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Abstract: Objectives: To evaluate the prognostic utility of CT-imaging-derived biomarkers in distin-
guishing acute pulmonary embolism (PE) resolution and its progression to chronic PE, as well as their
association with clot burden. Materials and Methods: We utilized a cohort of 45 patients (19 male
(42.2%)) and 96 corresponding CT scans with exertional dyspnea following an acute PE. These patients
were referred for invasive cardiopulmonary exercise testing (CPET) at the University of Pittsburgh
Medical Center from 2018 to 2022, for whom we have ground truth classification of chronic PE, as well
as CT-derived features related to body composition, cardiopulmonary vasculature, and PE clot burden
using artificial intelligence (AI) algorithms. We applied Lasso regularization to select parameters, fol-
lowed by (1) Ordinary Least Squares (OLS) regressions to analyze the relationship between clot burden
and the selected parameters and (2) logistic regressions to differentiate between chronic and resolved
patients. Results: Several body composition and cardiopulmonary factors showed statistically significant
association with clot burden. A multivariate model based on cardiopulmonary features demonstrated
superior performance in predicting PE resolution (AUC: 0.83, 95% CI: 0.71–0.95), indicating significant
associations between airway ratio (negative correlation), aorta diameter, and heart volume (positive
correlation) with PE resolution. Other multivariate models integrating demographic features showed
comparable performance, while models solely based on body composition and baseline clot burden
demonstrated inferior performance. Conclusions: Our analysis suggests that cardiopulmonary and
demographic features hold prognostic value for predicting PE resolution, whereas body composition
and baseline clot burden do not. Clinical Relevance: Our identified prognostic factors may facilitate the
follow-up procedures for patients diagnosed with acute PE.

Keywords: acute and chronic pulmonary embolism (PE); clot burden; PE resolution; AI algorithms

1. Introduction

Pulmonary embolism (PE) is one of the leading cardiovascular causes of mortality
worldwide, surpassed only by stroke and myocardial infarction [1]. Approximately 20%
to 25% of PE cases are fatal [2]. Even with treatment, the mortality rate ranges from 8% to
15% [3], leading to over 100,000 deaths annually in the United States [4].

PE can present as acute, chronic, or a combination of both. Acute PE occurs when
a clot, typically originating from Deep Vein Thrombosis (DVT) in the lower body [4],
dislodges and obstructs a pulmonary artery [5,6]. Chronic PE refers to persistent block-
ages from unresolved acute PEs [7]. Many patients with acute PE experience ongoing
cardiopulmonary symptoms [8]. Nevertheless, the exact risk of progression to chronic
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PE remains uncertain [9]. Estimates of the resolution rate vary widely, from 50% in one
meta-analysis [10] to between 70% and 90% in others [11–13]. Typical treatment with
anticoagulation medication [8,14] reduces the risk of PE but introduces an inherent risk of
bleeding. It is imperative to identify prognostic factors that influence PE resolution and
predict susceptibility to disease progression to chronic PE despite treatment [13,15].

Previous studies have investigated the rate of clot resolution by analyzing patient-
specific characteristics and relevant CT imaging parameters. These studies found slower
resolution in patients with centrally located clots, consolidation, and a history of venous
thromboembolism (VTE) [13]. However, they did not consider certain body composition
factors. Another study indicated that the absence of previous Chronic Obstructive Pul-
monary Disease (COPD), provoked PE, reduced vessel obstruction, and early treatment
were associated with a lower risk of residual thrombosis [16]. However, this study did not
account for body composition or other cardiopulmonary biomarkers and concluded that
the prognostic factors associated with PE resolution on follow-up CT Angiography (CTA)
were unclear. Few investigations have been conducted on the combined influence of clot
volume, distribution, body composition, and cardiopulmonary vasculature on either clot
burden or PE resolution. The feasibility of identifying patients prone to developing chronic
PE based on such biomarkers remains unknown.

We propose leveraging artificial intelligence (AI) algorithms to quantitatively and com-
prehensively analyze a range of image biomarkers and explore the potential associations
between body composition, cardiopulmonary vasculature, and two primary outcomes:
(1) clot burden and distribution and (2) PE resolution. Artificial intelligence, in particu-
lar deep learning methods, have been applied with great success in thoracic radiology,
in particular to the detection of lung and heart diseases [17]. The use of convolutional
and attention-based models is well suited to image-based thoracic data. These applica-
tions include the detection and evaluation of clot burden in patients with pulmonary
embolism [18–20]. Our goal is to identify novel diagnostic and prognostic CT-derived
imaging biomarkers linked to PE resolution and the development of chronic PE.

2. Materials and Methods
2.1. Study Cohort

We assembled a retrospective cohort incorporating 96 chest CT pulmonary angiogram
(CTPA) scans acquired from 45 patients diagnosed with acute PE. These patients were
referred to the University of Pittsburgh Medical Center (UPMC) between 2018 and 2022 due
to exertional dyspnea. Following diagnostic CTPA scans confirming acute PE, all patients
received standard treatment. Among them, 29 patients were classified as having chronic PE
based on persistent perfusion defects on a ventilation–perfusion (VQ) scan and/or chronic
occlusive clot on subsequent CTPA scans. The remaining 16 patients without these findings
were classified as resolved cases.

Three patients who did not undergo a VQ scan were included based on CTPA find-
ings: one showed complete resolution (resolved), one displayed a linear filling defect in
pulmonary artery branches (chronic), and one exhibited extensive and worsening emboli
(chronic). Additionally, one patient had their initial CT scans performed after their initial
VQ scan; however, both a follow-up VQ scan and follow-up CT scans indicated chronic PE.
The median and mean durations between the date of the initial CT scan and the VQ were
169 and 364 days, respectively. For follow-up CT scans, the median and mean durations
from the initial CT scan were 110 and 358 days, respectively.

2.2. CT Image Features Obtained with AI Algorithms

CTPA scans were performed using various GE Medical Systems scanners, including
the LightSpeed Pro 16, Optima CT660, LightSpeed VCT, and Discovery CT750 HD models
(Milwaukee, Wisconsin, USA). Patients were positioned feet-first and supine (FFS) during
the scans. The CT images were reconstructed with a 512 × 512 matrix, and slice thickness
varied between 0.625 mm and 1.25 mm. Key scanning parameters included tube voltages
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ranging from 100 to 120 kV and tube currents averaging between 342 and 598 mAs, ensuring
high-quality imaging across different patient conditions and scanner setups.

Our AI algorithms were developed and validated using images from diverse
sources [21–27]. The PE detection and segmentation algorithm [21], in particular, was
trained on the RSNA-PE dataset (n > 7000) and incorporates a differential geometric
approach. The geometric characteristic ensures the algorithm’s robustness, minimizing
sensitivity to image noise and artifacts caused by varying imaging protocols. As a result,
the system maintains high performance across different datasets and clinical environments,
ensuring reliable detection under diverse imaging conditions.

We computed three groups of image features from the CTPA scans in our cohort:

(1) PE characteristics. Our novel AI algorithm automatically identified and segmented
isolated PE regions depicted on the CTPA scans [21]. This algorithm was trained
on the RSNA Pulmonary Embolism CT Dataset (RSNA-PE) (7279 scans) [21] and
validated with 91 independently manually annotated CTPA scans. Based on the
segmentation of PE regions, we analyzed clot volumes and their distribution across
lung segments and lobes [22,28]. The PE volumes were consolidated at the lobes and
the entire lung levels to serve as an index of total clot burden. Figure 1 shows an
example of clot locations;

(2) Body composition tissues. We developed a 3-D convolutional neural network
(CNN) [25] to automatically segment five body tissues depicted on CT images: vis-
ceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), intermuscular adipose
tissue (IMAT), skeletal muscle (SM), and bones. Unlike most existing algorithms
focusing on abdominal CT scans that typically segment 1–3 types of body tissues
based on the cross-sectional area of only a single or a few image slices [29–33], such as
at the third cervical (C3) vertebra or the third or fourth lumbar (L3 or L4) vertebra,
our AI algorithm volumetrically segments these tissues across various body regions.
This algorithm was used to segment and quantify volume, mass, and density of these
five tissues from CTPA scans [34];

(3) Cardiopulmonary characteristics. We developed algorithms to outline the pulmonary
vascular tree and cardiac silhouette depicted on CT scans [26,35]. Using lung volume
segmentation [27], we subclassified the pulmonary vasculature into extra- and intra-
pulmonary arteries and veins. This allowed us to quantify and compare the individual
volumes and densities of these anatomical segments, providing a descriptive ratio
between arterial and venous volumes. We calculated vascular volumes at various
scales based on cross-sectional area, specifically <5 mm2 (BV5) and between 5 and
10 mm2 (BV10). By leveraging automated algorithms for lung and airway segmenta-
tion [27,36], we computed lung and airway volumes and derived the airway-to-lung
volume ratio. Additionally, we quantified emphysematous changes using the density
mask method [37] and measured portal vein (PV) diameter, aorta (A) diameter, and
their ratio (PV/A).
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2.3. Statistical Analyses

Statistical analyses were performed to investigate the relationship between patient
demographics, CT-derived biomarkers, and two outcomes: PE clot burden (measured by
volume) in the “clot burden analysis” (n = 45, OLS regression) and PE resolution in the
“resolution analysis” (n = 96, Logistic regression). Missing values were removed. Numerical
features were standardized.

Feature selection was conducted using Lasso regularization within a repeated cross-
validation (CV) framework with 5 folds and 10 repetitions, each employing different
randomizations. The regularization hyperparameters were adjusted iteratively for each
analysis so that each regression model included between one and (n/10) independent vari-
ables to ensure at least 10 observations per independent variable. Specifically, if the number
of selected features either remained at zero or exceeded the cap, the range of the regulariza-
tion parameter array was incrementally adjusted upwards and downwards to search for
the optimal hyperparameter. After regularization, features with non-zero coefficients were
included in the multivariate models—a form of a “relaxed lasso” procedure [38,39] with
the hyperparameter γ = 0.

Clot burden analysis was evaluated using mean R2 and RMSE, while resolution
analysis was assessed using the mean area under the receiver-operator curve (ROC-AUC)
and Brier Score, both calculated from a 5-fold CV. The ROC curves were compared using
DeLong’s test [40]. The regression coefficients statistically significant at a 95% confidence
level were emphasized.

Data preprocessing, feature selection, regression analyses, and model evaluation were
performed in Python 3.10 and R 4.3.1.

3. Results
3.1. CT-Derived Features

The summary statistics of demographics and CT-derived features in our cohort (n = 45)
are shown in Table 1. The cohort is predominantly female (57.8%) and white (88.9%). The
cohort’s characteristics are largely balanced across the resolved and chronic groups, with
the exceptions that the chronic group was younger and more heavily female.

Table 1. Demographics and CT-derived features for resolved vs. chronic groups (n = 45). Standard
error (SE) and count (%) for continuous and categorical variables, respectively. p-values ≤ 0.05 from
Mann–Whitney U tests are highlighted.

Feature Resolved (n = 16) Chronic (n = 29) All (n = 45) p-Value

Demographic

Age 60.4 (3.1) 48.5 (2.9) 52.8 (2.3) 0.02

Race (white) 16 (100.0%) 24 (82.8%) 40 (88.9%) 0.21

Gender (female) 5 (31.3%) 21 (72.4%) 26 (57.8%) 0.02

Clot Burden

Right Superior Lobe 1.19 (0.29) 0.95 (0.19) 1.04 (0.16) 0.69

Left Superior Lobe 0.77 (0.23) 1.14 (0.34) 1.01 (0.24) 0.99

Right Middle Lobe 0.37 (0.16) 0.35 (0.08) 0.36 (0.08) 0.99

Right Inferior Lobe 0.73 (0.21) 0.39 (0.14) 0.51 (0.12) 0.29

Left Inferior Lobe 0.64 (0.17) 0.66 (0.14) 0.65 (0.11) 0.90

Central Artery 6.78 (1.99) 7.32 (1.58) 7.13 (1.23) 0.93

Total Clot Burden 10.47 (2.65) 10.82 (2.03) 10.69 (1.59) 0.93
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Table 1. Cont.

Feature Resolved (n = 16) Chronic (n = 29) All (n = 45) p-Value

Body Composition
BMI 32.9 (1.4) 34.6 (1.5) 34.0 (1.1) 0.56

Height (cm) 175.6 (3.0) 171.1 (1.4) 172.7 (1.4) 0.26
Weight (kg) 102.2 (5.8) 101.8 (4.7) 101.9 (3.6) 0.84

Bone Density 307.8 (14.8) 340.4 (11.1) 328.8 (9.1) 0.13
Bone Mass 2.40 (0.13) 2.31 (0.12) 2.35 (0.09) 0.35

Bone Volume 1.63 (0.09) 1.53 (0.08) 1.57 (0.06) 0.21
IFAT Density −84.8 (2.1) −82.7 (1.1) −83.4 (1.0) 0.48

IFAT Mass 0.72 (0.08) 0.68 (0.06) 0.69 (0.05) 0.77
IFAT Volume 0.69 (0.08) 0.65 (0.06) 0.66 (0.05) 0.75

Muscle Density 32.5 (2.3) 32.7 (2.2) 32.6 (1.6) 0.89
Muscle Mass 5.72 (0.37) 5.51 (0.40) 5.58 (0.28) 0.27

Muscle Volume 4.87 (0.31) 4.70 (0.33) 4.76 (0.24) 0.25
SFAT Density −97.4 (2.3) −96.8 (2.1) −97.0 (1.5) 0.93

SFAT Mass 5.71 (0.89) 6.50 (0.89) 6.22 (0.65) 0.71
SFAT Volume 5.58 (0.88) 6.34 (0.87) 6.07 (0.64) 0.70
VFAT Density −95.2 (1.3) −91.1 (1.5) −92.6 (1.1) 0.08

VFAT Mass 1.63 (0.21) 1.39 (0.26) 1.48 (0.18) 0.20
VFAT Volume 1.59 (0.21) 1.35 (0.25) 1.43 (0.18) 0.20

Cardiopulmonary
Airway Ratio 0.02 (0.01) 0.05 (0.01) 0.04 (0.01) 0.02

Airway Volume 0.06 (0.01) 0.05 (0.00) 0.05 (0.00) 0.04
Aorta Diameter 26.2 (1.1) 22.9 (0.6) 24.0 (0.6) 0.01

Artery-Vein Ratio 0.80 (0.04) 0.81 (0.02) 0.81 (0.02) 0.68
BV10 108.9 (16.6) 123.9 (6.8) 118.6 (7.3) 0.44
BV5 44.5 (8.4) 50.8 (4.0) 48.5 (3.9) 0.33

Emphysema Volume (950HU) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.07
Extrapulmonary Artery Volume 0.12 (0.01) 0.10 (0.00) 0.11 (0.01) 0.14
Extrapulmonary Vein Volume 0.12 (0.01) 0.12 (0.01) 0.12 (0.01) 0.70

Heart Volume 0.66 (0.03) 0.58 (0.02) 0.61 (0.02) 0.05
Intrapulmonary Artery Volume 0.12 (0.01) 0.12 (0.00) 0.12 (0.00) 0.53
Intrapulmonary Vein Volume 0.16 (0.01) 0.15 (0.01) 0.15 (0.01) 0.30

Lung Volume 4.12 (0.37) 3.68 (0.23) 3.84 (0.20) 0.36
PB Larger 10 74.1 (10.6) 75.2 (6.4) 74.8 (5.5) 0.75
PV Diameter 36.4 (2.1) 34.1 (1.1) 34.9 (1.0) 0.23

PV/A 1.43 (0.10) 1.51 (0.06) 1.48 (0.05) 0.51

3.2. Clot Burden Analysis

Table 2 displays the univariate analysis results on the association between CT-derived
features and clot burden across multiple lobes. Body tissue compositions, including bone,
muscle, and visceral fat (both mass and volume), as well as cardiopulmonary characteristics
including aorta diameter, extra- and intrapulmonary vein volumes, heart volume, and
PV/A, exhibited statistically significant positive relationships with clot burden. Conversely,
cardiopulmonary characteristics including artery–vein ratio, BV10 and BV5, extrapul-
monary artery volume, PV diameter, and PV/A demonstrated a negative relationship with
clot burden. Male gender was positively associated with clot burden across multiple lobes.
Table S1 includes variables showing statistically significant differences by gender.

To investigate the impact of gender on clot burden across multiple lobes, additional
univariate analyses were conducted with gender controlled for (Table S2). Body tissue
compositions, including BMI, bone mass, muscle mass and volume, and VFAT mass and
volume, showed statistically significant positive relationships with clot burden across
multiple lobes. Bone density exhibited a negative relationship with clot burden in the right
inferior lobe, while IFAT density showed a negative relationship with clot burden in the
central artery. Cardiopulmonary characteristics, including aorta diameter, heart volume,
intrapulmonary vein volume, and PV/A, displayed positive associations with clot burden
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across multiple lobes. Artery–vein ratio, BV10 and BV5, extrapulmonary artery volume,
PV diameter, and PV/A were negatively associated with clot burden across multiple lobes.

Table 2. Univariate analysis of CT-derived features and clot burden (n = 96). Values represent
coefficients (positive value indicates a positive relationship to clot burden; negative values indicate a
negative relationship to clot burden). Highlighted cells indicate coefficients with p-values ≤ 0.05.

Feature Right Superior
Lobe

Left Superior
Lobe

Right Middle
Lobe

Right Inferior
Lobe

Left Inferior
Lobe

Central
Artery

Total Clot
Burden

Body Composition
BMI 0.12 0.15 0.11 0.01 0.12 0.16 0.17

Bone Density −0.14 0.14 −0.06 −0.24 −0.20 0.10 0.04
Bone Mass 0.38 0.28 0.42 0.36 0.31 0.30 0.38

Bone Volume 0.41 0.26 0.44 0.40 0.34 0.28 0.37
IFAT Density 0.02 −0.15 0.05 0.08 0.17 −0.26 −0.19

IFAT Mass 0.15 0.21 0.13 0.07 0.09 0.16 0.18
IFAT Volume 0.15 0.21 0.13 0.07 0.08 0.17 0.19

Muscle Density 0.08 0.04 0.10 0.07 0.07 0.02 0.05
Muscle Mass 0.33 0.22 0.39 0.25 0.32 0.22 0.29

Muscle Volume 0.33 0.22 0.39 0.25 0.32 0.22 0.29
SFAT Density −0.04 −0.17 −0.05 0.07 −0.07 −0.15 −0.14

SFAT Mass 0.11 0.18 0.10 0.04 0.18 0.08 0.12
SFAT Volume 0.11 0.18 0.10 0.04 0.18 0.08 0.12
VFAT Density −0.12 −0.27 −0.13 −0.13 −0.16 −0.22 −0.24

VFAT Mass 0.37 0.33 0.31 0.41 0.39 0.28 0.37
VFAT Volume 0.37 0.34 0.31 0.41 0.39 0.28 0.37

Cardiopulmonary
Airway Ratio 0.00 0.01 −0.03 0.00 −0.10 0.14 0.10

Airway Volume 0.19 0.06 0.16 0.17 0.16 0.21 0.22
Diameter 0.38 0.12 0.30 0.39 0.34 0.19 0.27

Artery-Vein Ratio −0.34 −0.38 −0.23 −0.21 −0.18 −0.49 −0.49
BV10 −0.25 −0.25 −0.22 −0.24 −0.37 −0.07 −0.17
BV5 −0.27 −0.24 −0.22 −0.24 −0.34 −0.11 −0.20

Emphysema Volume (950HU) 0.19 0.12 0.16 0.26 0.13 0.18 0.21
Extrapulmonary Artery Volume −0.14 −0.21 −0.11 −0.26 −0.35 −0.10 −0.17
Extrapulmonary Vein Volume 0.20 0.19 0.16 0.04 −0.04 0.41 0.36

Heart Volume 0.39 0.14 0.38 0.33 0.27 0.11 0.21
Intrapulmonary Artery Volume −0.08 −0.09 −0.04 −0.15 −0.26 0.10 0.02
Intrapulmonary Vein Volume 0.22 0.18 0.19 0.08 −0.02 0.37 0.34

Lung Volume 0.13 −0.02 0.21 0.13 0.13 0.23 0.21
PB Larger 10 0.26 0.06 0.33 0.24 0.25 −0.02 0.07
PV Diameter −0.18 −0.21 −0.13 −0.26 −0.31 −0.11 −0.18

PV/A −0.37 −0.25 −0.26 −0.39 −0.42 −0.21 −0.31
Demographic

Age 0.15 0.04 0.07 0.21 0.17 0.11 0.14
Gender (Male) 0.73 0.36 0.67 0.64 0.64 0.43 0.58

The multivariate analysis (Table 3) highlighted that bone mass displayed a positive
association with total clot burden and central artery clot, without demonstrating a specific
predisposition towards individual lobes. Artery–vein ratio, BV5, extrapulmonary arterial
volume, and PV/A exhibited negative relationships with clot burden across multiple lobes.
Heart volume was positively associated with total clot burden across multiple lobes. Mean
CV R2 and RMSE values are provided for each model.
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Table 3. Multivariate analysis of CT-derived features and clot burden (n = 96). Values represent
coefficients (positive value indicates a positive relationship to clot burden; negative values indicate
a negative relationship to clot burden). Highlighted cells indicate coefficients with p-values ≤ 0.05.
Values of 0.00 are non-zero but are truncated due to rounding.

Feature Right Superior
Lobe

Left Superior
Lobe

Right Middle
Lobe

Right Inferior
Lobe

Left Inferior
Lobe

Central
Artery

Total Clot
Burden

Body Composition
BMI 0.15

Bone Density 0.19
Bone Mass 0.09 0.18 0.19

Bone Volume 0.06 0.14 0.05 0.00
IFAT Density −0.22
Muscle Mass 0.06
VFAT Density −0.16
VFAT Volume 0.00 0.17 0.08 0.15 0.09

Cardiopulmonary
Airway Ratio 0.24

Diameter 0.20
Artery-Vein Ratio −0.33 −0.34 −0.25 −0.17 −0.18 −0.24 −0.32

BV10 −0.18 −0.14 −0.11
BV5 −0.14 −0.17 −0.19

Emphysema Volume (950HU) 0.22 0.19 0.19
Extrapulmonary Artery Volume −0.38 −0.33 −0.40
Extrapulmonary Vein Volume 0.42 0.27

Heart Volume 0.33 0.23 0.39 0.33
PB Larger 10 0.13 0.23
PV Diameter −0.22

PV/A −0.34 −0.19 −0.05 −0.19 −0.10 −0.29
Mean R-squared 0.28 0.20 0.28 0.25 0.24 0.36 0.32

Mean RMSE 0.81 0.81 0.82 0.87 0.84 0.78 0.79

3.3. Resolution Analysis

Mann–Whitney U statistical tests were applied to assess distribution differences be-
tween resolved and chronic groups. The chronic group exhibited a younger average age
and a higher proportion of female patients. Both groups were predominantly composed of
white individuals, with the resolved group exclusively consisting of white patients. No
statistically significant differences were found between the groups in height, weight, or
BMI. The resolved group exhibited a lower airway ratio, higher airway volume, and larger
aorta diameter on average (Table 1).

The progression of clot burden relative to the date of the VQ scan was analyzed for
each patient. Both groups presented large clots on the initial scans, followed by significant
reductions in clot size over time (Figure 2). Despite substantial clot reduction, chronic
patients (e.g., PE 6, 24, and 51) still exhibited residual webs and evidence of chronic PE
on VQ scans [7,41]. No distinctive patterns were identified to distinguish resolved from
chronic PE. Therefore, univariate and multivariate analyses using baseline clot measure-
ment were performed.

The univariate analysis (Table 4) showed no significant relationship between body
tissues and PE resolution, regardless of age or gender controls. Without any controls, aorta
diameter, heart volume, age, and male gender were positively associated with PE resolution,
while airway ratio was negatively associated. When controlling for age, airway ratio
(negative correlation) and heart volume (positive correlation) were significantly associated
with PE resolution. When controlling for gender, airway ratio (negative correlation) and
aorta diameter (positive correlation) were significantly associated with PE resolution.



Bioengineering 2024, 11, 1062 8 of 15

Bioengineering 2024, 11, x FOR PEER REVIEW 8 of 16 
 

3.3. Resolution Analysis 
Mann–Whitney U statistical tests were applied to assess distribution differences be-

tween resolved and chronic groups. The chronic group exhibited a younger average age 
and a higher proportion of female patients. Both groups were predominantly composed 
of white individuals, with the resolved group exclusively consisting of white patients. No 
statistically significant differences were found between the groups in height, weight, or 
BMI. The resolved group exhibited a lower airway ratio, higher airway volume, and larger 
aorta diameter on average (Table 1). 

The progression of clot burden relative to the date of the VQ scan was analyzed for 
each patient. Both groups presented large clots on the initial scans, followed by significant 
reductions in clot size over time (Figure 2). Despite substantial clot reduction, chronic pa-
tients (e.g., PE 6, 24, and 51) still exhibited residual webs and evidence of chronic PE on 
VQ scans [7,41]. No distinctive patterns were identified to distinguish resolved from 
chronic PE. Therefore, univariate and multivariate analyses using baseline clot measure-
ment were performed. 

 
Figure 2. Illustrative images from which features were derived: (a) pulmonary segments; (b) heart 
and lungs; (c) bone, intermuscular fat (green), and visceral fat (blue); (d) subcutaneous fat (red) and 
muscle (blue); (e) arteries (red) and veins (blue); (f) central artery; and (g) clot regions. 

The univariate analysis (Table 4) showed no significant relationship between body 
tissues and PE resolution, regardless of age or gender controls. Without any controls, aorta 
diameter, heart volume, age, and male gender were positively associated with PE resolu-
tion, while airway ratio was negatively associated. When controlling for age, airway ratio 
(negative correlation) and heart volume (positive correlation) were significantly associ-
ated with PE resolution. When controlling for gender, airway ratio (negative correlation) 
and aorta diameter (positive correlation) were significantly associated with PE resolution. 

  

Figure 2. Illustrative images from which features were derived: (a) pulmonary segments; (b) heart
and lungs; (c) bone, intermuscular fat (green), and visceral fat (blue); (d) subcutaneous fat (red) and
muscle (blue); (e) arteries (red) and veins (blue); (f) central artery; and (g) clot regions.

Table 4. Univariate and multivariate analyses of CT-derived features and PE resolution (n = 45).
Values represent coefficients (positive value indicates a positive correlation to PE resolution; negative
values indicate a negative relationship to PE resolution). Highlighted cells indicate coefficients
with p-values ≤ 0.05. Only features with statistically significant coefficients or those included in
multivariate models are shown.

Univariate Models Multivariate Models

Feature No
Controls

Age
Control

Gender
Control Demo Body Cardio Clot All Custom

Body Composition

Bone Density −0.55 −0.35 −0.44 −0.55

VFAT Density −0.57 −0.38 −0.46 −0.57

Cardiopulmonary

Airway Ratio −1.09 −1.02 −1.39 −2.23 −2.17 −1.63

Airway Volume 0.63 0.50 0.17 0.79

Aortic Diameter 1.22 0.90 1.05 1.73 1.07 2.04

Heart Volume 0.70 0.86 0.32 1.18 1.78 1.41

Clot

Left Superior Lobe −0.22 −0.34 −0.47 −0.26 −0.80

Right Inferior Lobe 0.37 0.28 0.16 0.68

Left Inferior Lobe −0.04 0.02 −0.30 −0.39

Demographic

Age 0.91 0.90 1.08

Gender (Male) 1.75 1.70

Mean AUC 0.73 0.65 0.83 0.48 0.81 0.80

Mean Brier Score 0.20 0.23 0.17 0.25 0.21 0.18
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In the multivariate models (Figure 3; Table 4), the demographic model (denoted as
“Demo”) achieved a CV AUC of 0.73 (95% CI: 0.57–0.89), with both age and gender posi-
tively associated with PE resolution. The body composition model (denoted as “Body”)
achieved a CV AUC of 0.65 (95% CI: 0.49–0.82) and included bone density and VFAT
density features. However, neither of these features reached statistical significance. The car-
diopulmonary model (denoted as “Cardio”) attained a CV AUC of 0.83 (95% CI: 0.71–0.95),
with airway ratio negatively associated with PE resolution, and aorta diameter and heart
volume positively associated with PE resolution. The model of clot volumes (denoted as
“Clot”) achieved a CV AUC of 0.48 (95% CI: 0.30–0.66) and included clot volumes from the
left superior, right inferior, and left inferior lobes, yet none of these variables displayed a
statistically significant relationship with PE resolution.
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As shown in Figure 4, the model of all variables (denoted as “All”) reached a CV AUC
of 0.81 (95% CI: 0.68–0.93) and included airway ratio, aorta diameter, heart volume, and age.
Airway ratio was negatively associated with PE resolution, whereas heart volume exhibited
a positive association. A custom composite model (denoted as “Custom”) model achieved
a CV AUC of 0.80 (95% CI: 0.67–0.93), with airway ratio negatively associated with PE
resolution, and aortic diameter and heart volume positively associated with PE resolution.
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Figure 4. ROC-AUC curves for multivariate models. Curves, scores, and confidence intervals were
computed from predicted probabilities from 5-fold cross-validation.

DeLong’s test for model-to-model comparisons showed statistically significant differ-
ences (95% confidence level) in ROC curves between the following pairs: Cardio vs. Body
(p-value: 0.03), Cardio vs. Clot (p-value: <0.01), All vs. Clot (p-value: <0.01), and Custom
vs. Clot (p-value: 0.01) (Table 5).

Table 5. DeLong test p-values from model-to-model comparisons. Each cell represents the p-value
from a two-sided DeLong test comparing the models in the row and column. (Highlighted cells
indicate coefficients with p-values ≤ 0.05).

Model Body Cardio Clot All Custom

Demo 0.40 0.21 0.05 0.32 0.41

Body 0.03 0.18 0.08 0.11

Cardio <0.01 0.53 0.38

Clot <0.01 0.01

All 0.91

4. Discussion

We conducted a comprehensive investigation of the associations between CT-derived
features, clot burden, and PE resolution. To our knowledge, our study is the first to explore
the potential relationship between various body tissue compositions, cardiopulmonary
vasculature, and clot burden across different pulmonary lobes using radiographic data. We
used gold-standard diagnostic confirmation from VQ scans and subclassification based on
CTPA as ground-truth labels to distinguish between resolved and chronic PE. By combining
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these labels with our CT-derived features, we analyzed how these features affect PE
resolution. Unlike previous studies that only considered CT-derived features like clot
volume and distribution [13,16], we went further by accounting for the combined influence
of CT-derived body compositions and cardiopulmonary features, such as quantitative
airway and vessel measures.

Our analysis demonstrated the prognostic utility of cardiopulmonary and demo-
graphic features as potentially informative tools for predicting PE resolution. Among the
multivariate resolution analyses, the demographics (Demo), cardiopulmonary (Cardio),
and composite (Composite) models exhibited the highest prognostic value. In contrast,
models derived from baseline clot burden volumes (Clot) and body composition (Body)
did not perform well, with the Clot model performing the worst among all three (Table 5,
Figure 3).

To test the added value of clot burden in a predictive cardiopulmonary model, we in-
corporated clot burden in the left superior lobe (the only clot feature remaining after feature
selection) into a model (Custom) containing the features airway ratio, aortic diameter, and
heart volume. However, this model failed to yield any improvement in AUC compared to
the Cardio model. These findings align with previous studies suggesting that, although
clot burdens can indicate the severity of an episode and treatment effectiveness, they are
not reliable indicators of right ventricular (RV) failure or patient mortality [42].

In our cohort, some patients showed significant reductions in clot burden on CT but
were still classified as chronic based on VQ findings and residual webs on CT (Figure 2).
The poorer performance of the clot burden model contradicts previous studies that used
clot characteristics to predict PE resolution speed [13]. This discrepancy may be because
they differentiated clot location as central vs. peripheral, whereas we aggregated clot
burden by pulmonary lobe.

Although the Cardio, All, and Custom models outperformed the Demo model, the
Demo model’s relatively strong performance suggests that these variables capture similar
information useful for classification.

Gender plays a significant role in both clot burden and PE resolution within our cohort,
underscoring its discriminative value. Our results showed that men exhibited a higher
initial clot burden than women (Tables 2 and S1), yet a higher likelihood of achieving PE
resolution (Table 4), which contradicts our initial expectations. Joint evaluation of clot
burden and resolution analyses may shed light on these observations. For instance, factors
such as aorta diameter and heart volume were associated with both a higher likelihood
of resolution and higher clot burden (Table 2). Additionally, the higher representation of
women in chronic PE development may be influenced by provoking factors such as oral
contraceptive use, which are known to elevate the risk of VTE, including PE, by affecting
coagulation factors and blood clotting mechanisms [43]. We also observed that men in our
study exhibited higher average values of aorta diameter and heart volume than women
(Table S1) and were more likely to experience resolution. One possible explanation for
this observation could be attributed to the effects of aorta diameter and heart volume on
blood flow and hemodynamics. Increased blood flow may help dislodge the clot or prevent
further clot accumulation and propagation, whereas reduced blood flow and stasis could
allow for the accumulation of procoagulant proteases leading to further clotting [44].

The significance of gender aligns with the existing literature. Studies suggest that
women with PE are more likely to exhibit RV dysfunction [45], a potential indicator of
chronic PE on CTPA [3]. Additionally, studies have reported a higher risk of PE-related
mortality in women, particularly in hemodynamically stable patients, despite a lower age-
and sex-adjusted incidence of PE in women [46]. It is noteworthy that women receiving
treatment with anticoagulants have shown a higher risk of bleeding, requiring careful
monitoring and potentially differing treatment approaches for acute PE [47]. However, we
lacked treatment information to analyze any differences in administering anticoagulants
for this study. Despite appearing counterintuitive (given that age is a risk factor for both
genders), the statistically significant positive association between age and PE resolution
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in our study may be explained by the tendency for women diagnosed with PE to be
older than men [46–48]. Our findings, especially those regarding the association between
cardiopulmonary features and PE resolution, could provide insights into the gender-related
disparities observed in prior research.

Our analyses provide both etiologic and prognostic insights, partly due to our feature
selection method. To ensure interpretability and statistical significance, we balanced the
number of features in our models, aiming for a minimum of 10 outcome events per predictor
variable (EPV) to avoid biased estimates [49–51]. We used Lasso regularization within a
cross-validation framework, limiting the number of features based on the target EPV of
10. After feature selection, we conducted regression analysis on the retained features and
reported coefficients and p-values. This method resembles a “relaxed lasso” procedure [39],
with the hyperparameter γ = 0. This approach simplifies the model while dealing with
a large number of features, thereby improving prediction accuracy [38]. The value of
γ determines the weighting between regularized and maximum likelihood estimation
coefficients (1 - γ) [39], balancing model complexity and interpretability. Tuning of γ and
making statistical inferences based on these coefficients will require further investigation.

There are several limitations of our study that are worth noting. First, our sample size
was small (n = 45 for resolution analysis and n = 96 for clot burden analysis). Furthermore,
conducting feature selection, model training, and evaluation on the same dataset can
introduce potential biases. To mitigate these concerns, we employed repeated K-fold cross-
validation for both feature selection and model evaluation. Nonetheless, the small sample
size limited our ability to analyze and control for other unobserved variables. For instance,
as we discuss above, sex may be associated with other features of interest which we capture,
such as age, body composition, and cardiopulmonary features, as well as features that
we did not have access to, such as oral contraceptive use or menopause. Based on the
age distribution of the cohort, it is possible that there could have been a blend or pre-
and post-menopausal women, which may affect cardiopulmonary disease. However, we
did not have access to this variable, which is a limitation of our study. The inclusion of
these features in a larger study presents an opportunity for additional research, in which
we could analyze male and female subgroups. Second, our study included one instance
where the first CT scan was conducted after the VQ scan, and not all patients had VQ
scans to determine PE resolution (n = 3). Thirdly, our study cohort included patients
already diagnosed with acute PE, and, therefore, our findings should not be extrapolated
to predict the risk of acute PE using the aforementioned biomarkers. Finally, our study
cohort was from a single center and would benefit from external validation using data
from other locations. Given these limitations, future work is needed to establish a deeper
understanding of the relationship between body composition, cardiopulmonary features,
and PE by collecting a large cohort acquired from multiple sites.

5. Conclusions

Our study investigated the relationship between body composition, cardiopulmonary
features, clot burden, and PE resolution in a patient cohort. We observed that cardiopul-
monary variables, particularly those related to arterial and venous diameters, offered
predictive power for clot burden and resolution. In contrast, body composition variables
and clot burden measures did not demonstrate such predictive power. This highlights
the significance of incorporating both demographic and cardiopulmonary variables when
assessing PE severity and potential resolution.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering11111062/s1, Table S1. Gender breakdown of
body composition, cardiopulmonary, and clot features. Only features with statistically significant
differences (95% confidence level) are shown. p-values from Mann-Whitney U tests. Table S2.
Univariate analysis of CT-derived features and clot burden (n = 96) controlled for gender. Values
represent coefficients of the variable of interest (positive value indicates a positive relationship to clot
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burden; negative values indicate a negative relationship to clot burden). Coefficients for gender are
not shown. Highlighted cells indicate coefficients with p-values ≤ 0.05.
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