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ABSTRACT Successful bacterial colonizers and pathogens
have evolved with their hosts and have acquired mechanisms
to customize essential processes that benefit their lifestyle. In
large part, bacterial survival hinges on shaping the transcriptional
signature of the host, a process regulated at the chromatin level.
Modifications of chromatin, either on histone proteins or on DNA
itself, are common targets during bacterium-host cross talk and
are the focus of this article.

INTRODUCTION
Chromatin is located within the nuclei of eukaryotic cells
and is composed of DNA wrapped around histone pro-
teins. The highly ordered compaction of chromatin is
crucial for the different functions encoded by the genetic
material. These range from maintaining cell identity and
genome integrity to adapting to environmental stimuli
and cell replication. At the center of the chromatin lan-
guage is its structural organization. This depends on the
position and reversible covalent modifications to histone
proteins and their cross talk with DNA and regulatory
proteins. The basic unit of chromatin is the nucleosome,
which is composed of an octamer of four histone pro-
teins (H2A, H2B,H3, andH4) aroundwhich∼147 bases
of DNA are wrapped, with the linker histone (H1) out-
side the core structure providing structural integrity to
the complex. Nucleosome remodelers are ATP-dependent
enzymes that modify the chromatin structure through
translocation, eviction, and introduction of histone vari-
ants (1, 2), while histone-modifying enzymes introduce
reversible covalent posttranslational modifications (PTMs)
to histone tails.

Nucleosome remodelers and modifying enzymes regu-
late chromatin dynamics by repositioning histones, wind-
ing and unwinding DNA, and adding and removing
PTMs on the N-terminal histone tails that extend from the

octamer complex. Each histone (H2A,H2B, H3, andH4),
including the linker histone (H1) and histone variants, can
be modified at multiple locations along its tail (3–7). The
combined activity of remodelers and histone modifiers
regulates unraveling and compaction of chromatin, lead-
ing to transcriptional regulation. Specific sets of histone
marks are associated with opening of the chromatin
structure, allowing transcription factors to bind, poly-
merase II to extend, and gene expression to occur, whereas
others are associated with silent genetic regions (8–12).

Additionally, DNA itself can be methylated by DNA
methyltransferases, primarily in promoter and enhancer
regions preceding transcriptional start sites. DNA meth-
ylation is achieved by the covalent transfer of a methyl
group to the C-5 position of the cytosine ring of DNA.
Removal of this group is thought to be done indirectly
through intermediate modifications, as no demethylase
enzymes have been identified. DNA methylation results
in silencing of the neighboring gene’s expression and is
important for cross regulation of histone PTMs (13).

Ultimately, through the intense remodeling of chro-
matin arises a histone language, which encodes additional
regulatory information beyond that present in the DNA
sequence (3–7). A large number of histone PTMs have
been identified—acetylation, methylation, phosphoryla-
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tion, ubiquitination, ADP ribosylation, deimination, and
proline isomerization—highlighting the complexity of the
system (13). The writers and erasers of PTMs are classi-
fied by the histone mark they deposit or erase, such as
methyltransferases or demethylases, and are usually spe-
cific to a given histone residue. The combination of PTMs
on a histone tail and the pattern of DNA methylation act
as binding platforms onto which “reader” proteins bind
and regulate cell processes. For instance, bromodomain
proteins have high affinity for acetylated histones and
play a role in transcriptional activation, whereas histone
methylation at H3K9 will recruit silencing proteins, like
heterochromatin protein 1 (HP1), and maintain a repres-
sive genetic environment. DNA methylation is read by
methyl-CpG binding proteins, which act as structural
proteins to recruit histone deacetylases (HDACs) and ul-
timately lead to chromatin compaction and gene silenc-
ing. Histone PTMs and DNA methylation are therefore
crucial in integrating environmental stimuli throughout
the cell’s life (13, 14).

Given the key role of chromatin in regulating host
transcription, it is not surprising that bacteria have evolved
to manipulate it. In this chapter, we focus on the different
mechanisms by which bacteria customize host chromatin
for their survival, whether it is by indirect of direct tar-
geting of histones, DNA methylation, or even altering
DNA integrity.

HISTONE MODIFICATIONS IN RESPONSE
TO BACTERIAL PRODUCTS
Bacterial components are continuously sensed by host
cells, and such cross talk is crucial for regulating immune
responses. A balanced response must tolerate commen-
sal bacteria in order to maintain homeostasis yet remain
reactive to combat invading pathogens. How this deli-
cate balance is achieved is not well understood; however,
some evidence points to an integration of bacterial sig-
nals at the level of histone modifications to control in-
flammatory responses.

Proinflammatory Signaling
Sensing of bacterial components, like lipopolysaccha-
ride (LPS), in the cellular milieu occurs in part through
pattern recognition receptors, leading to activation of
inflammatory responses such as the NF-κB pathway.
Activation of Toll-like receptor 4 by LPS triggers NF-κB
translocation into the nucleus, where it controls tran-
scription of inflammatory mediators in sequential waves,
reflecting the chromatin conformation of the genetic loci
regulated (15). Indeed, immediately accessible genes are
transcribed first, as they are located in regions charac-

terized by open chromatin and are associated with high
levels of H4 acetylation. In fact, all Toll-like receptor
4-responsive genes which are rapidly transcribed are
maintained in a basal active state characterized by H3K9
acetylation and H3K4 trimethylation (H3K4me3) (16).
Genes in this state then gain H4K5/8/12 acetylation upon
activation of the signaling cascade, allowing transcrip-
tional elongation and generation of mature full-length
transcripts to occur. In contrast, late-accessibility genes
require secondary signaling mediators, such as activation
of mitogen-activated protein kinase (MAPK) signaling,
and histonemodifiers to decompact chromatin in order for
NF-κB to bind (17). Therefore, regulation at the chromatin
level allows transcriptional fine-tuning of genes in the same
pathway. It is in this inflammatory context that pathogens
and commensals need to establish their niche. Accordingly,
bacteria have developed mechanisms to tamper with host
inflammatory responses for their benefit.

Anti-Inflammatory Signaling
In locations such as the gut, skin, oral cavity, and vagina,
colonization by the microbiome leads to a high local level
of LPS, yet in healthy individuals, strong inflammatory
responses are not initiated in this environment. Some
reports suggest that cells continuously exposed to LPS
become unresponsive to it through mechanisms involving
chromatin modifications. For instance, macrophages ex-
posed to LPS once and those exposed multiple times dis-
play different histone marks at inflammatory gene loci
(18). Upon restimulation with LPS, two classes of gene are
revealed: tolerizeable (T) genes, which are transiently si-
lenced, and nontolerizeable (NT) genes, which remain
accessible. The promoters of T genes, which include in-
flammatory cytokines, lose the activatory H3K4me3 mark
but maintain H4 acetylation levels. In contrast, the pro-
moters of NT genes, including antimicrobial effectors such
as antimicrobial defense proteins, retain H3K4me3 and
are reacetylated upon restimulation with LPS. Therefore,
multiple exposures to LPS lead to silencing of inflamma-
tory genes while others remain active, and both classes
of genes retain a chromatin mark reflecting their LPS
encounter.

In the gut, metabolic by-products from bacterial growth
are potent modulators of host responses and were re-
cently shown to contribute to repression of LPS-inducible
inflammatory responses and gut homeostasis. The short-
chain fatty acid n-butyrate is produced by commensal
gut bacteria and is a potent HDAC inhibitor. In the in-
testine, butyrate downregulates LPS-mediated inflamma-
tory responses and modulates macrophage function (19).
A related study characterized an unusual histone modifi-
cation regulated by microbiota-derived short-chain fatty
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acids in the colon. Histone H3 crotonylation, which is an
addition of a crotonyl group (C4H5O) to the target lysine,
is regulated by class I HDACs and is induced by the mi-
crobiota (13, 20; for a review, see reference 21). There-
fore, metabolic by-products of the microbiota are potent
modifiers of host chromatin and may play an important
role in maintaining gut homeostasis.

Similarly to the intestinal tract, the microbiota of the
vaginal tract, mainly composed of Lactobacillus spp.,
is essential to maintaining a homeostatic environment.
Lactobacillus gasseriwas shown to induce the recruitment
of active histone marks (H3 acetylation, H3Kme3, and
the H2A.Z histone variant) to the promoter of DEFB1
(encoding human β-defensin-1), an antimicrobial peptide
(22). Intriguingly, the related species Lactobacillus reuteri
did not. Such studies highlight the idea that maintaining
homeostasis is a very delicate process which may even be
species specific.

In order for pathogenic bacteria to maintain a long-
term presence during chronic infection, they must also
use mechanisms to limit the inflammatory response. For
this, Pseudomonas aeruginosa generates the quorum-
sensing molecule 2-aminoacetophenone, which has anti-
inflammatory properties (23). Indeed, treatment with
2-aminoacetophenone prior to infection reduces the
expression of proinflammatory cytokines by increased
expression and activity of HDAC1 and consequent de-
acetylation of histone H3 on lysine 18 at promoters
of specific targets, such as tumor necrosis factor alpha
(TNF-α).

BACTERIAL EFFECTORS TARGETING
HISTONE MODIFICATIONS THROUGH
SIGNALING EVENTS
In contrast to most colonizing bacteria, pathogens have
evolved sophisticated virulence factors which subvert host
defenses. Although the mechanisms are diverse, hijacking
or interacting with components of host signaling cascades
is common to different pathogenic bacteria (24). Targeting
of such signaling cascades occurs through direct interac-
tion of bacterial factors with host signaling components,
either in the cytoplasm or in the nucleus (Fig. 1).

Cytoplasmic Effectors
Mycobacterium tuberculosis
M. tuberculosis is a facultative intracellular pathogen
responsible for tuberculosis. During infection, the bac-
terium dampens the ability of infected macrophages to
respond to gamma interferon (IFN-γ) and results in de-
creased expression of the transcriptional transactivator
CIITA, which regulates major histocompatibility com-

plex II (25, 26). In fact, M. tuberculosis blocks IFN-γ-
dependent histone acetylation at the CIITA, HLA-DRα,
and HLA-DRβ gene promoters. Infection was further
shown to induce recruitment of a histone deacetylase
complex (Sin3A), leading to histone deacetylation and
gene repression. While these findings are not yet attrib-
uted to a specific effector, the M. tuberculosis cell wall
protein LpqH has been shown to inhibit expression of
CIITA, which makes it a putative candidate.

Listeria monocytogenes
L. monocytogenes is a Gram-positive foodborne patho-
gen that causes listeriosis (27). The internalin B (InlB)
gene of L. monocytogenes encodes a factor that binds
the host receptor c-Met and activates downstream phos-
phatidylinositol 3-kinase/AKT signaling (28, 29). Acti-

FIGURE 1 Nuclear effectors targeting histone marks. Secreted
effectors from L. monocytogenes,M. tuberculosis, and S. flexneri
translocate to the nucleus, where they directly act either upon
the nucleosome itself (Rv1988 andOspF), bind chromatin readers
to displace them (LntA), or bind chromatin readers to dephos-
phorylate them (OspF). Small black arrows around modifications
indicate whether they are being deposited or removed.
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vation of this signaling cascade during infection was
shown to hijack the host deacetylase SIRT2, culminat-
ing in the translocation of SIRT2 from the cytoplasm to
chromatin (30). There, SIRT2 deacetylates H3K18 at the
transcriptional start sites of genes repressed during in-
fection. The mechanism by which SIRT2 relocaliza-
tion occurs was shown to depend on regulation of the
phosphorylation status of SIRT2 by two phosphatases,
PPM1A and PPM1B. It is this modification of SIRT2 that
is crucial for chromatin association and gene regulation
(31). Although the genes targeted by SIRT2 need to be
further characterized, the activity of SIRT2 at the chro-
matin level, as well as its dephosphorylation, is essential
for a productiveListeria infection both in vitro and in vivo.

Helicobacter pylori
H. pylori is a Gram-negative bacterium causing gastri-
tis and stomach ulcers and is associated with gastric
cancer. While the identity of the secreted effector is un-
known, H. pylori targets H3S10 and H3T3 for dephos-
phorylation and H3K23 for deacetylation in a type IV
secretion system (T4SS)-dependent manner. In fact, the
entire cag pathogenicity island, which contains several
virulence factors as well as the Dot/Icm T4SS, is required
for chromatin modulations (32, 33). Indeed, mutants
with deletions of individual virulence factors, like cyto-
toxin-associated gene A (cagA) or vacuolating cytotoxin
gene A (vacA), fail to dephosphorylate H3S10 (34, 35).
On the host side, decreases in H3S10 phosphorylation
correlate with cell cycle arrest and inactivation of H3
kinases, mainly VRK1. During late stages of infection,
cells reenter the cell cycle and H3S10 phosphorylation
reappears (34). Such studies demonstrate that bacteria-
mediated histone modifications are associated with
other cell processes besides transcription, such as the
cell cycle.

Pore formation
The group of toxins known as cholesterol-dependent cy-
tolysin (CDC) are found primarily in Gram-positive bac-
teria and play crucial roles in virulence. These toxins are
generally secreted into the extracellular milieu, where
they bind to host plasma membranes in cholesterol-rich
areas, oligomerize, and undergo a conformational change
to form a large pore (36). The listerial toxin listeriolysinO
(LLO) is one member of this family of toxins and was
shown to induce H3S10 dephosphorylation and H4 de-
acetylation. These modifications occur independently of
the cell cycle and are associated with the promoter of
specific genes such as cxcl2 and dusp4 (37). The signaling
cascades known to be induced by LLO (mainly MAPK
and NF-κB) are not involved (37); rather, it is potassium

efflux through toxin pores which is essential for these
chromatin modifications (38).

A recent report showed that the P. aeruginosa T3SS
translocon proteins PopB-PopD also induce H3S10 de-
phosphorylation in a K+ efflux-dependent manner, simi-
larly to LLO (39). These results suggest that the translocon
acts as a pore-forming toxin and indicate that such histone
modifications could represent a universal host response to
a specific type of plasma membrane damage.

Nuclear Effectors
Mycobacterium tuberculosis
In addition to the modulation of cellular pathways in
the cytoplasm by M. tuberculosis, the secreted protein
Rv1988, which is found exclusively in pathogenic My-
cobacterium species, directly targets host chromatin. This
effector translocates to the nucleus, where it functions as
a methyltransferase, specifically targeting H3R42me2
(40). Rv1988 is required for M. tuberculosis virulence,
and it selectively binds to promoter regions of critical
immune response genes such as NOX1, NOX4, and
NOS2 (required for host reactive-oxygen production).
There, it promotes H3R42me3 and represses transcrip-
tion. Interestingly, expression of Rv1988 is sufficient to
confer virulence/pathogenesis in vivo and in vitro to the
nonpathogenic species Mycobacterium smegmatis, high-
lighting the importance of this effector (40).

Shigella flexneri
S. flexneri is a Gram-negative pathogen and is the etio-
logic agent of dysentery in humans (41). Most S. flexneri
virulence factors are secreted through the T3SS, which
injects effector proteins directly into the cytoplasm of
intestinal epithelial cells (41). One of these, OspF, trans-
locates to the host nucleus upon injection, interrupts
MAPK signaling, and binds to the promoter of specific
genes involved in inflammatory responses. At the molec-
ular level, OspF is a phosphothreonine lyase that blocks
MAPK activation and downstream phosphorylation of
histone H3S10 and the chromatin reader HP1γ (42–44).
As a result, unphosphorylated HP1 accumulates at pro-
moter sites, thereby blocking interleukin 8 (IL-8) gene
transcription. Strikingly, OspF-mediated chromatin mod-
ifications and gene repression are specific and target only a
subset of genes involved in inflammatory responses. In
vivo experiments further show that OspF contributes to
blocking neutrophil recruitment to the site of bacterial
lesions (42).

Listeria monocytogenes
Independently of InlB and the CDC toxin LLO, Liste-
ria secretes an effector, LntA, which targets the host
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nucleus. There, it displaces the repressive chromatin reader
BAHD1 to activate gene transcription. Upon interaction
with lntA, BAHD1 is displaced from chromatin, where
H3K9 acetylation occurs and interferon-stimulated gene
transcription is activated, leading to IFN-λ expression. In
order to fine-tune host inflammatory responses, this pro-
cess must be tightly regulated by the pathogen, as reflected
by the observation that either constitutive expression or
absence of LntA is detrimental to infection (45).

BACTERIAL FACTORS MIMICKING HOST
CHROMATIN-MODIFYING ENZYMES
SET (suppressor of variegation enhancer of zeste tritho-
rax) domain proteins are ubiquitous in eukaryotes, and
this domain can be found in lysine methyltransferases,
which can methylate histones in addition to other pro-
teins. Methylated histones at specific residues are as-
sociated with different transcriptional states. Silenced
genes in heterochromatin regions are marked with H3K9
methylation, whereas active transcription in euchromatin
is marked with methylated H3K4 (for a review, see ref-
erence 46). To date, secreted SET domain-containing ef-
fectors have been found in obligate pathogens, such as
Chlamydia trachomatis,Bacillus anthracis, andLegionella
pneumophila. Interestingly, the SET domain of secreted
bacterial effectors confers methyltransferase activity to
bacteria. Due to the lack of histone substrates within bac-
teria, it is thought that these organisms have hijacked the
SET domain to target their hosts (Fig. 2) (47–49).

Chlamydia trachomatis
While this phenomenon is not fully understood, C. tra-
chomatis is able to increase global methylation of H2B,
H3, and H4 through a secreted effector. This protein,
NUE, translocates to the nucleus, where it automethyl-
ates and increases histone methylation (48). Since C.
trachomatis is an obligately intracellular pathogen with
a limited repertoire of protein-coding reading frames,
global methylation might be essential for reprogramming
the host cellular processes to support the intracellular
niche of C. trachomatis (50).

Bacillus anthracis
The causative agent of anthrax is B. anthracis, a Gram-
positive spore-forming bacterium (51). While anthrax
toxins are among the most noted virulence factors of
the organism, it also encodes several effector proteins,
one of which is BaSET (47, 51). BaSET alters host gene
transcription by methylating histone H1 in the promoter
regions of NF-κB-controlled genes (the IL-6 gene, c-fos,
c-jun, and the TNF-α gene) and counters transcriptional

activation by the CREB-binding protein coactivator. Fur-
thermore, BaSET deletion mutants fail to colonize in vivo,
in contrast to wild-type bacteria. Therefore, it appears
that downregulation of NF-κB host responses by H1
methylation plays a role in survival of the B. anthracis
during infection (47).

Legionella pneumophila
L. pneumophila, a facultative intracellular bacterium,
uses the T4SS to inject the effector RomA. Once inside the
host cell, RomA localizes to the nucleus. There, it induces
histone methylation at a site not previously described,
H3K14. Interestingly, methylation occurs with a simul-
taneous decrease in H3K14 acetylation, and thereby, an
activating histone mark (acetylation) is replaced with

FIGURE 2 SET domain effectors mediate histonemethylation.
Effectors of C. trachomatis, M. tuberculosis, and L. pneumo-
phila contain the eukaryotic SET domain. Once translocated
to the nucleus, these effectors target histones for direct me-
thylation either globally or at specific residues. For M. tuber-
culosis and L. pneumophila, this leads to repression of the host
immune response and is thought to aid pathogen survival.
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a repressive mark (methylation). Upon infection, 4,870
gene promoter regions are targeted with the H3K14 re-
pressive mark. Specifically, H3K14 methylation damped
immunomodulatory components, such as genes coding
for TNF-α, IL-6, CXCL1, CXCL2, and Nalp3 (49).

BACTERIAL TARGETING OF DNA
Aside from modifying nucleosome PTMs, bacteria can
also target DNA either through methylation or by induc-
ing genotoxicity (Fig. 3). Intriguingly, such effects on
DNA are more stable than histone modifications and
could have a long-lasting impact on the host.

DNA Methylation
Mycobacterium tuberculosis
Rapid hypomethylation was reported to occur upon
in vitro infection of monocyte-derived dendritic cells with
M. tuberculosis. Distal enhancer regions upstream of
genes known to function as master regulators of the im-
mune response were mainly targeted, with only rare de-
tection at promoter regions (52). Such demethylation was
found to correlate with an increase in activatory histone
marks and the recruitment of inflammation-activated
transcription factors. Although no particular phenotype or
specific effector was shown to correlate with hypometh-

ylation, this study shows that demethylation can occur and
is dynamically regulated upon bacterial infection.

In contrast to the works cited above, which focused on
CpG elements, another study found that a secreted ef-
fector of M. tuberculosis, Rv2966c, methylates DNA in
regions outside CpG islands (53). This effector is a DNA
methyltransferase which requires phosphorylation by ei-
ther a mycobacterial or a host kinase(s) for activity. Once
active, it directly methylates host DNA at CpA and CpT
dinucleotides while also binding to histones 3 and 4.
Through non-CpG methylation, Rv2966c dampens host
transcription at targeted loci, such asH2AFY2 (encoding
a macrohistone 2A family member) and GRK5 (encod-
ing a member of the G-protein-coupled receptor kinase
family) (53).

These studies clearly show that M. tuberculosis in-
duces differential DNA methylation within host cells by
targeting both CpG and non-CpG DNA methylation;
however, whether the bacterium has more than one ef-
fector to do so remains undetermined.

Helicobacter pylori
Recent work with H. pylori suggests that its presence
induces DNA methylation, which is strongly associated
with gastric cancer (54–61). However, it is still con-
troversial whether the elevated risk of gastric cancer is
directly due to H. pylori-induced DNA methylation or
whether it is a result of the inflammatory response to
infection. Regardless, it is clear that in response to in-
fection with H. pylori, transient and permanent DNA
methylation changes are detected in gastric mucosa. In-
deed, H. pylori induces specific DNA hypermethylation
patterns in genomic regions termed CpG islands, mainly
located in promoter regions and at transcription factor-
binding motifs of tumor suppressor genes, such as LOX
andHAND1, or inflammatory genes, such asCOX2 (59,
61). In addition, several of the CpG islands that undergo
DNA methylation during infection remain elevated even
after eradication of H. pylori (54). While it is accepted
that H. pylori infection increases the risk for gastric can-
cer, further study is needed to directly link DNA meth-
ylation patterns with a predisposition to gastric cancer or
define the role of bacterial induced inflammation in this
process.

Damaging Chromatin through Bacterial
Genotoxins
During infection, it is common for bacteria to induce
DNA damage in their host (62–66). Such effects are often
indirect, occurring through oxidative stress; however, to
date, only a few bona fide bacterial genotoxins have been
characterized.

FIGURE 3 Targeting host DNA. Genotoxins such as CDT and
colibactin induce host DNA breaks through either DNase ac-
tivity (CDT) or DNA cross-linking (colibactin). M. tuberculosis
targets host DNA directly for methylation with Rv2966c at
non-CpG elements or induces hypomethylation through an
unknown effector at CpG islands.
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Cytolethal distending toxin
Cytolethal distending toxin (CDT) is a family of proteins
found in Gram-negative bacteria, especially in certain
members of the Proteobacteria, such as Escherichia coli,
Aggregatibacter actinomycetemcomitans, Haemophilus
ducreyi, Campylobacter sp., and Helicobacter sp. CDT
is functionally conserved in a large number of distantly
related pathogenic strains, and except in Salmonella
enterica serovar Typhi, CDT is encoded by three genes:
cdtA, cdtB, and cdtC (67, 68). Regardless of the mi-
crobial source of CDT, cdtB has been shown to be the
main gene responsible for toxin activity. Although CdtB
was originally described as a cyclomodulin, since in-
toxicated cells are arrested in their cell cycle, structural
analysis of CdtB revealed homology with mammalian
DNase I and potentially with inositol lipid phosphatases
(67, 69–71). CdtB is an AB2-like toxin; CdtB associates
with CdtA and CdtC subunits, showing ricin-like lectin
folds that allow the tripartite toxin to enter host cells via
endocytosis (68, 70, 72). Interestingly, CDT is the first
bacterial toxin known to target the nucleus, where it ex-
hibits DNase activity (72–74). Although other activities
for CdtB have been reported, such as phosphatidylinositol
phosphatase (71), cell cycle arrest is mainly attributed to
its genotoxic activity. CDTs have been reported to induce
apoptosis and cell senescence during infection, although
the benefit to bacteria of inducing DNA breaks in the
host remains mostly unclear. Interestingly, in the context
of chronic exposure, the potential role of CDTs in pro-
moting cell transformation has been raised (75–77).

Colibactin
Colibactins are synthesized by several species of Entero-
bacteriaceae and demonstrate genotoxic activity (78, 79).
They are natural products of a “warhead substituted
spirobicyclic” structure (80), which are biosynthesized
by enzymatic machinery located in a pathogenicity island
mainly conserved in virulent bacteria. Each of the 19
genes present in the clb genomic island is essential for the
full active genotoxic effect of colibactins, and colibactin
is not a unique compound but a mixture of multiple
molecules (81). Contact with colibactin-expressing bac-
teria causes double-strand DNA breaks and eventually
cell cycle arrest and death. Recently, the mechanism by
which colibactin impacts chromatin integrity was shown
to involve DNA interstrand cross-linking, causing repli-
cation stress and activation of DNA damage response
pathways in intoxicated cells (82). Similarly to the effect
of CDTs, a correlation between the presence of bacte-
ria harboring the clb island and human cancers suggests
that the colibactin toxin may promote inflammation-
triggered colorectal cancer (83).

CONCLUSIONS AND PERSPECTIVES
Overall, many reports clearly indicate that bacteria and
bacterial components reprogram the cell epigenetically.
However, many questions remain unanswered regarding
the role these various chromatin marks play in terms of
specificity, regulation, and cellular processes.

How do bacterial effectors target specific histone resi-
dues or specific genomic regions? The effectors BaSET,
NUE, and RomA all target histones for methylation;
however, they each target different a histone(s) and/or
residues. This suggests that the effectors are intrinsically
capable of recognizing individual histones and tail residues
or that their specificity occurs through synergistic inter-
actions with unknown proteins or complexes. Similarly,
bacteria target subsets of host genes for histone modifi-
cations. How this is achieved is unknown, and additional
factors might be required to determine specificity. There-
fore, additional work is warranted to fully understand
how bacterial factors acquire specificity, whether it is to
target a histone residue or a specific genomic region.

What is the impact of chromatin rearrangements on
bacterial survival within the host? It is clear that bacteria
are able to manipulate host chromatin, and in several
cases, these modifications have been shown to affect the
survival of the organism within the host (L. monocyto-
genes, M. tuberculosis, and B. anthracis). However, for
other histone marks, their contribution to bacterial repli-
cation and niche establishment remains to be further de-
fined. Indeed, the observed chromatin modifications could
be a natural response of the host cell to a bacterial en-
counter and therefore could have no impact on bacterial
growth. Thus, to gain a complete picture of chromatin-
based bacterium-host interactions, the combination of
the epigenetic and transcriptional responses needs to be
accounted for. It is possible that future work will define
modifications associated with basal responses and those
associated with active bacterial manipulation. Further
extending these comparisons across species, both com-
mensal and pathogenic, will deepen our understand-
ing of species-dependent histone marks that influence
chromatin-based bacterial homeostasis or pathogenesis.
Global patterns associating active chromatin remodeling,
transcriptional responses, and cellular processes could
then begin to be mapped systematically.

Are bacterium-induced histone marks maintained, and
do they have a lasting impact on host cells? In the light of
infection studies, DNA methylation is proving to be re-
sponsive to environmental stimuli; however, the lasting
potential of variations in DNAmethylation levels needs to
be explored. Furthermore, as a clear link between DNA
methylation and carcinogenesis has been established, it
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will be interesting to explore whether bacterium-mediated
DNA methylation impacts this process. Similarly, geno-
toxic stress-causing toxins, depending on the time it takes
the host cell to recover, could predispose the host to can-
cer. A lasting impact of histone modifications on tran-
scriptional regulation of the host is another avenue of
interesting studies. Recent studies put forth the idea that
innate immune cells retain a memory of past encounters,
which would be maintained through histone marks (84–
88). Such possibilities have come to light due to the known
cross-protective effects of the BCG vaccine, which is as-
sociated with H3K27 and H3K4 modifications. Whether
bacteria are able to induce such memory or disrupt it re-
mains to be explored.

As we unlock the histone code and the role this lan-
guage plays in host response during bacterial disease,
commensal colonization, and innate immune memory, we
will discover novel mechanisms that may give rise to next-
generation therapeutics, intelligently designed vaccines,
and even medical advancements for microbiome dysbiosis.
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