeneity of the immune microenvironment 
in human colorectal cancer 
The numbers of cells were calculated via cell segmentation, and a total of 
seven types of cells were defined by diverse expression patterns of three 
markers: CD8+PD-1+TIM-3+, CD8+PD-1+TIM-3�, CD8+PD-1�TIM-3�, 
CD8�PD-1+TIM-3+, CD8+PD-1�TIM-3+, CD8�PD-1+TIM-3�, and 
CD8�PD-1�TIM-3+ (Fig. 2A). The spatial patterns of immune infiltration 
were defined as intratumoral, proximal, and distal regions. We defined cells 
that were distributed outside the 30 μm radius from the tumor cell as those 
belonging to the distal region. The proximal region was the region in which 
cells were distributed within a 30 μm radius from the nuclear center of any 
given tumor cell, and the i.t. region was defined as the region in which cells 
infiltrated the tumor epithelium (Fig. 2B). Then, we combined the spatial 
phenotype and cell segmentation phenotype and formed the final infiltration 

phenotype. The representative distributions of different CD8+ T-cell pheno-
types in the distal, proximal, and i.t. regions are shown in Fig. 2C. 

To explore the heterogeneity in the spatial distribution of different subsets, 
we performed hierarchical clustering for all patients with all studied cell 
types (Fig. 2D). Patients with colorectal cancer were clustered into three 
subtypes on the basis of previous studies: high-infiltrated (cluster 1 with 
20 patients), medium-infiltrated (cluster 2 with 17 patients), and low- 
infiltrated (cluster 3 with 152 patients) subtypes characterized by infiltration 
of CTLs (Fig. 2E). 

Briefly, there was no difference in the clinicopathologic characteristics 
among the three clusters (Supplementary Table S2). The total cell infil-
tration data are shown in Supplementary Fig. S3. The trends of the 
presence of each cell type were similar in the stromal, proximity, and i.t. 
regions. We subsequently assessed the associations between the presence 
of T cells and spatial clusters (Supplementary Fig. S3A–S3C). Cluster 
3 had the lowest immune cell infiltration, and the cell count of infiltrated 
cells was significantly lower in every region and every cell type. T cells 
presented different trends in the distal region compared with the prox-
imal and i.t. regions. For example, in the proximal and i.t. regions, the 
number of CD8+ T cells in cluster 1 was greater than that in cluster 2, yet 
cluster 1 had fewer CD8+ T cells in the distal region, indicating that 
cluster 1, as the high-infiltrated cluster, had more T cells infiltrating into 
the core area of the tumor (Fig. 2E). 

Notably, K–M curves revealed that survival was significantly longer 
among patients in cluster 1 than among those in clusters 2 and 3, and 
these results are consistent with previous studies (19) and demonstrate 
the benefits of highly infiltrated T cells in tumors, especially in the i.t. 
region. However, there was no survival difference between clusters 2 and 
3, indicating a limitation of prognostic prediction methods based on 
traditional T-cell infiltration analysis and simple spatial clustering 
(Fig. 2F). 

Spatial contexture of immune checkpoints predicts OS 
independent of standard TNM stages 
To examine whether spatial distance might have a promising value for OS, 
we randomly divided all patients into a training cohort set (n ¼ 114) and a 
validation cohort set (n ¼ 75) at a 6:4 ratio. We found that there were no 
significant differences in clinicopathologic characteristics between these two 
cohorts (Supplementary Table S4). Next, a total of 21 spatial immune cell 
statuses were collected for further analysis (Supplementary Table S5), which 
revealed no differences between the two cohorts, indicating random and 
reasonable grouping (Supplementary Fig. S4A–S4C). The LASSO–Cox 
model was used to establish the prognostic scoring system in the training 
cohort. First, we used LASSO regression to screen parameters, and then the 
variation characteristics of the coefficient of these variables were shown via 
LASSO regression (Fig. 3A). The 10-fold cross-validation method was ap-
plied to the iterative analysis. Our model achieved its best performance 
with a minimum number of variables when λ was chosen as 0.0779 
(Logλ ¼ �2.55; Fig. 3B). Finally, through the calculation and deformation of 
the LASSO model, we obtained 4 features (CD8+ distal, CD8+PD-1+ distal, 
PD-1+TIM-3+ distal, and CD8+PD-1+ i.t.) from 21 types of immune cell 
density and tumor TNM stages. In addition, no significant correlation was 
found among those factors (Supplementary Fig. S5). The Cox regression 
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model was then performed depending on the features mentioned above. A 
forest plot revealed that these factors were associated with the prognosis of 
patients with colorectal cancer (Fig. 3C). 

The forest plot suggested that CD8+ distal, CD8+PD-1+ distal, PD-1+TIM-3+ 

distal, and advanced primary tumor stages were negative factors for prog-
nosis, whereas CD8+PD-1+ i.t. factors were favorable prognostic factors. 

Data collectionA

B

C

Selection of patients with colorectal cancer

250

patients

36 patients excluded:
missing follow-up data
or

missing clinicopathologic data

TMA
samples

mIHC

Nearest distance

189 tissues Tumor cells

Active T cells
Exhausted T cells

Spatial analysis

Cluster analysis

LASSO–Cox
analysis

Prognosis risk
prediction model

Survival analysis

C
D

8
+ c

e
ll

C
D

8
+ c

e
ll (tu

m
o
r in

s
id

e
)

C
D

8
+ c

e
ll (tu

m
o
r o

u
ts

id
e
)

T
u
m

o
r b

o
u
n
d
a
ry

T
IM

-3
+ c

e
ll

P
D

-1
+ c

e
ll

P
h

en
o

typ
e m

ap

Phenotype mapComposite image

H
ig

h 
C

D
8+  T

-c
el

l i
nf

ilt
ra

tio
n

Lo
w

 C
D

8+  T
-c

el
l i

nf
ilt

ra
tio

n

Tissue segmentation

P
a
n
C

K
+ c

e
ll

P
a
n
C

K
+ c

e
ll

Cell phenotype

25 patients excluded:

disqualification of FFPE

tissue specimen

214
patients

189

patients

Workflow

FIGURE 1 Schematic approach and different infiltration patterns of T cells among colorectal cancer tumors. A, Selection of patients with 
colorectal cancer and workflow of the present study. B, Representative images of multiplex immunofluorescence staining (PanCK, green; CD8, red; 
PD-1, cyan; and TIM-3, yellow) and phenotype map. C, Representative images of tissue segmentation and phenotype maps of high and low CD8+ 

T-cell infiltration. Blue lines represent tumor core area boundaries. DAPI, x; FFPE, formalin-fixed paraffin-embedded. 

AACRJournals.org Cancer Res Commun; 4(11) November 2024 3029 

Spatial Checkpoints Predict CRC Patients’ Survival 

https://aacrjournals.org/


Cell typesA

B C

D

E F

Region segementation

CD8+PD-1+TIM-3+

Merge CD8

PD-1

TIM-3

Tumor cells

30 µm

0 µm

DAPI Spatial statePanCK CD8

C
lu

s
te

r 
1

C
lu

s
te

r 
2

C
lu

s
te

r 
3

PD-1 TIM-3

Other cells

Death
Expression

Death

Stage

CD8_type

Stage

2

1

0

–1

–2

Yes

No

Stages I–II

Stages III–IV

CD8 low

CD8 mid

CD8 high

CD8_type

CD8–PD1+TIM3+

CD8–PD1–TIM3+

CD8+PD1–TIM3+

CD8+PD1+TIM3+

CD8+PD1+TIM3–

CD8+PD1–TIM3–

CD8–PD1+TIM3–

CD8–PD1+TIM3–

CD8+PD1–TIM3–

CD8+PD1+TIM3–

CD8–PD1+TIM3+

CD8–PD1–TIM3+

CD8+PD1+TIM3+

CD8+PD1–TIM3+

CD8+PD1–TIM3+

CD8–PD1–TIM3+

CD8–PD1+TIM3+

CD8+PD1+TIM3+

1.00

0.75

Group

Cluster 1

20Cluster 1
Cluster 2
Cluster 3

20 17 16
17 16 13 10
152 137 100 82

0.088

0.91
0.036Cluster 2

Cluster 3

0.50

S
u
rv

iv
a
l 
p
ro

b
a
b
ili

ty

0.25

0.00

0 20

Time (months)

40 60

CD8+PD1–TIM3–

CD8+PD1+TIM3–

CD8–PD1+TIM3–

Cluster 3

i.t
.

P
ro

xi
m

al
D

is
ta

l

Cluster 2

DAPI PanCK CD8 PD-1 TIM-3

Cluster 1

Distal

Proximal

5 µm

30 µm

5 µm

100 µm

CD8+PD-1+TIM-3– CD8+PD-1–TIM-3– CD8–PD-1+TIM-3+ CD8+PD-1–TIM-3+ CD8–PD-1+TIM-3– CD8–PD-1–TIM-3+

i.t.

i.t.i.t. i.t.i.t.

FIGURE 2 Spatial heterogeneity of the immune microenvironment correlates with patient prognosis in human colorectal cancer. A, 
Representative images of defined seven cell types (CD8+PD-1+TIM-3+, CD8+PD-1+TIM-3�, CD8+PD-1�TIM-3�, CD8�PD-1+TIM-3+, CD8+PD-1�TIM-3+, 
CD8�PD-1+TIM-3�, and CD8�PD-1�TIM-3+). B, Combination of the distance map and cell subtype map showed spatial infiltration patterns. Criteria of 
spatial division of the tumor: i.t. (within 10 μm to the tumor cell), proximal (10–30 μm to the tumor cell), and distal (more than 30 μm to the tumor 
cell). C, Representative image of microenvironment regions and different infiltration patterns of three-marker–defined CD8+ T cells. D, Hierarchical 
clustering of all quantified immune cells and their spatial phenotypes. Heatmap represents z-score–normalized data; red color represents expression 
above the mean, blue color represents expression below the mean, and white color represents the mean. E, Representative image and spatial state 
of three subtypes: cluster 1, high-infiltrated; cluster 2, medium-infiltrated; and cluster 3, low-infiltrated, characterized by infiltration of CTLs; blue color 
represents cells at a distance of 0 μm from the tumor cells, and yellow color represents cells at a distance of 30 μm from the tumor cells. F, K–M curve 
(log-rank test) survival plots depict the OS in the unsupervised clusters. DAPI,x; mid, medium. 

3030 Cancer Res Commun; 4(11) November 2024 https://doi.org/10.1158/2767-9764.CRC-24-0270 | CANCER RESEARCH COMMUNICATIONS 

Kong et al. 

https://dx.doi.org/10.1158/2767-9764.CRC-24-0270


A formula was also constructed to obtain the score for each patient on the 
basis of the expression level of the above-selected features, in which the risk 
score ¼ (1.31 � CD8+ distal status) + (5.66 � CD8+PD-1+ distal status) + 
(2.15 � PD-1+TIM-3+ distal status) + (�1.63 �CD8+PD-1+ i.t.*) + (0.88 �
TNM stage status*). In this formula, the TNM stage is divided into I–II 
(status 1) and III–IV groups (status 2). 

To provide a simple vision of our risk score model, we constructed a no-
mogram as a quantitative tool to predict the 1-, 3-, and 5-year mortality rates 
of patients with colorectal cancer (Fig. 3D). The nomogram integrates factors 
such as immune infiltration and TNM stages, allowing clinicians and pa-
thologists to easily compute the risk score for each patient. A comparison of 
the AUC values between our model and TNM stages only supported the 
better clinical prediction of our method. Furthermore, the AUC values de-
creased as the survival time increased, regardless of our method or the TNM 
stage, whereas the values obtained via our method remained at approxi-
mately 0.8, indicating good prediction ability (Fig. 3E and F). To test the 
accuracy of our risk score system, a comparison was performed between 
deceased patients (event ¼ 1) and living patients (event ¼ 0), and deceased 
patients presented markedly higher risk scores, which substantiates the re-
liability of our system (Fig. 3G and H). 

Finally, patients were categorized into high-risk or low-risk groups on the basis of 
a median risk score cutoff. (OS analysis revealed that patients with lower risk scores 
had a better prognosis in both the training and validation cohorts, confirming the 
validity of the LASSO–Cox regression risk score model (Fig. 3I and J). 

Above all, we verified the potential impact of spatial immune cell distribu-
tion on OS in patients, identified key immune features that influence 
prognosis, and developed a scoring system for patients with colorectal cancer 
via the LASSO–Cox model, which showed better precision than the previous 
method of TNM staging. 

TIM-3 and PD-1 dual blockade improves antitumor 
effects through the inhibition of T-cell exhaustion 
On the basis of our previous analysis, PD-1 and TIM-3 have shown potential 
in prognosis prediction; thus, their further influence on clinical treatment is 
worth exploring. Consequently, a combination blockade of PD-1 and TIM-3 
was performed. The application of αPD-1 and αTIM-3 antibodies in 
CT26 mouse models of human colorectal cancer notably suppressed tumor 
growth. (Fig. 4A). In line with our expectations, we found that both PD-1 
and TIM-3 expression was significantly decreased in the combination 
treatment group (Supplementary Fig. S6A and S6B). To better explore the 
changes in the TIME after αPD-1 and αTIM-3 antibody treatment, a mIHC 
panel (CD8, Ki67, PD-1, TIM-3, and TOX) was designed to analyze the state 
of CD8+ T cells in tumors from both the control and treatment groups 
(Fig. 4B). Treatment with the combination of αPD-1 and αTIM-3 decreased 
the proportion of exhausted CD8+ T cells (PD-1+CD8+, TIM-3+CD8+, and 
TOX+CD8+). Notably, the proportions of terminally exhausted CD8+ T cells 
(PD-1+TIM-3+CD8+ T cells and PD-1+TIM-3+TOX+CD8+ T cells) were also 
significantly lower in the combination treatment group than in the control 
group. In contrast, we observed a significant increase in functional CD8+ 

T cells (PD-1�TIM-3�TOX�CD8+) in tumors from combination-treated 
mice (Fig. 4C). In addition, a cytotoxic mIHC panel (CD8 and granzyme B) 
was used to assess the state of CD8+ T cells, and we found that more 
cytotoxic CD8+ T cells (granzyme B+CD8+) were identified in the 

combination treatment group (Supplementary Fig. S6C and S6D). The re-
sults of flow cytometry revealed a similar trend of reversing T-cell exhaustion 
not only in CD8+ T cells but also in CD4+ T cells (Fig. 4D–F). Moreover, the 
combination treatment also increased the infiltration of macrophages, 
whereas no changes in myeloid-derived suppressor cells were observed, in-
dicating the possible antitumor effect of macrophages (Fig. 4G and H). 

Taken together, these data demonstrated that dual targeting of PD-1 and 
TIM-3 inhibited tumor progression and reduced T-cell exhaustion. 

Discussion 
Despite the use of multimodal treatments, including neoadjuvant therapy, sur-
gery, and postoperative adjuvant therapy, the overall prognosis of patients with 
colorectal cancer is still unsatisfactory (1, 20). In the present study, we demon-
strated that the spatial context of PD-1 and TIM-3 successfully predicted the OS 
of patients with colorectal cancer independent of TNM stage. Dual targeting of 
PD-1 and TIM-3 in mouse tumor models inhibited tumor progression and 
reduced T-cell exhaustion. Our findings could pave the way for the development 
of novel therapeutic strategies aimed at modulating the spatial distribution of 
immune checkpoints to enhance antitumor immune responses. 

Recently, classifications based on the TME have emerged; for example, three 
distinct lymphocyte infiltration modules have been identified as follows 
(21–23): (i) the inflamed/infiltrated phenotype, in which CD8+ T cells in-
filtrate the tumor epithelium; (ii) the excluded phenotype, in which infil-
trating CD8+ T cells accumulate in the tumor stroma rather than the tumor 
epithelium; and (iii) the immune desert/ignored phenotype, in which CD8+ 

T cells are either absent or present in very low numbers. Consistently, when 
the patients with colorectal cancer in this work were clustered into three 
subtypes, high-infiltrated (cluster 1), medium-infiltrated (cluster 2), and low- 
infiltrated (cluster 3), which were characterized by infiltration of CTLs 
according to previous studies, cluster 1 had a significantly better prognosis 
than clusters 2 and 3. The Immunoscore (Veracyte) assay is primarily based 
on the density and location of cytotoxic T cells within the TME and sur-
rounding tissues (24). The advantages of the Immunoscore assay include its 
simplicity and proven effectiveness in various studies. However, its main 
drawback is that, although it considers the spatial distribution of cytotoxic 
T cells, neglecting the immune status of these cells could lead to a loss of 
prognostic information. 

The spatial immune microenvironment refers to the distribution and in-
teractions of immune cells within the TME, including tumor-infiltrating 
lymphocytes, tumor-associated macrophages (TAM), and other immune and 
nonimmune cells (22, 25–28). Understanding the spatial immune micro-
environment is important in the context of cancer, as it plays a crucial role in 
shaping the immune response to cancer and impacting the efficacy of im-
munotherapies (29, 30). To the best of our knowledge, little is known about 
specific changes in the diversity and functional status of tumor-infiltrating 
lymphocytes within the spatial setting of the TME in relation to the survival 
and therapeutic response of patients with colorectal cancer. In this study, we 
established a risk score model based on the LASSO–Cox regression method, 
which included immune cell status, immune cell spatial distribution, and 
clinicopathologic stage. These results indicate that i.t. PD-1+TIM-3+ status, 
i.t. CD8+PD-1+ status, proximal PD-1+TIM-3+ status, proximal PD-1+ status, 
and distal CD8+TIM-3+ status are important spatial factors related to patient 
survival. Furthermore, compared with a single TNM stage, our model 
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composed of multiple immune features showed better accuracy of prognosis 
in patients with colorectal cancer. 

LASSO–Cox regression is a commonly used statistical method that effec-
tively performs feature selection on high-dimensional data, identifying 
the variables with the most significant impact on prognosis. By using 
LASSO–Cox regression, we identified a model tailored to our experimental 
technique that can predict patient prognosis effectively. Our model offers a 
novel approach to prognostic analysis on the basis of spatial information. 
Building on the foundation of the Immunoscore assay, our model focuses on 
the spatial distribution of immune cells with distinct immune statuses within 
different regions of the tumor. This allows our model to reflect more 
comprehensively the immunologic characteristics of the TME, thereby of-
fering a more precise prognostic analysis. 

Exhausted T cells have been shown with elevated expression levels of inhibitory 
receptors such as PD-1, Lag3 and TIM-3. Increasing evidence suggests that their 
crosstalk regulates T-cell exhaustion and immunotherapy efficacy. TIM-3 is a 
transmembrane protein that is expressed on the surface of various immune cells, 
including T cells and NK cells (31, 32). It was initially identified as being se-
lectively expressed on Th1 and Tc1 cytotoxic T cells, which are involved in cell- 
mediated immunity and play crucial roles in fighting cancer and infections 
(31, 33). In recent years, TIM-3 has emerged as a promising target for 
cancer immunotherapy, and anti-TIM-3 therapies are being explored as a 
means of reversing T-cell exhaustion and restoring antitumor immunity 
(32, 34, 35). Studies have shown that the expression of TIM-3 on CD8+ 

T cells is associated with the disease stage in human colorectal cancer 
and that TIM-3 blockade improves antitumor responses (36–38). Con-
sistent with these findings, we demonstrated that inhibition of TIM-3 by 
mAb therapy slows tumor progression in a CT26 mouse model of human 
colorectal cancer and that this antitumor effect is achieved by reversing 
T-cell exhaustion. Furthermore, our findings have shown that dual tar-
geting of the TIM-3 and PD-1 pathways reduces T-cell exhaustion and 
restores better antitumor responses. Taken together, these studies pro-
vide promising evidence that targeting the TIM-3 and PD-1 pathways 
may represent a promising strategy for cancer immunotherapy. 

Emerging evidence shows that an increase in T-cell and myeloid cell niches 
within posttreatment tumors indicates a better response and improved 
survival. A recent study revealed that the presence of M1 TAMs is associated 
with strong CD8+ T-cell tumor infiltration and better survival outcomes (39). 
Another study suggested that high numbers of TAMs and tumor-associated 
dendritic cells are related to better survival in patients with colorectal cancer 
(40, 41). Consistent with those findings, we also observed niches of mac-
rophages and dendritic cells that might crosstalk with T cells in tumors from 
patients with better survival. Interestingly, there was a significant increase in 
macrophages and a slight increase in the percentage of M2 macrophages 

(CD206+MHCII+ macrophages) in tumors from the combination-treated 
mice, suggesting that these macrophages are more M1-like (Supplementary 
Fig. S6E). More detailed mechanisms need to be further investigated. 

In summary, our data demonstrate the importance of the spatial status of 
infiltrated immune cells in human colorectal cancer, with an emphasis on 
spatial profiling of the exhausted state of immune cells in the TME. In 
addition, we illuminate the key roles of TIM-3 and PD-1 in cancer immu-
notherapy. These results highlight the importance of considering the spatial 
distribution of immune cells and the underlying mechanisms of immune 
exhaustion in the design of cancer immunotherapies. 
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