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Abs‌tract 
Background: In recent times, various algorithms have been developed to assist in the selection of embryos for 
transfer based on artificial intelligence (AI). Nevertheless, the majority of AI models employed in this context were 
characterized by a lack of transparency. To address these concerns, we aim to design an interpretable tool to automate 
human embryo evaluation by combining artificial neural networks (ANNs) and genetic algorithms (GA).  
Materials and Methods: This retrospective cohort study included 223 human blastocyst time-lapse (TL) images 
taken at 110 hours post-injection. All the images were evaluated by five embryologists from different clinics in terms 
of blastocyst expansion (BE), quality of the inner cell mass (ICM), and trophectoderm (TE). The embryo database 
was used to develop an AI system (70% training, 15% validation, and 15% test) for automate blastocyst assessment. 
The entire set of images underwent a standardization process, followed by processing and segmentation using Matlab 
software. The resulting quantified variables were utilized in AI techniques (ANN and GA). Finally, the accuracy and 
performance of the automation tool was assessed with the area under the receiver operating characteristic (ROC) 
curve (AUC). Then, the level of agreement among embryologists and between embryologists and the AI system was 
compared with Kappa Index. 
Results: The overall agreement among embryologists was low (Kappa: 0.4 for BE; and 0.3 for TE and ICM). The AI 
tool achieved higher consistency (Kappa 0.7 for BE and ICM; and 0.4 for TE). The AI exhibited high accuracy in clas-
sifying BE (test 81.5%), ICM (test 78.8%), and TE (test 78.3%) and better performance for BE (AUC 0.888-0.956) 
than for ICM (AUC 0.605-0.854) and TE (AUC 0.726-0.769) assessment.
Conclusion: Our AI tool highlighted the superior consistency of AI compared to human operators in grading blasto-
cyst morphology. This research represents an important step towards fully automating objective embryo evaluation.
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Introduction
The field of assisted reproductive medicine has 

placed significant emphasis on embryology (1), with 
several advancements in time-lapse (TL) technology 

playing a crucial role (2, 3). While continuous embryo 
monitoring has proven advantageous in embryo selec-
tion, its applications beyond tracking embryo develop-
ment remain uncertain. The standard practice for eval-
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uating and selecting embryos on day five of embryo 
development is based on classical morphology at the 
blastocyst stage (4).

The scientific community in reproductive medicine 
has established criteria for evaluating embryo mor-
phology, along with standardized systems for grading 
and selection (5). However, embryo evaluation still 
presents challenges due to its subjective and incon-
sistent nature. The assessment of blastocyst expansion 
(BE), inner cell mass (ICM), and trophectoderm (TE), 
which are considered in the morphological grading, 
can vary depending on the evaluator and the tools used 
(6, 7). To address these obstacles, the use of artifi-
cial intelligence (AI) with artificial neural networks 
(ANNs) has gained significant attention in research 
and fertility conferences worldwide (8).

Accurately assessing embryo viability based on 
morphology is crucial for optimizing in vitro fertiliza-
tion (IVF) treatment outcomes. AI holds tremendous 
potential in processing complex datasets, detecting 
subtle yet crucial patterns, and providing a more ob-
jective assessment of embryos compared to humans. 
However, a comprehensive literature review reveals 
that significant progress is still required before ethi-
cally implementing AI for this purpose (9). Addi-
tionally, key challenges of AI include data privacy 
concerns, lack of human-like creativity, and the po-
tential for job displacement (10, 11). Currently, most 
AI models exhibit opacity, making them challenging 
to interpret. This gives rise to various epistemic and 
ethical concerns, including issues of trust, potential 
generalization problems across different populations, 
adverse economic implications for IVF clinics, poten-
tial misalignment with patient values or broader soci-
etal implications. To address these concerns, the use 
of interpretable models, which are designed to be eas-
ily understandable and explainable by humans, could 
be a solution.

Over the past few years, there has been a growing 
interest in utilizing AI for supporting embryo qual-
ity assessment. Numerous algorithms have been de-
veloped to analyze static images or TL videos of em-
bryos, aiming to assist in the selection of embryos for 
transfer (12-19). Digital image processing involves 
extracting information on size, color scale, and satu-
ration using mathematical algorithms. Several key 
variables, such as circularity, radius, uniformity, tex-
ture, luminosity, and color scale, can be measured and 
analyzed from blastocyst images (20, 21) to design 
interpretable models. By leveraging AI, embryo eval-
uation can achieve greater accuracy and consistency, 
overcoming the inherent subjectivity associated with 
classical methods due to variations in embryologists' 
training, experience, and instruments (8, 22). AI tools 
have already demonstrated success in classifying hu-
man and non-human mammalian embryos, indicating 
their potential in assessing embryo quality, predict-

ing outcomes, and establishing standardized grading 
practices (23-26).

In paralel, there has been a growing exploration 
of the potential of ANNs in conjunction with other 
programming techniques like GA, to enhance and 
optimize results. GAs are evolutionary algorithms 
inspired by both Darwin’s theory of evolution and 
Gregor Mendel’s laws of genetics. This approach in-
volves generating a random population of individu-
als, which are then evaluated and selected for the next 
generation based on their fitness. This iterative pro-
cess continues, creating new populations, until a sat-
isfactory solution is achieved (27, 28). In the context 
of this study, the individuals referred to are the ANNs 
themselves (29).

The objective of the current study is to design an in-
terpretable tool to automate human embryo evaluation 
by combining ANNs and GA. To justify its use, we 
first compared the embryologist-embryologist agree-
ment in embryo evaluation. Secondly, we compared 
the match between the embryologist and the decision 
based on machine learning.

Materials and Methods
Study design

In this retrospective cohort study, we included 223 hu-
man blastocyst images (from 74 patients) obtained using 
the Embryoscope® (Vitrolife, Sweden) from January to 
June 2020. All the TL microscopy (TLM) images of hu-
man embryos captured at 110 hours post-injection (hpi) 
were evaluated and graded for expansion, inner cell 
mass, and TE by five experienced embryologists from 
three different countries (more than 5 years of experi-
ence). Then, the images were randomly sorted and des-
ignated for use as the input dataset for the AI system, 
with 70% allocated for training, 15% for validation, and 
15% for testing purposes.

Blastocyst morphology evaluation and image analysis 
processing

The blastocysts were routinely evaluated and as-
signed scores based on the grade of expansion, inner 
cell mass, and TE appearance, following the wide-
ly accepted and adapted Gardner Grading System 
(GGS) (4). The cohort’s images were independently 
assessed by five experienced embryologists using 
the GGS criteria (Fig.S1, See Supplementary Online 
Information at www.ijfs.ir). 

Then, all blastocyst images were captured using 
the EmbryoScope® (Vitrolife, Denmark) and the 
most frequently assigned value for BE, ICM, and TE 
among the five embryologists (i.e., the mode) was 
used to train the AI tool.

In this study, the AI model utilized an algorithm that au-
tomatically imports blastocyst images into MatLab® soft-
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ware and standardizes them. The standardization process 
involved converting the images into grayscale, adjusting 
the resolution and aspect ratio (30), and converting them to 
8-bit grayscale (Fig.S2, See Supplementary Online Infor-
mation at www.ijfs.ir). To ensure uniformity for analysis, 
images with different resolutions and proportions were ad-
justed accordingly. Additionally, 1% of the pixel informa-
tion between light and dark pixels was saturated in each 
blastocyst image, facilitating the subsequent segmentation 
step (31). Following standardization, the blastocyst was iso-
lated from the surrounding image by modifying the image 
gradient to define its boundaries. This was accomplished 
using Hough’s Transform (32), a method that detects the 
circumference of the blastocyst (Fig.S3, See Supplemen-
tary Online Information at www.ijfs.ir). 

The image processing involved multiple algorithms that 
operate independently. The Gray Level Co-Occurrence 
Matrix (GLCM) was used for texture analysis, the Wa-
tershed transformation was employed for image segmen-
tation, and the Gabor filter was utilized to differentiate 
various textures within the image. After applying these 
techniques, the TE and ICM regions were identified sepa-
rately (Fig.S4, See Supplementary Online Information at 
www.ijfs.ir). Following the image segmentation process, 
the extracted information provided a numerical vector that 
describes the key features of a blastocyst image in quanti-
ties suitable for digital applications (i.e., to mathematize 
the quality of the inner cell mass, the trophectoderm, and 
the degree of blastocyst expansion).

Statistical analysis

Artificial Intelligenceand genetic algorithms
After analyzing and processing the images, the quantified 

variables of the embryos underwent the GA technique. This 
technique involved constructing a population of individuals 
that represent different architectures of ANNs. The ANNs 
were randomly generated to form the initial population, with 
100 or 200 individuals in each population. Each individual 
in the population represented a specific ANN configuration. 
The parameters that defined the ANNs include the maximum 
and minimum number of neurons per layer, the number of 
layers, the learning rate, the transfer functions (i.e. models 
that are a frequency-domain representation of linear time-
invariant systems) and the learning functions (i.e. training 
functions that facilitate the training or learning process of ar-
tificial neural networks). The development of these networks 
was carried out on the Matlab® platform.

Once the ANNs were generated as individuals, the en-
tire population underwent training, validation, and testing 
using the blastocyst image database. The most suitable 
individuals were selected based on the smallest error in 
the test set when applying the ANN technique. A sche-
matic structure of the AI system used for embryo classifi-
cation according to Gardner’s grading system is depicted 
in Figure 1. Finally, the performance of the predictions 
was compared using the area under the receiver operating 
characteristic (ROC) curve (AUC).

Fig.1: Schematic structure of the Artificial Intelligence technique applied 
to blastocyst classification.

Cohen’s Kappa Coefficient
To assess the agreement between observers and within 

a single observer, the Cohen’s Kappa coefficient (k) was 
employed. The calculations were performed using SPSS 
statistical software (version 24.0.0.1, IBM Corp, USA). 
The kappa coefficient is a statistical measure that takes 
into account chance agreement and quantifies the level of 
agreement between two sets of data.

The interpretation of the kappa coefficient values is as 
follows: absolute agreement (k=1), excellent agreement (k 
≥0.80), good agreement (k=0.60-0.79), moderate agreement 
(k=0.40-0.59), poor agreement (k=0.20-0.39), very poor 
agreement (k <0.20), and no agreement (k=0), as suggested. 
For clinical laboratory applications, a minimum acceptable 
classification was defined as excellent agreement (k ≥0.80).

To evaluate inter-observer variability, the classification 
among embryologists was compared for each embryo 
grading parameter (BE, ICM and TE). Intra-observer 
agreement was determined by assessing each embryolo-
gist's consistency when rating the images. Each embry-
ologist rated all images three different times, and from 
these classifications, the Kappa value was calculated. 

Ethical considerations
The procedure and protocol for analyzing embryos 

were approved by the Institutional Review Board (IRB 
reference 1902-VLC-018-MM), which monitors and ap-
proves database analyses and clinical IVF procedures for 
research at IVIRMA Global.

Results
Artificial intelligence tool for blastocyst assessment

The overall accuracy of the AI system in analyzing 
key blastocyst features was acceptably high (Table 1).

Table 1: Overall accuracy of the artificial intelligence tool for blastocyst expan-
sion, inner cell mass and trophectoderm quality on the test and training data

Morphological feature Training Test
Blastocyst expansion 93.9 81.5
Inner cell mass 93.0 78.8
Trophectoderm 78.8 78.3

Data are presented as the percentage of correct predictions between the AI tool and the 
conventional approach by embryologists.

AI for Embryo Evaluation
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The AI tool demonstrated higher performance in grad-
ing BE (AUC from 0.923 to 1) compared to ICM (AUC 
from 0.605 to 0.854) or TE quality (AUC from 0.726 to 
0.769) on the test dataset (Table 2).

Degree of agreement among embryologists
Five embryologists from different clinics were involved 

in grading blastocysts based on their expansion, inner cell 
mass, and trophectoderm. There was considerable vari-
ation in the assigned grades, resulting in low agreement 
values measured by the Kappa coefficient (0.4 for expan-
sion and 0.3 for ICM and TE) (Table 3).

Degree of agreement between the automated system 
and the mode of embryologists

When comparing the results obtained by the AI technique 
with the modal value (the value calculated based on the mode 
of the results provided by the five embryologists), a signifi-
cant improvement in blastocyst classification agreement was 
observed, as indicated by the assigned Kappa values (Table 4).

Table 2: Performance of the model with AUC values for blastocyst expan-
sion, ICM and trophectoderm quality on test and training data

Morphological feature Training Test

Blastocyst expansion
Class 2 0.956 1
Class 3 0.888 0.923
Class 4 0.946 1

Inner cell mass
Grade A 0.979 0.854
Grade B 0.967 0.691
Grade C 0.961 0.605

Trophectoderm
Grade A 0.900 0.726
Grade B 0.863 0.733
Grade C 0.914 0.769

Class 2; Early blastocyst, Class 3; Full blastocyst, Class 4; Expanded blastocyst, AUC; Area 
under the curve and ICM; Inner cell mass. 
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Table 3: Cohen’s Kappa coefficients from the evaluation by five embryologists of the three features of blastocysts (grade of expansion, inner cell mass and 
trophectoderm)

Morphological feature Class 2 Class 3 Class 4 Average

Blastocyst expansion

Kappa 0.422 
(0.381-0.464)

0.222 
(0.181-0.264)

0.508 
(0.466-0.549)

0.371
(0.342-0.400)

P value <0.001 <0.001 <0.001 <0.001
Inner cell mass Grade A Grade B Grade C Average

Kappa 0.404
(0.363-0.446)

0.178 
(0.137-0.220)

0.285 
(0.243-0.326)

0.267 
(0.236-0.298)

P value <0.001 <0.001 <0.001 <0.001
Trophectoderm Grade A Grade B Grade C Average

Kappa 0.353 
(0.312-0.395)

0.209 
(0.167-0.250)

0.376
(0.334-0.417)

0.299
(0.268-0.331)

P value <0.001 <0.001 <0.001 <0.001
Kappa values are expressed with confidence intervals (CI) 95% between brackets. Class 2; Early blastocyst, Class 3; Full blastocyst, and Class 4; Expanded blastocyst.

Table 4: Cohen’s Kappa coefficients from the evaluation by artificial intelligence compared by the mode from 5 embryologist of the three features of blastocysts: grade 
of expansion, inner cell mass and trophectoderm

Morphological feature Class 2 Class 3 Class 4 Average
Blastocyst expansion

Kappa 0.751 
(0.620-0.883)

0.652 
(0.521-0.783)

0.790
(0.659-0.921)

0.729
(0.632-0.826)

P value <0.001 <0.001 <0.001 <0.001
Inner cell mass Grade A Grade B Grade C Average

Kappa 0.779 
(0.648-0.910)

0.688 
(0.558-0.818)

0.681
(0.551-0.811)

0.705 
(0.606-0.804)

P value <0.001 <0.001 <0.001 <0.001
Trophectoderm Grade A Grade B Grade C Average

Kappa 0.382
(0.256-0.507)

0.402 
(0.273-0.531)

0.501 
(0.370-0.631)

0.438
(0.332-0.544)

P value <0.001 <0.001 <0.001 <0.001
Kappa values are expressed with confidence intervals (CI) 95% between brackets. Class 2; Early blastocyst, Class 3; Full blastocyst, and Class 4; Expanded blastocyst.
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Discussion 
An automated tool for grading blastocyst morphology 

has been developed, utilizing temporal information from 
TL imaging and machine learning techniques. This study 
aligns with other research efforts aimed at enhancing the 
quality of assisted reproduction by leveraging the poten-
tial of AI to assist embryologists and physicians. 

In early studies on the use of AI in the IVF laboratories, 
Bormann et al. (33) applied convolutional neural networks 
to assess the consistency of grading embryo quality and 
facilitate selection for biopsy and cryopreservation. They 
also used GA and single embryo images to achieve an 
accuracy of 90% in choosing the highest quality embryo 
available. Their results were very promising in distinguish-
ing between viable and non-viable blastocysts and embryos 
with different implantation potential. However, they did 
not analyze the concordance in the morphological evalu-
ation of blastocysts, where our results show the superior 
performance by image analysis.  Then, several authors em-
ployed deep learning techniques to evaluate embryo quality 
and achieved superior results compared to embryologists. 
Life whisperer made a binary comparison of viable/non-
viable embryo classification demonstrated an improve-
ment of 24.7% over embryologists’ accuracy (34). Simi-
larly, STORK performed a classification between good and 
poor embryos and compared the prediction to the majority 
vote of embryologists, achieving a Kappa coefficient of 
0.63 (12). Our similar system achieved higher coefficients 
for two blastocyst features (BE and ICM), but not for the 
trophectoderm. Chavez-Badiola et al. (14) explored AI’s 
application in determining embryo viability and predicting 
ploidy, yielding promising outcomes. Several subsequent 
studies promote the standardization of embryo evaluation 
(15-19, 26, 35) and novel systems have been developed to 
predict clinical pregnancy by combining embryo images 
with clinical data (36). Their system (FiTTE) achieved 
higher accuracy than Gardner scoring assessment (59.8 vs. 
65.2%). Given the large number of AI models that have re-
cently emerged, it is the responsibility of embryologists to 
assess each of them to the best of their ability. For instance, 
Diakiw et al. (37) outlined methods that should be con-
sidered more widely for evaluating automated algorithms 
such as simulated cohort ranking analyses. However, AI 
methods used for embryo selection are often perceived as 
black box evaluations. To instill confidence in the predic-
tions they generate, it is crucial to thoroughly examine and 
validate these models, ensuring their consistency with es-
tablished clinical features of embryo quality.

Our study has prioritized the objective and consistent evalu-
ation of blastocyst morphology, rather than aiming to create a 
new automated scoring system for embryo classification. To 
the best of our knowledge, the system proposed in this study 
is the only one that provides interpretable results for each part 
of the blastocyst, mimicking an embryologist’s evaluation but 
yielding more objective results. We acknowledge the chal-
lenge of standardizing the assessment of embryo morphology, 
considering its crucial connection with subsequent clinical 

outcomes. The pursuit of objectivity in embryo assessment 
plays a crucial role in the success and advancement of repro-
ductive medicine. In line with our results, clinics from differ-
ent countries, and even embryologists within the same clinic 
reported varying outcomes (6, 7, 38, 39). Discrepancies in em-
bryo grading stem from factors such as differences in training, 
variations in quality control, and numerous other possibilities 
inherent in human work. According to our findings, AI may 
address these inadequacies and discrepancies that arise dur-
ing embryo evaluation. Through the analysis of TL images, 
our results have demonstrated superior performance for AI 
compared to embryologists in grading human blastocysts. In 
addition, such technology may have some advantages: it is 
cost-effective, non-invasive, and provides greater consistency 
compared to assessments made by individual operators. AI 
can analyze thousands of images at a faster pace than humans, 
while continuously learning and integrating additional embryo 
information.

The main limitation of our study is its retrospective nature. 
Although AI technology has been proposed as a revolution 
in the assessment of embryo morphology, offering increased 
accuracy and consistency in grading across individuals and 
clinics, further independent studies are necessary to validate 
and ensure the reproducibility of these findings before im-
plementing them in clinical settings. Also, the low inter-op-
erator agreement was likely attributed to the use of single 2D 
images with a fixed central focal plane, although he Embryo-
Scope® software ensured consistent resolution and illumina-
tion across all images. We are also aware that our sample 
size is not very large. However, our AI technique (ANN with 
GA) analyzed thousands of ANN architectures to find the 
most optimal one. Typically, models developed with ANNs 
can be susceptible to overfitting. Nevertheless, in this case, 
we made efforts to mitigate this issue by carefully defining 
the input and output variables. Moreover, the validation of 
our tool should involve a comparison between the clinical 
outcomes based on embryo quality assigned by the AI and 
by the embryologist. This was not conducted in this study as 
not all embryos were transferred.

Conclusion
Our data demonstrate the superior ability of AI in ac-

curately grading 3D embryos based on a single 2D image 
compared to human operators. A notable advantage of this 
approach is its universal applicability. Additional clinical 
investigations could explore the potential influence of AI-
based blastocyst assessment on reproductive outcomes, with 
a particular focus on the potential enhancement of live birth 
rates. However, it would need to be validated beforehand on 
a dataset with known implantation embryos. This research 
serves as an initial stride towards achieving complete auto-
mation of an objective embryo evaluation. Enhancements in 
these processes hold the promise of augmenting the effec-
tiveness and uniformity of routine laboratory work, leading 
to improved overall efficacy and consistency.
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