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Abstract: This study systematically reviews the literature on transcranial direct current stimulation
(tDCS) interventions for lower-limb endurance performance in healthy adults and provides a sum-
mary of the effects and underlying mechanisms of tDCS on lower-limb endurance performance.
Systematic searches were performed in PubMed, Web of Science, EBSCO, and ScienceDirect. The risk
of bias was assessed using the Cochrane risk of bias assessment tool. The electronic search totaled
341 studies. Twenty-one studies were included in the review after screening. The results show that
tDCS effectively improved time to task failure (TTF), increased blood lactate accumulation, and
reduced the rating of perceived exertion during cycling. However, the tDCS failed to significantly
improve the TTF, relieve muscle pain, and reduce fatigue indices during single-joint fatigue tasks in
the knee. Moreover, tDCS intervention caused the effective improvement of the overall lower-limb
endurance performance but exerted no uniformly conclusive effect on knee endurance performance.
This finding can be partly attributed to varying stimulation protocols across studies. Future studies
may focus on the effects of the application of stimulation protocols, such as multitarget stimulation
and personalized dosage, to develop targeted stimulation protocols.

Keywords: transcranial direct current stimulation (tDCS); lower limbs; endurance performance;
knee joint

1. Introduction

Fatigue is one of the most important factors affecting sports performance [1]. Exercise
fatigue of the lower limb leads to changes in its mechanical characteristics [2,3], which
is accompanied by a decrease in balance control capability and proprioceptive function;
these modifications seriously restrict healthy adults, especially athletes, from obtaining
satisfactory sports performance and competitive results [4,5]. Therefore, mechanisms
for improving lower-limb fatigue resistance during endurance exercise have become an
important concern in the field of human sports biomechanics.

Transcranial electrical stimulation, encompassing transcranial direct current stimu-
lation (tDCS) [6], alternating current stimulation [7], and random noise stimulation [8],
is a non-invasive neuromodulation technique that can induce hyperpolarization or depo-
larization of the neuronal resting membrane potential, depending on the polarity of the
stimulating electrodes [9]. This technique is widely used across various fields due to its
safety, cost-effectiveness, and ease of control of stimulation parameters [10]. In recent years,
tDCS has been introduced as a neuro-biomechanical enhancement technique for improving
human capabilities [11,12]. It can increase the excitability of the primary motor cortex,
improve balance performance, and accelerate motor learning [13,14]. In addition, tDCS
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increases M1 excitability, which reduces the reliance on the supplementary motor area
(SMA) and decreases an individual’s perception of effort during task execution [15].

Most current studies have investigated the influence of a tDCS session on endurance
performance via a single-joint laboratory exercise test of the upper or lower limbs. tDCS
considerably prolongs the time to task failure (TTF) in endurance exercises [16–19]. How-
ever, some studies discovered inconsistent conclusions, which suggests that tDCS fails
to extend the TTF in endurance exercises [20,21]. A few works have explored the neu-
rophysiological mechanisms underlying the action of tDCS in combination with brain
imaging techniques. A study based on functional near-infrared spectroscopy found that
tDCS improves the efficiency of neuronal transmission in bilateral sensorimotor cortex [22].
tDCS enhances endurance performance through the increase in corticospinal excitabil-
ity [19,23,24]. However, other studies reported the lack of a notable association between
the improvement of endurance performance and corticospinal excitability [16]. Results
regarding the effects of tDCS on endurance performance also show inconsistency, and
the potential mechanisms remain unclear. Existing reviews focused on summarizing the
findings of tDCS on comprehensive motor abilities (e.g., muscle strength, endurance, explo-
sive power, etc.). Systematic summaries and the exploration of potential mechanisms for
tDCS interventions that specifically target the important abilities of the lower limbs (e.g.,
endurance) are lacking [25,26].

This study systematically reviews the literature on tDCS interventions for lower-limb
endurance performance in healthy adults and summarizes the effects of tDCS on both
overall lower-limb endurance and single-joint endurance (knee and ankle). This systematic
review serves as a reference for the exploration of the potential mechanisms by which tDCS
affects lower-limb endurance performance and the design of future studies.

2. Methods
2.1. Search Strategy

The systematic review protocol and reporting adhered to the Cochrane Handbook for
Systematic Reviews of Intervention and Preferred Reporting Items for Systematic Reviews
and Meta-Analyses guidelines [27]. The literature search was conducted in the following
electronic databases: PubMed, Web of Science, EBSCO, and ScienceDirect, up to April 2024.
The search was conducted using the terms (“transcranial direct current stimulation” OR
“tDCS”) AND (“endurance” OR “fatigue”) AND (“leg” OR “lower limb” OR “knee” OR
“ankle” OR “foot”) in all databases.

2.2. Eligibility Criteria and Article Selection

Studies were selected in accordance with the following inclusion criteria based on
study design, participants, intervention, comparison, and outcome measures: (1) ran-
domized control trials; (2) healthy adults as participants; (3) the use of tDCS intervention
and comparison with sham tDCS (i.e., placebo); and (4) indicator of lower-limb muscular
endurance performance as the primary outcome. Exclusions comprised the following:
conference abstracts, meta-analyses, reviews, letters, case reports, animal studies, or non-
English publications.

Two researchers (ZX and BS) independently screened the titles and abstracts of studies
determined through the search strategies after the removal of duplicates. If an abstract
met the inclusion criteria, then the full text of the article was reviewed for confirmation.
The authors resorted to discussion with a third researcher (WF) to resolve conflicts and
disagreements, and all authors agreed on the final included studies.

2.3. Data Extraction

A summary of raw data from the included articles was prepared, and the results were
divided into two categories: (1) the effect of tDCS on the endurance performance of the
overall lower limbs and (2) the influence on single joints/segments of the lower limbs. This
categorization facilitated interpretation of the findings. In addition, the following data
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were extracted: first author, publication year, sample size, gender, age range, tDCS protocol
(e.g., electrode position, size, current intensity, duration), and primary outcome measures.

2.4. Risk of Bias Assessment

The Cochrane risk of bias assessment tool, which includes the following aspects, was
used to assess the risk of bias for each study: random sequence generation, allocation
concealment, blinding of participants and personnel, blinding of outcome assessment,
incomplete outcome data, selective reporting, and other biases. Each aspect was evaluated
as high risk (+), low risk (−), or unclear risk (?) of bias using Review Manager 5.4 software.

The risk of bias was assessed independently by two researchers (ZX and BS). In cases
of disagreement, a third experienced researcher (WF) conducted their own assessment to
reach a consensus.

3. Results

The database search yielded 341 related articles (26 in PubMed, 47 in Web of Science,
86 in EBSCO, and 182 in ScienceDirect). A total of 21 articles [18–20,28–45] were included in
the systematic review after the removal of duplicate articles and the exclusion of irrelevant
studies through perusal of the titles, abstracts, and full texts (Figure 1).
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3.1. Study Characteristics

The recruited participants comprised a total of 375 healthy adult subjects (226 males
and 149 females, age range: 18–40 years). All twenty studies [18–20,28–44] employed
randomized crossover experimental designs, except for one study [45], which was a ran-
domized parallel trial. The participants visited the laboratory on multiple occasions and
were randomized to receive single anodal tDCS and sham stimulation (Sham), which
involved the brief delivery of a current of the same intensity. This method enabled the com-
parison of the immediate effects of various stimulation conditions on lower-limb endurance
performance. The included studies can be categorized based on the involvement of the
overall lower limb (Table 1) or the focus on a single joint of the lower limb (Table 2), de-
pending on the fatigue protocol. The major outcomes of the studies included the following:
(1) Fatigue index: quantified via the percentage decline in torque production from be-
ginning to end of the fatigue protocol [39,41,43,44]; (2) TTF: calculated as the difference
between the time at task failure and start time [18–20,28,29,32–36]; (3) Rate of perceived
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exertion (RPE): measured using the Borg scale [18,19,28–30,36,37] or a visual analogue
scale [33].

Table 1. Effect of tDCS on endurance performance of overall lower limbs.

Study Sample
(Male/Female)

Age
(Years)

tDCS Protocol
Fatigue
Protocol Main OutcomesAnodal/Cathodal

Location
Electrode Size

(cm2)
Current

(mA)
Duration

(min)

Angius et al,
2018 [19] 8/4 24 ± 5

A: bilateral M1, C:
ipsilateral

shoulders/A:
ipsilateral

shoulders, C:
bilateral M1

A: 35, C: 25
A: 25, C: 35 2 10 70% Wpeak

Cycling

TTF↑
corticospinal

excitability (VL)↑
∆B[La−]↑

RPE↓

Vitor-Costa
et al, 2015

[18]
11/0 26 ± 4

A: Cz, R: occipital
protuberance/C:
Cz, R: occipital
protuberance

A: 36, C: 35 2 13 80% Wpeak
Cycling

TTF↑
peak power←

RPE←
HR←

sEMG activity
(VL)←

Angius et al,
2019 [28] 9/3 23 ± 3 A: F3, C: Fp2 A: 35, C: 25 2 30 70% Wpeak

Cycling

TTF↑
RPE↓

∆B[La−]↑
HR↓

Sidhu et al,
2021 [29] 12/0 20.8 ± 0.4 A: left M1, C: right

supraorbital 25 2 10 80% Wpeak
Cycling

TTF↑
RPE←
HR←

Sasada et al,
2017 [31] 17/6 21~30

A: vertex, C: right
forehead/A: right
forehead, C: vertex

35 2 15
30s maximum
effort sprint

cycling

pooled mean
power←

peak power←
Codella et al,

2021 [30] 17/0 30.9 ± 6.5 portable tDCS
headset: Cz, C1–C6 3 × 28 2 20

modified
Bruce ramp

protocol

VO2peak↑
RPE↓

Zhan et al,
2023 [45] 24/0 A: 21.5 ± 2.2

C: 21.7 ± 2.3
A: Cz,

C:C3, C4, Fz, Pz
4 × 1

HD-tDCS 2 20
running-
induced
fatigue

sEMG activity
(TA)↑

CMC (beta:
C1-TA)↑

CMC (gamma:
C1-TA, Cz-TA)↑

Isis et al,
2023 [20] 6/9 25.8 ± 5 A: MI, C: T3/A: T3,

C: M1 35 2 20

maximal
incremental
exercise test

(cycling)

TTF←
sEMG activity (VL,

RF, VM)←
cortical excitability

(VL)↑

Note: A = anodal; C = cathodal; R = reference electrode; M1 = primary motor cortex; Cz, C1, C3, C4, C6, F3, Fp2,
and T3 are international EEG 10–20 system electrode placement sites; Wpeak = peak power output; TTF = time to
task failure; VL = vastus lateralis; ∆B[La−] = blood lactate accumulation; RPE = ratings of perceived exertion; HR
= heart rate; sEMG = surface electromyography; VO2peak = peak oxygen uptake; HD-tDCS = high-definition tDCS;
TA = tibialis anterior; CMC = corticomuscular coherence; RF = rectus femoris; VM = vastus medialis; compared
with the sham stimulation group, after the tDCS intervention: ↑ significant increase; ↓ significant decrease;← no
significant changes.

Table 2. Effect of tDCS on the endurance performance of a single joint/segment of lower limbs.

Study Sample
(Male/Female)

Age
(Years)

tDCS Protocol
Fatigue
Protocol Main OutcomesAnodal/Cathodal

Location
Electrode Size

(cm2)
Current

(mA)
Duration

(min)

Byrne et al,
2019 [35] 11/12 26 ± 5 A: F3, C: Fp2 35 2 20 25% MVC

isometric KE

TTF←
MVC←

muscle pain
intensity←

Angius et al,
2016 [36] 9/0 23 ± 2

A: left M1, C: right
prefrontal cortex/A:

left M1,
C: left shoulder

12 2 10 20% MVC
isometric KE

TTF↑
RPE↓

muscle pain
intensity←

Wrightson
et al, 2020

[32]
11/9 23.8 ± 4.7

A: hotspot for the
right VL, C: left

deltoid
35 1, 2 10 20% MVC

isometric KE

TTF←
sEMG activity

(VL)←
cortical excitability

(VL)←
perceived fatigue←

MVC←
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Table 2. Cont.

Study Sample
(Male/Female)

Age
(Years)

tDCS Protocol
Fatigue
Protocol Main OutcomesAnodal/Cathodal

Location
Electrode Size

(cm2)
Current

(mA)
Duration

(min)

Denis et al,
2019 [33] 7/13 20.6 ± 1.7

A: right
dorsolateral

prefrontal cortex, C:
distance of 3.5 cm
around the anode

electrode

4 × 1
HD-tDCS 2 10+ (online) 30% MVC

isometric KE
TTF←
RPE←

Flood et al,
2017 [34] 12/0 24.4 ± 3.9

A: C3, C: Cz, F3, T7,
P3/A: C4, C: Cz, F4,

T8, P4

4 × 1
HD-tDCS 2 20 30% MVC

isometric KE

TTF←
endogenous pain

inhibition↑
MVC←

Kamali
et al, 2019

[37]
12/0 18~40 A: M1 + T3, C:

bilateral shoulder

A: 35,
C:16/A:16, C:

16
2 13 30% 1 RM

isotonic KE

SEI↑
RPE↓
HR↓

1 RM↑
sEMG activity

(RF)↑
Giboin

et al, 2018
[38]

14/0 26 ± 3
A: hotspot for the
right VL, C: contra

lateral orbit
35 2 10

(online)
35 × 5 s MVC
isometric KE

amplitude of MVC↓
sEMG activity

(VL)↓
Ciccone

et al, 2019
[39]

10/10 21.0 ± 1.5 A: T3, C: Fp2
/A: T4, C: Fp1 25 2 30

50 maximal
effort

isokinetic KE

fatigue index←
mean torque

integral←
HR variability←

Montenegro
et al, 2016

[40]
13/0 26 ± 4 A: M1, C: Fp2 35 2 20

3 × 10
maximal effort
isokinetic KE

total work←
work fatigue
percentage←
peak torque←

sEMG activity (VM,
RF, BF, ST)←

Workman
et al, 2019

[41]
12/22 24 ±3.6

A: C3, C:
contralateral

supraorbital area
35 4 20

(online)

40 maximal
effort

isokinetic KE
and KF

fatigue index (KF
muscle group)↑

fatigue index (KE
muscle group)←

Savoury
et al, 2023

[43]
8/8

males 24.1 ± 2.8
females

21.9 ± 1.6

A: M1, C: ipsilateral
shoulder area A: 25; C: 35 2 10

12 × 5 s
maximal effort
isokinetic KE

MVC (KE)↓
normalized MVC

(KE)↓
fatigue index←

Deters et al,
2022 [44] 0/10 24.3 ± 5.5 A: M1, C: Fp2 A: 25; C: 35 4 20

40 120◦/s
maximal effort
isokinetic KE

and KF

fatigue index
(during

high-estrogen
level)↑

sEMG activity (KE
and KF)↑

Seidel-
Marzi et al,
2020 [42]

FB:
10/3
HB:
7/5

NA: 10/11

FB: 24.0 ± 3.9
HB: 22.5 ± 4.3
NA: 27.0 ± 3.4

A: Cz, C: Fz A: 35; C: 100 2 20
(online)

20 s
foot-tapping

tasks

maintenance of
tapping frequency↑

Note: A = anodal; C = cathodal; M1 = primary motor cortex; Cz, C3, C4, T3, T4, T7, T8, F3, F4, P3, P4, Fp1,
and Fp2 are international EEG 10–20 system electrode placement sites; MVC = maximal voluntary contractions;
KE = knee extensors; KF = knee flexion; TTF = time to task failure; RPE = ratings of perceived exertion;
sEMG = surface electromyography; VL = vastus lateralis; HD-tDCS = high-definition tDCS; SEI = short-term
endurance index; HR = heart rate; 1RM = one-repetition maximum; RF = rectus femoris; VM = vastus medialis;
BF = biceps femoris; ST = semitendinosus; FB = football player; HB = handball player; NA = nonathletes; compared
with the sham stimulation group, after the tDCS intervention: ↑ significant increase; ↓ significant decrease;← no
significant changes.

3.2. Effects of tDCS on Endurance Performance of Overall Lower Limbs

Eight studies were included [18–20,28–31,45], each with significant variations in the
tDCS protocols used. The primary stimulated brain area was the primary motor cortex
(M1) in seven of the eight studies (87.5%), with only one study targeting the left dorsolat-
eral prefrontal cortex (DLPFC) (Figure 2A). Although the seven studies targeted M1 for
stimulation [18–20,29–31,45], the effect on endurance performance varied, with only three
studies revealing remarkable improvement in TTF [18,19,29]. Another work that focused
on F3 reported a significant enhancement in TTF [28], which suggests that M1 may not be
the only effective target for the improvement of endurance performance. Except for one
study that used stimulation headphones and another that employed 4 × 1 high-definition
(HD) tDCS, six studies utilized large electrode pads with sizes ranging from 25 cm2 to
36 cm2 and applied a 2 mA current intensity for 10–30 min of stimulation. All studies used
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an offline stimulation mode and administered stimulation prior to the implementation of
the fatigue protocol (Table 1).
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key outcome indicators.

Four studies used a cycling fatigue protocol of 70% to 80% of the maximal power
output; the anodal tDCS considerably prolonged cycling TTF [18,19,28,29], increased blood
lactate accumulation (∆B[La−]), and reduced the RPE during cycling [19,28] (Figure 2B).
Among the four studies that reported a notable increase in TTF, one used a stimulation
duration of 30 min, and the other three used durations shorter than 15 min. This finding
implies that the stimulation duration may not be a major factor influencing the effectiveness
of the intervention. Two studies that used a running-induced fatigue protocol revealed that
tDCS extensively elevated maximal oxygen uptake and muscle activity in the dorsal flexors
and increased cortical muscle coherence [30,45]. However, another study revealed that tDCS
did not substantially enhance the 30 s sprint cycling power performance [31]. Furthermore,
two studies reported that tDCS increased the lower-limb corticospinal excitability [19,20].
Overall, the articles that reported notable improvements in the endurance performance
almost always used large electrodes, with sizes ranging from 25 cm² to 36 cm². Although
large electrodes may modulate a wide cortical area, which leads to a pronounced influence,
they may also cause unintended side effects. Conversely, small electrodes can target specific
areas precisely but may result in diminished effects.

3.3. Effects of tDCS on Endurance Performance of a Single Joints/Segments of Lower Limbs

In this section, thirteen studies were included [32–44]; aside from three studies, i.e., two
that stimulated the prefrontal cortex [33,35] and one that targeted the temporal lobe [39],
the M1 area was the primary stimulated brain region (10 studies, 76.9%) (Figure 3A).
In addition to the two studies that employed 4 × 1 high-definition tDCS, 11 studies
utilized large electrode pads with sizes ranging from 12 cm2 to 100 cm2. The electrical
current intensity was set at 2 mA in eleven studies, and stimulation lasted from 10 min to
30 min. Four studies employed an online stimulation mode, which involved the concurrent
application of the electrical stimulation with fatigue (Table 2).
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Four studies revealed the failure of tDCS to considerably increase the TTF during 20–30%
maximal voluntary contractions (MVC) isometric contractions of the knee [32–35]. Two of these
studies revealed no extensive improvement in muscle pain intensity or fatigue perception [32,35]
(Figure 3B). However, two studies demonstrated that tDCS greatly enhanced the TTF of isometric
contraction and short-term endurance indices of the knee, and both significantly reduced
RPE [36,37]. Five studies used a rapid fatigue protocol for a single joint in the lower limbs and
revealed that none of the tDCS failed to greatly improve the total work or reduce the fatigue
index [38–41,43]. A previous work that focused on female participants and used a 4 mA current
intensity reported that tDCS considerably increased the lower-limb muscle activation levels
and fatigue index during the high-estrogen phase [44]. Furthermore, one study that focused on
the lower-limb ankle joint reported that tDCS enhanced the capability to sustain rapid tapping
frequencies [42].

3.4. Risk of Bias Assessment

The included studies showed varying levels of the risk of bias (Figure 4). All twenty-
one studies employed random grouping. In eight studies, blinding was applied only to
the participants. Ten studies unveiled the completeness of outcome measures, and the
remaining ones did not provide such information. The risk of selective reporting bias was
unclear in five articles, and the sources of other biases were unclear in two.
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4. Discussion

The present literature review reveals that tDCS considerably enhances the endurance
performance indices, such as TTF, peak oxygen uptake, etc., of the overall lower limb
compared with the sham stimulus. However, this process may not necessarily improve
performance indicators, such as TTF, work output, and fatigue index, in knee endurance
exercise. This discrepancy can be attributed to the complexity of factors affecting perfor-
mance in different endurance exercises and various mechanisms underlying the effects of
tDCS on endurance performance.

4.1. Some Potential tDCS Mechanisms That Have Been Suggested to Improve Lower-Limb
Endurance Performance

In studies where tDCS remarkably enhanced lower-limb endurance performance
compared with the control group, post-tDCS intervention exhibited a lower RPE [19,28,37].
The reduction in RPE shows a close association with improved endurance performance.
During endurance exercise, RPE reflects an individual’s subjective perception of effort
and fatigue level. Currently, the most widely recognized potential mechanism by which
tDCS improves endurance performance is that tDCS increases the excitability of M1, which
reduces the reliance on the SMA and decreases an individual’s perception of fatigue during
exercise [15,46]. Studies have shown that the SMA, as an upstream region of the M1, bears
a close relation to the generation of fatigue perception [47]. The SMA also participates in
motor initiation, planning, and execution, particularly in complex tasks or those requiring
sustained efforts [48]. Previous work has demonstrated that as SMA activation increases,
especially when the task becomes challenging or fatigue accumulates, the brain’s perception
of effort also intensifies, which leads to an increase in RPE [15]. Functional imaging and
electrophysiological studies have demonstrated that SMA activity is closely linked to the
perception of fatigue and motor output [49,50]. During exercise fatigue, SMA activity
increased with increased muscle activity, leading to increased fatigue and decreased motor
output [46]. tDCS can increase the excitability of the M1 region through the alteration of
the resting membrane potential of neurons [51], which increases the susceptibility of the
M1 region to commands from other areas [52]. Therefore, compared with the control group,
during an exercise of the same intensity, the SMA required a lower level of activation to
transmit the corresponding information commands to the M1 region [19,28], which reduced
the perception of fatigue (i.e., lowering RPE) during lower-limb endurance exercise. These
alterations motivate individuals to sustain target force output durably during endurance
exercise, which enhances the TTF in endurance exercise [19,28]. Some studies speculate that
tDCS may reduce muscle pain to improve endurance, but this inference has not been fully
substantiated [53]. Moreover, based on the importance of the DLPFC for inhibitory control
and motor regulation, studies have also attempted to improve endurance performance
by modulating the DLPFC. Studies have shown that anodal tDCS of the left DLPFC
improves overall lower-limb endurance performance while improving inhibitory control
and reducing perceived effort [28]. However, two other studies using anodal tDCS of
the DLPFC did not show improvements in single-joint endurance performance [33,35].
Therefore, further empirical studies are required to confirm the effect of anodal tDCS on
DLPFC on the improvement of endurance performance.

4.2. Possible Reasons for the Inconsistent Effects of tDCS Intervention

The tDCS exhibited a notably better intervention effect on overall lower-limb en-
durance exercises than on knee endurance exercises. This difference is attributed to varia-
tions in fatigue mechanisms between the two types of endurance exercises [54]. During
overall endurance exercises, individuals typically cease exercising due to central fatigue
(i.e., the inability of the central nervous system to adequately drive motoneurons) [15,55].
Therefore, tDCS can increase the endurance performance by boosting the excitability of
the M1 region. However, during single-joint exercises, such as knee endurance exercises,
individuals experience less central fatigue but more peripheral fatigue [56]. Peripheral
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fatigue is caused by changes distal to the neuromuscular junction, which impairs muscle
contraction and ultimately leads to cessation of movement [55,57]. Therefore, the direct
effect of tDCS on single-joint endurance performance may not be significant. In addition,
the majority of whole-limb and single-joint studies have used large electrodes. Previous
studies have demonstrated that the use of larger sponge electrodes produces diffuse rather
than focused currents, resulting in a lack of focality [58,59]. The use of larger sponge
electrodes may be more effective in improving overall endurance performance, but in a
single-joint task, these electrodes are unable to precisely modulate brain regions associated
with a particular task [60,61], resulting in smaller improvements in single-joint endurance
performance [34,35].

In addition, within knee endurance exercises, discrepancies were detected in the re-
ported effects on endurance performance across various studies. Several studies have
shown that tDCS failed to enhance cortical excitability [32,38], possibly due to the vari-
ous tDCS stimulation protocols used. The tDCS that was applied only to the temporal
cortex failed to improve knee endurance performance [31], whereas simultaneous mul-
titarget stimulation of M1 and temporal cortex considerably improved knee endurance
performance [37]. Furthermore, the tDCS that targeted the primary motor cortex had
various intervention effects on the endurance performance of knee joint isometric contrac-
tions [32,36]. This variability may stem from differences in the size of the electrodes used
in the two experiments, which led to variations in the coverage of brain regions. The use
of electrode pads of different sizes resulted in various ranges of brain areas covered. The
conventional tDCS with large electrodes may induce a broad electric field distribution in
the target brain area, which can interfere with the researchers’ ability to acquire accurate
research results and mechanistic explanations [34]. By contrast, HD-tDCS, when applied
with the same current intensity to cover the same brain region, can increase the focus
of stimulation by 80% and the intensity of stimulation at the target point by 98%. This
finding allows for the determination of the relationship between the target brain area and
changes in performance, which facilitates the exploration of the potential neurophysio-
logical mechanisms underlying the improvement in the endurance performance [62]. In
addition, anodal tDCS is believed to depolarize neurons and increase firing rates, whereas
cathodal tDCS hyperpolarizes neurons and decreases firing rates [51]. However, this notion
is an oversimplification. Neurons cause no uniform depolarization or hyperpolarization in
response to the applied current. Conversely, various compartments of the same neuron
may depolarize or hyperpolarize simultaneously [63]. Anodal tDCS can also decrease [64],
and cathodal tDCS can increase corticospinal excitability [65]. Overall, tDCS exerts an
inconsistent intervention effect on knee endurance performance. Future research should
not only investigate whether a single tDCS protocol can improve endurance performance,
but also compare the effects of different tDCS protocols, which would help identify the
optimal protocol for improving endurance performance.

4.3. Limitations

The optimal montage of tDCS (e.g., appropriate cortical target, current intensity, and
duration) for the improvement of endurance performance remains challenging given the
high variability of tDCS protocols in current publications. In addition, although studies
have detected some improvements in the overall lower-limb endurance performance with
tDCS, the mechanisms by which tDCS may enhance physical function remain largely
unclear. The effects of anodal and cathodal tDCS on cortical activation and functional
performance must be investigated to gain insights into the causal role of brain activity
in the regulation of endurance activities. Finally, the current research failed to explore
the neurophysiological mechanisms underlying the effects of tDCS on endurance perfor-
mance. The application of neuroimaging techniques, such as functional magnetic resonance
imaging [66], functional near-infrared spectroscopy [67], and other related methods, may
contribute to the exploration of the mechanisms of tDCS modulation in endurance perfor-
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mance. Nonetheless, the findings of this work offer important knowledge on the effects of
tDCS on endurance performance.

5. Conclusions

tDCS, which is a noninvasive neuromodulation technique, showed a crucial effect
on overall lower-limb endurance performance. tDCS can increase the excitability of the
primary motor cortex, which reduces the activation of the SMA and lowers the perception
of fatigue during endurance exercise. Future research may focus on the application effects
of multitarget stimulation, personalized dosages, and other stimulation protocols. The
development targeted stimulation protocols can improve antifatigue capabilities based on
different needs.
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