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ABSTRACT Streptococcus pyogenes (i.e., the group A
Streptococcus) is a human-restricted and versatile bacterial
pathogen that produces an impressive arsenal of both surface-
expressed and secreted virulence factors. Although surface-
expressed virulence factors are clearly vital for colonization,
establishing infection, and the development of disease, the
secreted virulence factors are likely themajormediators of tissue
damage and toxicity seen during active infection. The collective
exotoxin arsenal of S. pyogenes is rivaled by few bacterial
pathogens and includes extracellular enzymes, membrane active
proteins, and a variety of toxins that specifically target both
the innate and adaptive arms of the immune system, including
the superantigens; however, despite their role in S. pyogenes
disease, each of these virulence factors has likely evolved with
humans in the context of asymptomatic colonization and
transmission. In this article, we focus on the biology of the
true secreted exotoxins of the group A Streptococcus, as well
as their roles in the pathogenesis of human disease.

Streptococcus pyogenes (i.e., the group A Streptococcus)
is a human-restricted and versatile bacterial pathogen that
produces an impressive arsenal of both surface-expressed
and secreted virulence factors. S. pyogenes exists pri-
marily as an asymptomatic colonizer of the skin and
mucous membranes of the nasopharynx, and despite
being universally sensitive to β-lactam antibiotics in vi-
tro, this bacterium continues to generate significant
morbidity and mortality on a global scale. Human dis-
eases induced by S. pyogenes usually occur as relatively
uncomplicated manifestations such as pharyngitis and
skin infections, but it may also cause more problematic
diseases including erysipelas and scarlet fever. In addi-
tion, S. pyogenes can cause devastating invasive diseases

including puerperal sepsis, bacteremia, necrotizing fas-
ciitis, and streptococcal toxic shock syndrome (TSS).
This bacterium is further recognized as a very important
cause of postinfection sequelae including acute rheu-
matic fever and rheumatic heart disease, acute glo-
merulonephritis, and potentially, pediatric autoimmune
neuropsychiatric disorders associated with streptococcal
infections. Although surface-expressed virulence factors
are clearly vital for colonization, establishment of in-
fection, and the development of disease, the secreted
virulence factors are likely the major mediators of tis-
sue damage and toxicity seen during active infection.
The collective exotoxin arsenal of S. pyogenes is rivaled
by few bacterial pathogens and includes extracellular
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enzymes, membrane active proteins, and a variety of
toxins that specifically target both the innate and adap-
tive arms of the immune system, including the super-
antigens; however, despite their role in S. pyogenes
disease, each of these virulence factors has likely evolved
with humans in the context of asymptomatic coloniza-
tion and transmission. In this article, we will focus on the
biology of the true secreted exotoxins of the group A
Streptococcus, as well as their roles in the pathogenesis
of human disease.

THE CYTOLYTIC TOXINS OF S. PYOGENES
β-hemolytic activity on blood agar is a hallmark feature
of the group A Streptococcus, and this phenotype has
been used clinically for over a century. The streptolysin
S (SLS) exotoxin is a small, oxygen stable hemolysin
that is responsible for the characteristic β-hemolysis of
S. pyogenes (1). SLS is a cytolytic toxin that has fea-
tures of the ribosomally synthesized and posttransla-
tionally modified lantibiotic bacteriocins from other
Gram-positive bacteria; however, lantibiotic bacterio-
cins mostly function as antibacterials without cytotoxic
activity for eukaryotic cells (2). Production of SLS is
encoded by the SLS-associated gene (sag) cluster, which
contains genes encoding the structural SLS protein (sagA)
as well as enzymes responsible for the posttranslational
modification and transport of the toxin and, potentially,
an immunity function (sagB through sagI) (3). Further-
more, the sag locus is conserved among group A Strep-
tococcus strains regardless ofM protein serotype (3). SLS
has been shown to target and disrupt the function of
multiple host cells, including erythrocytes, macrophages,
neutrophils, and keratinocytes (2, 4–6). The exact mech-
anism of action of SLS is not completely clear, although it
is thought to act by forming a pore in host cell mem-
branes (7). However, a recent study has demonstrated
that SLS lyses erythrocytes by disrupting the function of
anion transporters to cause an influx of chloride anions
(Cl–). The influx of Cl– is followed by an influx of water,
resulting in colloidal-osmotic rupture of erythrocytes (8).
Furthermore, SLS has been shown to work in conjunc-
tion with the host protease calpain to facilitate the de-
struction of intracellular junction proteins, promoting
paracellular invasion of the bacteria across the epithelial
barrier (9). To examine the role of SLS in invasive models
of disease, infection of an S. pyogenes strain deleted for
SLS function was tested in a murine model of necro-
tizing soft tissue infection, and SLS was determined to
be essential for pathogenesis (3). A similar study using
transposon mutagenesis created a mutant deficient in

SLS production that remained normal with respect to
other exoprotein expression and was also shown to be
markedly less virulent in a mouse model of subcutane-
ous infection than in the isogenic wild-type strain (10).
Therefore, SLS likely contributes to S. pyogenes patho-
genesis through a combination of inhibiting phagocyte
function and damaging epithelial barriers.

Streptolysin O (SLO) is a well-characterized exotoxin
that functions as a thiol-activated cytolysin and is secreted
from nearly all group A Streptococcus isolates (11). The
slo gene encodes SLO monomers that oligomerize on
eukaryotic membranes in a cholesterol-dependent man-
ner, resulting in the formation of a large pore. This
produces significant damage and ultimately results in host
cell apoptosis (12). The SLO toxin is active in a reduced
state and is rapidly inactivated in the presence of oxygen;
thus, activity is not thought to be visible on routine blood
agar plates (13). Previous studies have shown that the
host targets of SLO include erythrocytes, macrophages,
neutrophils, and keratinocytes (14–17). SLO has also
been shown to inhibit neutrophil degranulation at sub-
lytic concentrations (16). In addition to SLO, the slo gene
resides in an operon that additionally encodes S. pyogenes
NADase (SPN). The NADase functions by hydrolyzing
cellular NAD+ and by depleting cellular ATP to decrease
the host energy sources (18). Multiple studies have con-
cluded that the entry of SPN into host cells is dependent
on SLO pore formation (19, 20), and SPN and SLO in
conjunction increase epithelial cell apoptosis, compared
to SLO alone (21). Using immortalized human keratino-
cytes, strains lacking SLO were attenuated for intra-
cellular survival compared to the wild-type strain (20).
Furthermore, in a murine model of necrotizing soft tissue
infection, S. pyogenes strains lacking SLO were deficient
in causing myositis, bacteremia, and soft tissue infec-
tion (22). Another study demonstrated lower infectivity
of SPN mutant strains in models of necrotizing fasciitis,
although the deletion of SLO led to an inability to cause
disease (22). Therefore, SLO likely promotes the patho-
genesis of S. pyogenes in invasive skin and soft tissue
infection through the destruction of phagocytes, as well as
the cytolysin-mediated translocation of SPN into target
cells.

Independent studies investigating the role of both SLO
and SLS in murine models of necrotizing fasciitis and
systemic infection each demonstrated that both cyto-
lytic toxins significantly contribute to the development
of murine necrotizing fasciitis (23, 24). Although SLO
and SLS have been extensively studied and shown to
be important contributors to the pathogenesis of inva-
sive S. pyogenes infections, their roles during coloniza-
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tion and acute nasopharyngeal infection have yet to be
defined.

STREPTOCOCCAL SUPERANTIGENS
S. pyogenes is recognized as one of the few bacterial
pathogens that produces superantigen exotoxins. Strep-
tococcal superantigens are ribosomally synthesized, rel-
atively low molecular mass (∼22 to 28 kDa) proteins
that contain classical signal peptides that are cleaved af-
ter secretion to release the mature toxin. Superantigens
function by activating T cells and are among the most
potent known activators of T cells. The term “super-
antigen”was first used to describe the massive primary T
cell response to these bacterial toxins (25). However, the
S. pyogenes superantigens are also historically known as
the erythrogenic toxins or scarlet fever toxins, due to
their role in causing a red rash in the context of scarlet
fever (26–28). In fact, the characteristic rash seen in
scarlet fever is likely due to an amplified hypersensitiv-
ity reaction resulting from superantigen activity (28).
Since the appearance of a rash was the defining feature
of the “erythrogenic” toxins, Watson (27) first proposed
the name “streptococcal pyrogenic exotoxin” (Spe) ow-
ing to the fever-producing ability, because he initially
believed that the Spes belonged to a separate family of
toxins. We now know that these represent the same
group that belongs to a larger group of structurally
conserved exotoxins that are also produced by Staphy-
lococcus aureus (29–32) and some Lancefield group C
and G β-hemolytic streptococci (33–37). There are now
at least 14 characterized and genetically distinct S. pyo-
genes superantigens, and many of them are encoded
within lysogenic bacteriophage, or putative bacterio-
phage, elements. Therefore, different strains often en-
code different repertoires of typically between 3 and 6
distinct superantigen genes (38–42). Although nomen-
clatural inconsistencies exist in the literature, a recent
comprehensive review of the streptococcal superantigens
has clarified many of these issues (43). Using this up-
dated nomenclature, the currently known repertoire
includes streptococcal pyrogenic exotoxin (Spe) types A,
C, G, H, I, J, K, L, M, N, O, and P, as well as the
streptococcal superantigen and streptococcal mitogenic
exotoxin Z (SmeZ) (Fig. 1A). The SpeN, SpeO, and SpeP
superantigens were first identified in Staphylococcus
equi subsp. zooepidemicus (originally defined as SzeN,
SzeF, and SzeP, respectively) (36), but to our knowledge,
these particular superantigens have not been identified in
S. pyogenes. Additionally, S. equi subsp. equi can encode
SeeH, SeeI, SeeL, and SeeM, which are highly ortho-

logous to SpeH, SpeI, SpeL, and SpeM, respectively (37).
Although most of the streptococcal superantigens are
encoded on bacteriophage elements, SpeG and SmeZ are
exceptions in that they appear to be encoded within the
core chromosome (35, 38–42). SpeJ is also not found in
association with bacteriophage genes (40), yet it is not
present in the many sequenced strains. SmeZ, in par-
ticular, is known to have many allelic variants, and
most of the sequence changes are located on the sur-
face of the toxin and rarely found within the predicted
receptor binding domains. This indicates that SmeZ is
likely under significant immunological pressure to alter
antigenic characteristics as a possible immune evasion
strategy (35). Despite the fairly weak primary amino acid
sequence homology (Fig. 1B), crystal structures deter-
mined for these toxins share the “generic” superantigen
fold (Fig. 1C) (44). Each structure includes an N-terminal
α-helix which leads into a β-barrel domain, also known
as the oligosaccharide/oligonucleotide binding fold (45).
A central α-helix then joins this domain to a β-sheet struc-
ture known as the β-grasp domain. Despite the clear sim-
ilarities to the overall fold, there are also important
differences in how these toxins engage their host receptors.

Superantigens function by causing excessive T cell
activation through simultaneous engagement of both the
variable region of the T cell antigen receptor (TCR) β-
chain (referred to as “Vβ”) on T cells and to different
regions of major histocompatibility complex (MHC)
class II molecules on antigen-presenting cells (44, 46).
Thus, superantigens are remarkable in that they have
evolved to target two critical and extremely diverse re-
ceptors of adaptive immunity. In superantigen-mediated
T cell activation, the toxin binds directly toMHC class II
molecules, and this occurs without processing by the
antigen-presenting cell. Superantigens do not undergo
major modifications after release from the cell or major
structural alterations upon binding to their ligands. The
interaction with the TCR is dependent on binding to
different Vβ regions, and this occurs, generally, away
from the regions of the TCR that are critical for peptide-
specific recognition. Due to the unconventional contacts
created by these interactions, superantigen-mediated T
cell activation is also not MHC restricted, and further-
more, both CD4+ and CD8+ T cells are stimulated in a
Vβ-specific manner. Thus, superantigens can “force” an
excessive primary response that is not seen with con-
ventional peptide antigens. In the most severe case, this
excessive activation of T cells results in the massive re-
lease of proinflammatory cytokines from both T cells
and antigen-presenting cells (47) that can result in a se-
rious and potentially lethal disease defined as TSS (32).
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FIGURE 1 Phylogenetic relationships and structural conservation of the streptococcal
superantigens. (A) Unrooted neighbor-joining tree showing phylogenetic relationships of
known streptococcal superantigens. The unrooted tree was based on the alignment of
amino acid sequences using CLUSTAL W (166) and constructed using MEGA7 (167). The
groups indicate a prior classification scheme for the superantigen family (32). (B) Amino
acid alignment of five representative streptococcal superantigens. The colors designate
distinct domains in the superantigen structure, including the N-terminal α-helix (green),
the central α-helix (red), the α3-β8 loop that is unique to the group V superantigens (168),
and a C-terminal α-helix that is lacking in a subgroup of group IV. Residues involved in the
coordination of a zinc atom important for binding to the MHC class II β-chain are colored
magenta. (C) Crystal structures of representative streptococcal superantigens are colored
as in panel B.
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Cocrystallization structures have been determined for
SpeA and SpeC in complex with the mouse Vβ8.1 and
human Vβ2.1 chains, respectively (48). Earlier cocrys-
tal structures exist for the staphylococcal superantigens
staphylococcal enterotoxin B (SEB) and staphylococcal
enterotoxin C (SEC) in complex with the mouse Vβ8.1
chain (49, 50). Although highly homologous superanti-
gens, such as SEB, SEC, and SpeA, may have similar
architectures for their Vβ chain interactions, the β-chain-
SpeC complex involved a significantly larger contact
surface, a different orientation, and contacts with the com-
plementarity determining region (CDR) 3 loop, whereas
SEB, SEC, and SpeA had no intermolecular contacts with
this loop (48). Nevertheless, it appears that the critical
component for functional recognition of the TCR is the
CDR 2 loop of the β-chain (51).

The interaction of superantigens with MHC class II
can also show considerable diversity, because superan-
tigens have two independent binding domains. One bind-

ing face occurs through the N-terminal oligosaccharide/
oligonucleotide binding fold domain and is of relatively
low affinity (∼10−5 M). Although somewhat controver-
sial (52–55), it appears likely that most, if not all, strep-
tococcal superantigens contain this low-affinity MHC
binding domain. A second, zinc-dependent MHC bind-
ing face occurs on the β-grasp domain and is of relatively
high affinity (∼10−7). The zinc ion, shown in magenta in
Fig. 1C, is coordinated through three conserved residues,
whereas the fourth ligand is from a conserved residue on
the MHC β-chain.

Figure 2 presents the complexes for a conventional
TCR-MHC class II interaction, as well as how SpeA
(which lacks a high-affinity MHC class II binding do-
main) likely engages TCR Vβ and MHC class II and
SpeC, which crosslinks MHC class II (56). The SpeA
model is analogous to the standard “wedge” model of
superantigen-mediated T cell activation (49), whereas
the SpeC model is analogous to the proposed model for

FIGURE 2 Models of T cell activation complexes for streptococcal superantigens. Ribbon
diagrams demonstrating typical antigen-mediated T cell activation (A) and modeled T cell
activation complexes for SpeA (B) and SpeC (C). The cocrystal structures of SpeA and SpeC
in complex with their respective TCR β-chains (48) and of SpeC in complex with the MHC
class II through the zinc-dependent high-affinity binding domain have been determined
(169). SpeC also activates T cells in a mode similar to the staphylococcal enterotoxin A
model (58) where SpeC engages MHC class II α-chain through a generic low-affinity
binding domain (170) and engages the MHC class II β-chain through a zinc-dependent,
high-affinity binding domain (169). The binding architecture for the generic low-affinity
MHC class II binding to SpeA and SpeC is modeled using the staphylococcal enterotoxin B-
MHC class II cocrystal structure (171). Note the presence of the zinc ion (magenta) coor-
dinated in the high-affinity binding site for SpeC and that SpeA lacks this zinc site. The TCR
α-chain (shown in gray) for both the SpeA and SpeC diagrams is modeled for clarity by
superimposition of the α/β TCR shown on the left of the respective TCR β-chains for both
superantigens. The figure was generated using Pymol.
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staphylococcal enterotoxin A (57, 58). In these models,
the mechanism by which superantigens subvert the nor-
mal T cell activation process is apparent, whereby the
antigenic peptide is displaced from the TC, and the
specificity of the reaction is governed by superantigen
recognition of the Vβ CDR2 loop (51).

Since early in the past century, the incidence of serious
streptococcal disease greatly decreased, likely owing to
the widespread use of antibiotics (59). However, it was
not until the late 1980s that descriptions of well-defined
cases led to the recognition of a severely toxic strepto-
coccal superantigen-mediated disease called streptococ-
cal TSS (60, 61). Indeed, since the mid-1980s there has
been a sustained resurgence in the frequency and severity
of streptococcal TSS and other invasive diseases caused
by group A streptococci (62–64). This led to the hy-
potheses that there was an emergence of an excessively
virulent strain or strains or, alternatively, that there had
been major changes in host susceptibility to these infec-
tions. Indeed, many of the contemporary invasive infec-
tions have been attributed to the M1T1 clone (62),
which is now recognized to have acquired an SpeA2- and
DNAse-encoding bacteriophage, as well as a horizon-
tally acquired region encoding the SLO and SPN, likely
from an M12 serotype (65). These acquisitions increase
the virulence of this clone (66). Over the past decade,
there has also been a dramatic resurgence in scarlet fever
in mainland China and Hong Kong, South Korea, the
United Kingdom, and Germany (67–70). Although it is
not yet entirely clear, these large-scale outbreaks are
likely linked to the acquisition of superantigen-producing
bacteriophage elements in S. pyogenes (71–73).

Multiple lines of experimental evidence indicate that
the streptococcal superantigens are significant virulence
factors for severe streptococcal disease. The prototypical
streptococcal superantigens are SpeA and SpeC, and these
two toxins have been recognized as the likely causative
agents in most cases of streptococcal TSS (61, 62, 74).
Indeed, SpeA and SpeC are produced by many S. pyo-
genes strains isolated from patients with streptococcal
TSS (29, 74–78). Due to the association of SpeA and
SpeC with streptococcal TSS, two toxoid vaccines have
been generated for these toxins that, when used in the
rabbit model of TSS, provided complete protection to
lethal quantities of the respective superantigen (53, 79).
There are at least six naturally occurring alleles of speA
(80, 81), and serotype M1 and M3 strains expressing the
speA2 and speA3 alleles caused the majority of strepto-
coccal TSS in the 1980s (81). Of the streptococcal su-
perantigens that have been tested, the toxins share the
properties of inducing fever (pyrogenicity) and lethal

shock in the rabbit model. For example, recombinant
SpeA, SpeC, and SpeJ can induce symptoms of strepto-
coccal TSS without necrotizing fasciitis/myositis in this
model (53, 79, 82), and SpeA administered to rabbits as
a vaccine also conferred significant protection from TSS
with necrotizing fasciitis/myositis after challenge with
viable M1 and M3 streptococci (64). Circulating super-
antigens have also been found in patients with strepto-
coccal TSS (83), and the lack of humoral immunity to
the superantigens is a risk factor for the development of
streptococcal TSS (84, 85).

Although significant immunological research with bac-
terial superantigens has been conducted in mouse models,
conventional mice are no longer considered appropriate
models to evaluate the biological effects of these toxins.
Lethal effects are not seen at very high relative doses
without the coadministration of a liver-damaging agent,
whereas the rabbit model is susceptible to fairly low doses
when administered continuously (86). It has further been
demonstrated that HLA-DQ transgenic mice were more
susceptible to SpeA-induced lethality whether adminis-
tered as a pure toxin or during infection with SpeA+

S. pyogenes, whereas nontransgenic mice did not show
an obvious effect (87, 88). Consistent with this, it has
been established that in humans, MHC class II allelic
variation contributes to the differences in severity seen
for invasive streptococcal infections (89). This is under-
stood to be due to differential cytokine production trig-
gered by streptococcal superantigens, and MHC class II
α-chain polymorphisms affect superantigen responses
(90, 91). Recently, using infectionmodels with transgenic
mice expressing human MHC class II alleles, we dem-
onstrated that the SpeA superantigen is a critical bacterial
factor that is necessary to induce an acute nasopharyn-
geal infection (92). Using this model, SpeA was shown to
activate specific Vβ-subsets in vivo (93), and strikingly,
functional Vβ-specific T cell subsets were required for the
infection phenotype (94). Furthermore, humoral immu-
nity to the SpeA superantigen dramatically inhibited in-
fection by S. pyogenes (92, 94). We believe that these
findings support the further development of toxoid su-
perantigens as vaccines to target the transmission and
colonization by S. pyogenes.

STREPTOCOCCAL PYROGENIC EXOTOXIN B
SpeB is highly conserved in virtually all S. pyogenes
isolates (95, 96), although despite its original name as a
streptococcal pyrogenic exotoxin, SpeB is known to
function as a broad-spectrum protease and is secreted as
a 40-kDa zymogen. The pro-domain is auto-catalytically
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cleaved to generate an active 28-kDa proteinase (97, 98).
Additionally, an SpeB inhibitor located downstream of
speB is cotranscribed with the protease. The inhibitor,
termed Spi, has sequence and predicted structural ho-
mology with the pro-domain of SpeB (99). The inhibi-
tor is resistant to cleavage by active SpeB, making it an
effective inhibitor of protease activity within the bacte-
rial cytoplasm (99). Although SpeB is highly conserved
across most S. pyogenes strains, its expression may vary
depending on the type of infection (100). For example,
when analyzing isolates from patients with pharyngitis,
impetigo, invasive disease, or acute rheumatic fever,
40% of isolates from patients with acute rheumatic fever
produced SpeB, compared to only 5.5% of isolates from
impetigo patients (100). Therefore, the variability in
SpeB expression suggests that SpeB is more important
for certain forms of disease progression.

SpeB is considered an important virulence factor most
likely due to the immunomodulating effects of its pro-
tease activity (101, 102). SpeB has broad proteolytic
activity against a number of human proteins, including
interleukin-1β (102), immunoglobulins (101), fibrinogen
(103), fibronectin (104), kininogens (105), and a metal-
loprotease (106). Although SpeB has been shown to
cleave certain immunoglobulins, a study investigating the
cleavage of IgG under physiologic conditions found that
IgG is only cleaved in a reduced form, whereas physio-
logic IgG is active in an oxidized form (107). Therefore,
SpeB likely does not contribute to S. pyogenes patho-
genesis through the cleavage of IgG. The innate host
immune system is also weakened through proteolytic
destruction of complement factors such as C3 and the
membrane attack complex (108, 109). SpeB also has the
capacity to cleave many human chemokines (110), fur-
ther disrupting the immune response. In addition to the
many immune modulating factors degraded by SpeB,
the cysteine protease also degrades tight-junction pro-
teins such as E-cadherin and desmogleins, facilitating
the paracellular invasion of the bacteria across the epi-
thelial barrier (111, 112). Therefore, the broad spec-
trum of SpeB targets likely ameliorates the virulence of
S. pyogenes by perturbing the host immune system and
compromising the epithelial barrier.

Given the broad spectrum of SpeB, S. pyogenes pro-
teins can also be proteolyzed (113). SpeB can directly
degrade multiple superantigens, such as SmeZ, which
affects the ability of the superantigen to induce pro-
liferation of human lymphocytes (114, 115). In addi-
tion, the cleavage of protein F1, an S. pyogenes cell
wall-attached fibronectin-binding protein, decreased the
fibronectin-dependent internalization of S. pyogenes

into human cells, suggesting that SpeB also plays a role
in the internalization process (116). Likewise, SpeB-
deficient mutants were shown to have enhanced in vitro
internalization into human epithelial and endothelial
cells (117). Therefore, an inactive SpeB may be favored
later during infection to promote the dissemination of
the bacteria (116). Furthermore, earlier work identified a
phase shift in an invasive M1T1 strain in vivo favoring a
nonfunctional cysteine protease to conserve the function
of the multiple virulence factors normally degraded by
SpeB (118, 119). This phase shift is linked to inactivating
mutations within the two-component CovRS sensor ki-
nase, which results in a hypervirulent phenotype in the
serotype M1 background (120). An inverse relationship
has also been identified between SpeB expression and
the severity of invasive group A streptococci infections,
further suggesting that S. pyogenes may need to differ-
entially regulate SpeB expression, depending on the site
of infection and events occurring during infection (121).

In vivo studies supporting the role of SpeB as a viru-
lence factor have not always been congruent. For example,
an S. pyogenes strain with decreased SpeB expression
exhibited a decreased capacity to cause murine necrotiz-
ing fasciitis, and complementation of SpeB restored the
wild-type phenotype (122). Alternatively, isogenic gene
replacement strains and a mouse model of invasive soft
tissue infection showed that speB mutants had no appar-
ent effect on the ability of group A streptococci to cause
local tissue injury and invasive infection (123). Overall,
the diversity of SpeB targets may contribute to the prote-
ase being both a virulence factor and a form of virulence
regulation through the degradation of bacterial proteins.

DNases OF S. PYOGENES
The DNases of S. pyogenes constitute an additional
mechanism that contributes to the pathogenicity of the
bacterium. Through the analysis of all known S. pyogenes
genomes, eight DNases have been identified (124): spnA,
spdB, sda1, sda2, spd1, spd3, spd4, and sdn. Of the
known DNases, spnA and spdB are chromosomally en-
coded and are found across all S. pyogenes isolates (125,
126). The six other DNases are prophage associated, and
therefore they are only found in certain S. pyogenes strains
(124). Furthermore, the DNase spnA is the only known
cell wall-anchored DNase of S. pyogenes. (124, 126).

DNases contribute to the pathogenesis of S. pyogenes
by facilitating innate immune evasion of the pathogen.
During infection, neutrophils release antibacterial granule
proteins and chromatin to create neutrophil extracellular
traps (NETs) (127). NETs bind and trap bacteria and
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degrade bacterial virulence factors, ultimately resulting in
bacterial death (127). The secreted DNase Sda1 and the
cell wall-anchored DNase SpnA are both able to degrade
the chromatin backbone of NETs, allowing the bacte-
ria to avoid the degradation of their virulence factors
and promote bacterial survival (128–130). S. pyogenes
DNases further contribute to pathogenesis through the
degradation of bacterial DNA (131). By degrading CpG-
rich bacterial DNA, the TLR9-mediated immune re-
sponse is weakened due to the degradation of the TLR9
activating signal (131). In a model of mouse necrotizing
fasciitis, Sda1 was shown to suppress TLR9-dependent
tumor necrosis factor-α and tumor necrosis factor-α in-
duction, promoting evasion of the innate immune system
(131). Additionally, a murine model of skin and soft tis-
sue and a cynomolgus macaque model of pharyngitis
infection showed that isogenic mutants of S. pyogenes
lacking DNase production were less virulent than the
wild-type strain, highlighting their importance in patho-
genesis (129). The ability of DNases to degrade NETs
and bacterial DNA, along with the decreased virulence
of DNase-deficient mutants in vivo, emphasize the im-
portance of S. pyogenesDNases as extracellular virulence
factors.

STREPTOCOCCAL INHIBITOR
OF COMPLEMENT
The streptococcal inhibitor of complement (SIC) is a
31-kDa protein secreted by certain S. pyogenes strains,
most notably M1 serotypes (132). SIC is highly variable,
with large numbers of variants arising in vivo during
epidemic spread of the organism (133, 134). Such high
variation suggests that the phenomenon offers selective
advantage to the microbe. Most of the variants are sin-
gle amino acid changes, insertions, or deletions. Other
M types may make related proteins, some of which have
minimal effect on the complement system (135). SIC was
originally identified as a protein that inhibits the mem-
brane attack complex of the complement system, with its
mechanism being the inhibition of C567 insertion into
the membrane (136). Furthermore, SIC is rapidly inter-
nalized by neutrophils and binds specifically to ezrin
and moesin, proteins that link the actin cytoskeleton to
the host cell surface, interfering with polymorphonu-
clear opsonophagocytosis and intracellular killing (136).
SIC also directly inhibits other components of the innate
immune system, including lysozyme, secretory leukocyte
proteinase inhibitor, human defensins, and cathelicidin
LL-37, all of which can be toxic to S. pyogenes (137–
140). Additionally, SIC inhibits the release of bradyki-

nin, a potent vasodilator, which could function to de-
crease inflammation at the site of infection, allowing the
bacteria to persist (141). More recently, SIC also in-
hibited the bactericidal activity of histones, which are
found in NETs (142).

In vivo studies suggest that SIC increases streptococcal
virulence. Mice that were inoculated intranasally with
M1 SIC-negative streptococci had a lower incidence of
throat colonization than mice inoculated with the wild-
type M1 strain (143). SIC-negative strains also exhibited
a decrease in survival in macrophages (137). Therefore,
SIC likely promotes bacterial survival and dissemination
by allowing the organisms to avoid innate immune de-
fenses in the extracellular environment.

IgG-TARGETING ENZYMES OF S. PYOGENES
S. pyogenes has evolved multiple mechanisms to target
IgG antibodies, a major effector molecule of the humoral
immune system. The immunoglobulin G-degrading en-
zyme (IdeS, also known as Mac) is a protease that
removes the Fc region of IgG antibodies and can thus
inhibit opsonophagocytosis of S. pyogenes (144, 145).
This virulence factor is specific for IgG and does not
target IgM, IgE, or IgD antibodies (144). However, in
vivo studies using a mouse invasive infection model
failed to demonstrate a contribution of IdeS to virulence
(146). Endoglycosidase S (EndoS) is an ∼108-kDa se-
creted enzyme that hydrolyzes the β-1,4 linkage between
the first twoN-acetylglucosamine residues on the glycan
linked to Asn297 within the CH2 domain of the IgG Fc
region (147). Deglycosylation of IgG through this mech-
anism impairs antibody effector functions, including
binding to the Fc-gamma receptor and complement ac-
tivation (148). Nevertheless, similar to IdeS, deletion of
the gene encoding EndoS in the M1 5448 background
had no obvious phenotype in an invasive intraperito-
neal mouse infection model (149). In both cases, the
lack of an in vivo phenotype may reflect a more subtle
role for these enzymes that is not apparent through
acute, invasive infections. In addition to EndoS and IdeS,
which show high levels of specificity for IgG, the broad-
spectrum SpeB cysteine protease is also capable of cleav-
ing IgG in the hinge region, similar to protease papain
(147); however, the in vivo relevance of this has been
questioned (107).

STREPTOKINASE
Streptokinase is a single-chain 414-amino acid protein
that is able to activate the host protein plasminogen
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(150). Streptokinase forms a complex with the inactive
zymogen plasminogen, or a trimolecular complex with
plasminogen and fibrinogen, to generate the active serine
protease plasmin (151, 152). These activator complexes
bind to the bacterial surface, allowing the bacteria to
acquire additional protease activity. Plasmin is respon-
sible for degrading fibrin clots, connective tissue, extra-
cellular matrix components, and adhesion proteins (153).
Therefore, the improper activation of plasmin could result
in widespread tissue damage and dissemination of the
bacteria (154, 155). Transgenic mice expressing human
plasminogen had an increased mortality rate compared
to mice without the transgene. This susceptibility was
directly related to streptokinase expression, highlighting
the importance of streptokinase in S. pyogenes virulence
(154). Furthermore, increased levels of bacteria-bound
plasmin correlated with a decrease in C3b deposition
and a decrease in C3b-mediated neutrophil killing (156).
Additionally, bacteria-associated plasmin has been shown
to prevent histone-mediated killing by NETs (157). In
addition to activating plasminogen, streptokinase has also
been shown to activate the contact system, resulting in the
release of bradykinin (158). The release of bradykinin
triggers vascular leakage, which could further promote the
dissemination of the bacteria (159, 160). The release of
streptokinase by S. pyogenes ultimately promotes the dis-
semination of the bacteria by facilitating the conversion of
plasminogen to plasmin.

FUTURE PERSPECTIVES
The increased incidence of severe invasive group A strep-
tococcal diseases, and the recent resurgence of scar-
let fever, still remain incompletely explained; however,
the streptococcal superantigens are clearly implicated
in both illnesses and thus are key virulence factors driv-
ing the evolution of S. pyogenes pathogenesis. Indeed,
the majority of genetic diversity in different strains
and serotypes of S. pyogenes occurs due to the presence
or absence of large mobile genetic elements, including
lysogenic bacteriophage and integrative conjugative ele-
ments (161, 162). In particular, many of the superanti-
gens, as well as DNases, and some other select toxins are
encoded within bacteriophage elements, and this pro-
vides S. pyogeneswith an extra level of adaptability. The
apparent excessive redundancy of these toxins has yet to
be explained, although we believe this allows S. pyo-
genes to avoid neutralizing antisuperantigen antibodies
and may also provide additional means to efficiently
target polymorphic MHC class II molecules from dif-
ferent populations.

Although most research on streptococcal exotoxins
has focused on their role in severe streptococcal diseases,
the established niche for S. pyogenes is a state of colo-
nization in the throat or on the skin of humans. Also,
multiple S. pyogenes virulence factors do not operate
efficiently in mouse models (92, 154, 163–165). To un-
derstand the basic biology of this organism, which is
not related to severe and invasive disease, better models
will be necessary to evaluate specific virulence factors,
therapies, and vaccines. Thus, most, if not all, of these
remarkable exotoxins that can alter normal immune
system function, damage tissue, and promote disease
have each likely evolved in the context of streptococ-
cal persistence and transmission. We hope a clearer un-
derstanding will lead to further rationales to design
vaccines capable of targeting the colonization state of
S. pyogenes.
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