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Abstract

Pluripotent stem cell lines derived from preimplantation mouse embryos have opened

opportunities for the study of early mammalian development and generation of genet-

ically uncompromised material for differentiation into specific cell types. Murine

embryonic stem cells are highly versatile and can be engineered and introduced into

host embryos, transferred to recipient females, and gestated to investigate gene

function at multiple levels as well as developmental mechanisms, including lineage

segregation and cell competition. In this review, we summarize the biomedical moti-

vation driving the incremental modification to culture regimes and analyses that have

advanced stem cell research to its current state. Ongoing investigation into divergent

mechanisms of early developmental processes adopted by other species, such as agri-

culturally beneficial mammals and birds, will continue to enrich knowledge and inform

strategies for future in vitromodels.
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ADVENT OF NAÏVE PLURIPOTENT STEM CELL
LINES

The derivation, characterization, and application for biomedical pur-

poses of pluripotent stem cell lines frommammalian embryos over the

past four decades have revolutionized approaches to understanding

developmental processes and dysfunction. The first embryonic stem

cell (ESC) lines were derived directly from preimplantation mouse

embryos, utilizing conditions previously optimized to facilitate self-

renewal of undifferentiated embryonal carcinoma cells in a medium

supplemented with fetal bovine serum (FBS) in dishes coated with

a layer of mitotically inactivated fibroblast “feeder” cells.[1,2] The

resulting discrete, dome-shaped colonies can be propagated clonally

when disaggregated, diluted, and replated, retaining the identity

and developmental potential of the preimplantation epiblast. This

characteristic defines this state of pluripotency as “naïve”.[3] Initially,
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ESCs were derived from mice of the 129 strain, which are coinci-

dentally prone to germline tumors.[4] To increase the efficiency and

applicability of ESC derivation, efforts were focused to reduce poorly

controlled variables, such as the feeder layer. Replacing established

fibroblast cell lines with early passage mitotically inactivated murine

embryonic fibroblasts (MEFs) in FBS-containing medium facilitated

capture, albeit with low efficiency, of ESCs from some non-129 strains

of mice, such as C57BL/6,[5] the background of choice for immunol-

ogists and researchers into hematopoiesis. Medium conditioned by

buffalo rat liver (BRL) feeder cells enabled self-renewal of ESCs.[6]

The “differentiation inhibiting activity” was identified as leukemia

inhibitory factor (LIF), small volumes of which could replace feeder

cells for propagation of ESCs from the 129 strain[7,8] and derivation

from 129 embryos poised in the state of peri-implantation by means

of diapause,[9] pioneered for one of the original ESC derivation

achievements.[2] Diapause is a simple way to maintain the epiblast
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in an optimal state, exposed to minimal growth signals and metabolic

activity, from which it may resume normal development in utero, or

respond to signals in culture when placed in a permissive environ-

ment. This prolonged state of pluripotency allows for more efficient

isolation and establishment of ESC lines, as the cells remain capable of

self-renewal.[3,10]

The exploitation of diapause to sustain epiblast in its naïve state

of pluripotency, coupled with skillful micro-dissection to remove

extra-embryonic tissues, thereby eliminating specific differentiation-

inducing signals, promoted highly efficient derivation of ESCs from

129 mice, and variable success from other strains, including the hith-

erto recalcitrant CBA, but not the non-obese diabetic (NOD) strain.[11]

Removal of diapause embryos from the uterus rapidly relieves the

imposed inhibition to developmental progression. Differentiation-

inducing signals in the context of early embryonic development

are primarily mediated by extra-embryonic tissues, such as the tro-

phectoderm and extra-embryonic endoderm, which secrete signaling

molecules including FGFs, TGF-β, and Wnt family members. These

drive the inner cell mass (ICM) cells toward specific lineages and away

from the pluripotent state.[12,13] Analysis of lineage morphology dur-

ing culture of diapause embryos revealed that strain 129 epiblasts

enlarged significantly compared with the less permissive C57BL/6

and CBA, which consequently became dominated by the overlying

primitive endoderm/hypoblast.[14] The increased epiblast size of 129

diapause embryosobviously providesmore cells fromwhich to attempt

derivation of ESCs, but its efficiency may also reflect intrinsic differ-

ences in cell proliferation or survival, independent of the influence

of extra-embryonic tissues. The potential mechanisms responsible

for the privileged state of 129 epiblasts have been at least partially

attributed to its more efficient response to STAT3 signaling com-

pared with less permissive strains.[15,16] Interestingly, the absence

of STAT3, the downstream-effector of LIF signaling,[17] in diapause

embryos causes catastrophic loss of the epiblast within a few days of

ovariectomy.[18] This highlights the crucial role of STAT3 inmaintaining

epiblast viability, pluripotency, and self-renewal in vivo during a period

of developmental arrest.

REPLACEMENT OF FBS WITH DEFINED FACTORS

The requirement for FBS as a supplement for culture and derivation of

ESCs introduces variability, requiring researchers meticulously to test

batches before embarking upon experiments. Its removal would maxi-

mize consistency and enable dissection of the mechanisms required to

maintain self-renewing naïve pluripotent stem cells, potentially broad-

ening the repertoire of strains and species from which ESCs could be

derived. Culturing ESCs in a defined medium without feeders, FBS, or

LIF results in differentiation into neurons.[19] Provision of LIF alone

failed to block this activity. However, in combinationwith BMP4,which

induces inhibitor of differentiation (ID) proteins, differentiation was

repressed and ESC self-renewal supported. Disappointingly, however,

derivation was possible only from the 129 strain.[20] Inhibition of

glycogen synthase kinase 3 (GSK3) by 6-bromo-indirubin 3 oxime pro-

moted limited ESC proliferation.[21] A more specific GSK3 inhibitor,

Chir99021, was combined with inhibition of FGF/MEK/ERK signaling,

previously shown to reduce differentiation,[22] resulting in a defined

mediumcomposition, knownas “2i”, inwhichESCs could bepropagated

efficiently with minimal differentiation, whilst retaining germline com-

petence. The addition of LIF enhanced clonal propagation of ESCs in

2i, but was not essential for their derivation, as demonstrated using

embryos lacking STAT3.[23] The use of 2i + LIF produced ESCs from

NOD embryos[24] that could undergo two rounds of gene target-

ing and still transmit through the germline when injected into host

blastocysts.[25] Provided ESC cultures are passaged in a timely man-

ner and not allowed to become overgrown,[26,27] 2i + LIF provides

a universal regime for generating, targeting, and transmitting genetic

modifications through the mouse germline, as summarized by Mulas

et al.[28]

STRATEGIES TO CAPTURE THE ELUSIVE NAÏVE
PLURIPOTENT STEM CELLS FROM OTHER
RODENTS

Following implantation in the uterus, the embryos of both mice and

rats organize into “egg cylinders”, which then undergo gastrulation.

Despite the apparent similarity in embryonic morphology, attempts

to derive naïve pluripotent rat ESCs met with failure until the advent

of 2i + LIF.[29,30] Although derivation efficiency was high, rat ESCs

were unstable, tending to expressmarkers of extra-embryonic lineages

unless the concentration of GSK3 inhibitor was reduced to 1/3 of that

used for mouse ESCs.[31] Gene targeting of rat ESCs and transmission

through the germlinewas subsequently achieved using 2imediumwith

reduced GSK3 inhibitor and LIF throughout the culture,[32] opening

the door to opportunities for the generation of novel rat models for

gene function and disease.

Maximal derivation efficiency of mouse ESCs was accomplished

by culturing embryos from the morula stage, embryonic day (E) 2.5,

in KSOM (potassium-based Simplex Optimized Medium; the origi-

nal formula engineered to support development to term of mouse

embryos cultured from zygote to blastocyst stage before transfer to

pseudo-pregnant recipient females),[33] supplemented with inhibitors

for GSK3 and MEK/ERK signaling. This resulted in the redirection

of the entire ICM, which would normally segregate into epiblast and

hypoblast, into a substantial, compact ball of epiblast, readily expand-

able into ESC lines when disaggregated.[34] To attempt to determine

the arrival and departure of naïve pluripotency potential in vivo,

ICM and epiblast cells were isolated from mouse embryos at vari-

ous stages and plated individually directly into 2i + LIF culture.[35]

Cells isolated from morulae could produce naïve pluripotent stem cell

lines only if cultured on a permissive substrate, such as laminin or

fibronectin, or a mixture of both, as would be encountered within

the developing blastocyst. The frequency of clonal naïve pluripotent

stem cell line derivation increased from early blastocyst, peaked just

before implantation, and was lost, once the postimplantation epi-

blast epithelialized and acquired a pro-amniotic cavity.[35] During

normal development, soon after implantation, the hypoblast differen-

tiates into visceral endoderm that plays an essential role in imposing
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anterior–posterior patterning on the epiblast.[36–38] Interestingly,

pluripotent stem cell lines capable of differentiating into most adult

tissues can be derived from postimplantation murine epiblasts, fol-

lowing their separation from the overlying visceral endoderm, using

defined medium supplemented with FGF2 and activin on a layer of

fibronectin.[39,40] These epiblast stem cell (EpiSC) lines proliferate

as flat, epithelial colonies, tend to exhibit low cloning efficiency and

diverge from ESCs in several respects, as discussed in Smith, this

issue[41] and are referred to as “primed” pluripotent stem cells.[3]

Although they can be derived from pre- to late-gastrulating epi-

blasts (E5.5 to E7.5), their properties become most closely aligned

with the anterior primitive streak tissue of the E7.5 epiblast after

serial passaging.[42] However, further studies have shown that EpiSCs

express high levels of WNT signals,[43] which induce differentia-

tion into primitive streak cells. This differentiated subset drives the

observed alignment with the primitive streak, whereas undifferen-

tiated EpiSCs, cultured in the presence of WNT inhibitors, more

accurately correspond to the pre-gastrula epiblast.[44–46] Endeavors to

derive EpiSCswere primarily inspired by the properties of human ESCs

propagated fromsurplus blastocysts donated fromassisted conception

programmes, which require similar culture conditions and grow as flat,

epithelial colonies.[47] Capturing naïve pluripotent stem cell lines from

human embryos turned out not to be straightforward.[48] As an essen-

tial interim measure, reprogramming strategies were painstakingly

applied to primed hESCs, resulting in the long-awaited self-renewing

naïve pluripotent cultures.[49,50]

DERIVATION OF NAÏVE PLURIPOTENT STEM CELL
LINES FROM PREIMPLANTATION HUMAN
EMBRYOS

Culturing human morulae in 2i or combinations of MEK/ERK and

FGF receptor inhibitors, exactly as used for mouse ESC derivation,

did not block hypoblast formation.[48,51] An alternative means to

protect early epiblast cells from instructions to differentiate was to

separate ICM cells before plating. The medium optimized for repro-

gramming primed human stem cells[49] enabled the derivation of cell

lines, termed “HNES” (Human Naïve Epiblast Stem) cells that prolif-

erated as dome-shaped colonies that could be passaged clonally and

closely resembledhumanblastocyst cells in geneexpressionprofile.[52]

An alternative strategy exploiting the medium composition developed

for efficient reprogramming of primed hESCs to the naive state[50]

was also applied to intact donated human blastocysts, resulting in the

derivation of novel human stem cell lines exhibiting properties of naïve

pluripotency.[53]

INTEGRATION OF MOUSE ESCs INTO HOST
EMBRYOS

Mouse ESCs, genetically modified using ever-evolving engineering

technology, can be used to generate biomedically relevant mouse

models, following incorporation into host wildtype preimplantation

embryos, transfer to recipient females, and transmission through

the germline, as first demonstrated four decades ago.[54] Modifica-

tions to ESC culture regimes and embryo stage have resulted in the

establishment of cell lines variously referred to as “expanded poten-

tial” or “extended pluripotent” stem cells, reported to contribute to

extraembryonic lineages of developing embryos.[55,56] Additional stud-

ies have recounted the contribution of derivatives of ESCs exhibiting

2-cell stage-like identity, attributed to retroviral influences,[57] or

ESCs selected for expression of a highly sensitive Hex reporter[58]

to trophoblast and/or hypoblast when injected into host embryos.

The properties and utility of such cell lines have been discussed

comprehensively in a recent, excellent review.[59]

USING CHIMERAS TO STUDY CELL COMPETITION

Soon after implantation in the uterus, the mouse epiblast undergoes

rapid cell division in preparation for gastrulation. It was subsequently

reported, via single-cell RNA sequencing of embryos treatedwith a cell

death inhibitor, that around 35% of epiblast cells undergo apoptosis at

this time,which is proposed to serve as ameans to eliminate unsuitable

cells fromparticipating in the formation of embryonic tissues, including

those that will give rise to the germ cells.[60] Evidence for the exis-

tence of mechanisms that implement destruction and elimination of

cells somehow perceived by the early postimplantation epiblast to be

“less fit” than their neighbors was obtained by the use of chimeras cre-

ated by injection of ESCs carrying abnormalities that, in the context

of the intact embryo, would be viable. Examples of defects carried by

ESCs that were found to be selectively instructed to apoptose include

those with mutations in BMP signaling, defects in autophagy, and pos-

session of a tetraploid genome.[61] Several years of further research

revealed roles for mTOR, its upstream activator, p53, and defects in

mitochondrial processes as readouts for cell fitness that could begin

to explain how death or survival could be determined for each cell

within amixed population.[60,62] Elevated levels of the proto-oncogene

cMyc had previously been proposed to confer enhanced cell fitness

on epiblast cells during murine gastrulation.[63] Interestingly, such a

mechanism is not invoked during the blastocyst stage of development

to select 1–3 of the 10–15 ESCs generally injected prior to embryo

transfer to secure contribution to chimeric offspring.[64] ESCs lacking

cMyc are able to persist during preimplantation stages within wild-

type host embryos.[65] It appears that deviating from the naïve state of

pluripotency, as befalls ESCs cultured in the serum-containingmedium

compared with 2i + LIF, induces cell death in injected cells as early as

the morula stage.[65] This is surprising since blastomeres at this stage

are considered to be “unspecified”. So far, the mechanisms by which

the unsuitable (non-naïve pluripotent) injected ESCs are identified and

executed have not been uncovered.

SELF-ORGANIZATION OF ESCs TO MIMIC
DEVELOPMENTAL PROCESSES

A significant motivation for creating pluripotent stem cell lines was

to model aspects of early mammalian development and produce
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tissues by directed differentiation, as presented in several chap-

ters in this issue.[66–68] The derivation of trophoblast stem cells

(TSCs)[69] and extraembryonic endoderm (XEN) cells[70] has been

instrumental in advancing various research applications. However,

these early attempts produced cell types that corresponded more

closely to postimplantation stages, rendering them unsuitable for

the generation of 3D structures resembling blastocysts, known as

“blastoids”. Recent endeavors have instead focused on deriving pre-

implantation stage trophectoderm and primitive endoderm stem cell

lines, which are more appropriate for creating blastoids.[71–73] In the

early attempts to create mouse blastoids, TSCs were combined with

ESCs, which approximated blastocysts morphologically, but lacked

sufficient hypoblast/primitive endoderm tissue and, although able to

implant in the uterus, failed to initiate normal development.[74] The

mouse systemwas chosen for this study to develop and validate a pro-

tocol that could then be adapted to generate blastoids from human

stem cell lines to model the less accessible human early development.

Fortuitously, however, human naïve pluripotent stem cell lines were

found to exhibit greater developmental flexibility compared with their

murine counterparts and can readily differentiate into trophoblast

or hypoblast by minimal modifications to the culture.[75] Production

of human blastoids was therefore relatively straightforward.[76,77] As

with mouse blastoids, the formation of human hypoblast tended to be

somewhat restricted, but by using sequential media modifications it

can be titrated to produce more realistic blastocyst models.[78] The

production and use of blastoids is described in detail in Smith, this

issue.[41]

In addition to their worldwide use as a means to transmit genetic

modifications through the mouse germline via injection into preim-

plantation mouse embryos and transfer to a pseudo-pregnant host

uterus,[54,79] pluripotent stem cells have been adopted for modeling

developmental processes and postimplantation embryos in vitro. Early

hypotheses speculating how the pro-amniotic cavity may form were

tested using embryoid bodies, which mimic an epiblast surrounded

by a layer of endoderm-like epithelium.[80] These pioneering stud-

ies were subsequently questioned and tested using more advanced

technology,[81,82] which did not support the original conclusion that

cell death in the center of the “epiblast” region was induced by sig-

nals from the overlying endoderm-like epithelium. Self-organizing ESC

models have also been developed in which signaling gradients, polar-

ization, and formation of a primitive-streak-like region have been

observed, which laid the groundwork for more complex models.[83]

The evolving development of ESC-derived structuresmimicking poste-

rior postimplantation development, known as “gastruloids”,[84–86] are

expertly discussed by Turner andMartinez Arias in this issue.[68]

FUTURE PERSPECTIVES

In the current landscape, chimera-forming and germline-competent

naïve PSCs have been successfully derived from mice and rats, mark-

ing significant advancements. However, this achievement has not

extended to many other species. The establishment of germline-

competent PSCs from non-rodent species holds tremendous scientific

and therapeutic promise. We anticipate that the underlying principles

governing the capture and maintenance of naïve pluripotency across

species are likely shared, albeit with nuanced differences attributable

to variations in early embryonic development. The potential avenues

for developing conditions to capture and sustain naïve pluripotency

are manifold. The well-established mouse and rat ESCs provide a

conducive environment for easily discerning and dissecting signaling

pathways. As elaborated above, the 2i condition, initially developed

for mouse ESCs,[23] was successfully formulated to derive the first rat

ESCs.[29,30] Emphasizing this point, utilizing rat ICMs initially insteadof

mice for such research would likely have posed a formidable challenge.

Further exploration of fate determination in preimplantation embryos,

particularly understanding the intricacies involved in lineage specifica-

tion and inhibition,may provide insights to pave theway for developing

conditions conducive to maintaining naïve ESCs in a broader range

of species. The Supporting Information table summarizes the main

scientific milestones presented in this study.
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