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Abstract: Hemorrhage leading to life-threatening shock is a common and critical problem in both
civilian and military medicine. Due to complex physiological compensatory mechanisms, traditional
vital signs may fail to detect patients’ impending hemorrhagic shock in a timely manner when
life-saving interventions are still viable. To address this shortcoming of traditional vital signs in
detecting hemorrhagic shock, we have attempted to identify metrics that can predict blood loss. We
have previously combined feature extraction and machine learning methodologies applied to arterial
waveform analysis to develop advanced metrics that have enabled the early and accurate detection
of impending shock in a canine model of hemorrhage, including metrics that estimate blood loss
such as the Blood Loss Volume Metric, the Percent Estimated Blood Loss metric, and the Hemorrhage
Area metric. Importantly, these metrics were able to identify impending shock well before traditional
vital signs, such as blood pressure, were altered enough to identify shock. Here, we apply these
advanced metrics developed using data from a canine model to data collected from a swine model
of controlled hemorrhage as an interim step towards showing their relevance to human medicine.
Based on the performance of these advanced metrics, we conclude that the framework for developing
these metrics in the previous canine model remains applicable when applied to a swine model and
results in accurate performance in these advanced metrics. The success of these advanced metrics in
swine, which share physiological similarities to humans, shows promise in developing advanced
blood loss metrics for humans, which would result in increased positive casualty outcomes due to
hemorrhage in civilian and military medicine.

Keywords: feature extraction; hemorrhage; machine learning; deep learning; predictive modeling;
advanced monitoring; swine; shock

1. Introduction
1.1. Motivation

Hemorrhagic shock is a significant and urgent concern in civilian and military trauma
care, where it is the leading cause of preventable death in both the civilian healthcare
system and on the battlefield [1,2]. In recent conflicts, such as the ongoing Russo-Ukrainian
war, severe blood loss has been a common and devastating injury among soldiers, with
nearly 45% of casualties treated at field medical facilities suffering from hemorrhage [3].
Traditional methods for detecting shock, relying on clinical signs such as low blood pressure
(hypotension), rapid heart rate (tachycardia), and altered mental status [4], are typically
inadequate because these signs only become evident after a substantial amount of blood
has already been lost, delaying diagnosis and critically impacting the timely delivery of
life-saving interventions.

The pressing need for earlier and more accurate detection methods remains a critical
focus for biomedical research. Researchers are increasingly focusing on identifying physi-
ological and biological markers that could indicate the onset of hemorrhagic shock well
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before traditional symptoms appear [5–7]. These markers have the potential to revolution-
ize trauma care by allowing for much earlier diagnosis and intervention, thereby improving
outcomes for casualties involving hemorrhagic shock. Moreover, the complexity of modern
warfare and pre-hospital care in which military and civilian personnel operate further
complicates the timely and accurate detection of hemorrhagic shock. Medical working
conditions are often harsh and chaotic, making reliance on traditional diagnostic methods
even less practical. Therefore, there is a critical need to develop robust, portable, and
easy-to-use diagnostic tools that can function effectively in these challenging settings.

These challenges underscore the need for innovative approaches like machine learn-
ing, which can analyze complex physiological data in real time to detect earlier signs of
hemorrhagic shock. By applying machine learning algorithms to features extracted from
physiological signals, we aim to identify subtle changes that are not immediately visible
through traditional diagnostic methods, bridging the gap between biological data and
actionable clinical insights. By leveraging these techniques, we hope to develop more
sensitive and earlier indicators of hemorrhagic shock, which can be integrated into practical
diagnostic tools suitable for use in the field. Our goal is to enhance the ability of medi-
cal personnel to provide timely and effective care, thereby reducing mortality rates and
improving outcomes for patients suffering from severe blood loss.

1.2. Overview of Feature Extraction

Feature extraction is a signal processing method that identifies characteristics or pat-
terns hidden in an input signal and is often synonymous with an input variable used for
artificial intelligence (AI) algorithms [8]. Features can result from a variety of mathematical
manipulations done to the signal; for example, features can be absolute magnitudes, dif-
ferences between features, time-domain manipulations, frequency-domain manipulations,
algebraic manipulations of multiple features, as well as many other methodologies for
producing features [9]. Features extracted from a signal minimize the amount of data
required as an input to an algorithm, as fewer features can represent a large amount of data
points in a raw signal while still maintaining original information and sufficient accuracy,
which is necessary to develop efficient and robust AI algorithms [9,10].

1.3. Overview of Machine Learning and Deep Learning

Machine learning (ML) and deep learning (DL) are subsets of AI that focus on building
algorithms capable of learning and making predictions based on data. ML involves training
models to find patterns in data and make decisions. DL is a specialized branch of ML
that utilizes neural networks composed of a hierarchy of nodes. The nodes that compute
data are organized into layers that feed the computational outputs of data into the next,
deeper layer, which analyzes more specific patterns in data based on the output of the
previous layer. Advancements in AI have the potential to revolutionize biomedical research
by providing advanced tools for data analysis and interpretation. Possible applications
include medical imaging, predictive analysis, wearable devices, and genomics [11,12]. In
the context of shock detection, ML and DL methods offer the potential to develop robust
predictive models by extracting relevant features from physiological signals and identifying
early indicators of hemorrhagic shock. By leveraging these technologies, we can improve
the accuracy and timeliness of shock detection, ultimately enhancing patient outcomes.

1.4. Previous Work

Septic shock, the final and life-threatening stage of sepsis, is a dramatic drop in blood
pressure that can damage vital organs and result in death. Early treatment of sepsis is
critical for the survival of a patient. Previous groups have used ML to predict septic
shock with earlier detection times compared to previously developed models, opening the
pathway for earlier treatment and increasing survivability of sepsis [13]. Hemodynamic
shock, which is a failure of the circulatory system resulting in severe organ failure or death,
is often a result of significant blood loss. Unfortunately, symptoms of hypovolemic shock
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often become apparent when life-saving interventions are less effective [14]. Previous
groups have successfully used thermal images to predict shock at intervals where time is
equal to zero, three, six, and twelve hours, which would allow life-saving interventions to
occur at points where they are more effective in increasing patient survivability [15]. We
have successfully explored several novel methods for early shock detection. These methods
include using arterial line waveform to calculate Blood Loss Volume Metric (BLVM), Percent
Estimated Blood Loss (PEBL), and Hemorrhage Area (HemArea) in a controlled canine
hemorrhage model [16,17], and compensatory reserve measurement (CRM) in a simulated
human hemorrhage model [18]. In both studies, features were extracted from an arterial
waveform signal, and a minimal-redundancy maximal-relevance (MRMR) criterion was
used to rank the features against the desired metric. Using the top features as input to the
ML models, the models were trained to predict each desired metric of the respective studies.

1.5. Study Aim

The BLVM, PEBL, and HemArea metrics showed promising potential in identifying
the onset of shock in canine models before traditional signs associated with hemorrhagic
shock began to appear. However, these efforts were aimed at identifying whether advanced
hemorrhage detection metrics were suitable for military working dogs. In this study,
we aim to evaluate the effectiveness of our previously established early shock detection
methods developed for canines in a swine model subjected to a controlled hemorrhage.
Swine are widely regarded as an ideal preclinical model for human physiology due to their
comparable cardiovascular and metabolic responses to hemorrhage [19]. By validating
these ML model development techniques in a species with similar physiology to humans,
we seek to strengthen the evidence for their potential application in human medicine. This
research is crucial for developing reliable triage tools that can be used in both clinical
and combat field settings to promptly identify and treat hemorrhagic shock, ultimately
saving lives.

2. Materials and Methods
2.1. Hemorrhagic Shock Swine Injury Model

Datasets captured in a previously performed swine (Sus scrofa domestica) hemorrhagic
shock injury and fluid resuscitation model were used for training and developing the ML
models in this research effort [17]. Research was conducted in compliance with the Animal
Welfare Act, implementing Animal Welfare regulations and the principles of the Guide for
the Care and Use of Laboratory Animals. This study was approved by the Institutional
Animal Care and Use Committee (IACUC). The facility where this research was conducted
is fully accredited by AAALAC International.

Briefly, animals were maintained under a surgical plane of anesthesia using 0–5%
isoflurane titrated to effect. Analgesia was provided throughout the study with buprenor-
phine SR. In this study, swine subjects were first instrumented with femoral catheters for
controlled hemorrhage (artery) and resuscitation (vein). A carotid artery catheter was
placed for arterial pressure readings (Arrow International, Morrisville, NC, USA), and
an 8.5 Fr. percutaneous sheath introducer was placed through which a pulmonary artery
Swan-Ganz catheter (Edwards Lifesciences, Irvine, CA, USA) was advanced into the pul-
monary artery for cardiac output monitoring. Next, an open splenectomy was performed,
followed by a 30-min stabilization period.

Then, a controlled hemorrhage to a target mean arterial pressure (MAP) of 35 mmHg
was performed to induce hypovolemic shock, wherein an automated hemorrhage decision
table (AutoBleed) controlled the rates of blood removal to reach this MAP target. Removed
blood was immediately mixed with CPDA-1 solution (citrate, phosphate, dextrose, adenine
at a 1:7 volumetric ratio) for anticoagulation. Animals were held at this pressure target
under AutoBleed control until blood lactate levels reached 4 mmol/L. During this variable
hold window, AutoBleed continued to remove blood or reinfuse blood to maintain pressure
at 35 mmHg. After the blood lactate hemorrhagic shock target was reached, animals
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received a calcium chloride bolus (1 g/10 mL) and were resuscitated using an adaptive
resuscitation controller (ARC) with whole blood to a target MAP of 65 mmHg [20]. Whole
blood was infused for 10 min using ARC to the target MAP, followed by switching the
infusate to lactated Ringer’s (LR) solution for an additional 2 hours.

After the 2-hour resuscitation hold at target MAP was completed, animals underwent
a re-bleed of identical magnitude and duration to the initial hemorrhage event. The animals
were re-infused with LR using ARC to reach the target MAP and held for an additional 2 h,
followed by euthanasia with sodium pentobarbital (FatalPlus®).

2.2. Data Processing

For this study, only the baseline region through the whole blood resuscitation region
was used in the data processing and ML model development methodology. MAP and
volumetric blood hemorrhage and infusion data were recorded at 500 Hz and 1/5 Hz,
respectively. The analog data were downsampled to a frequency of 100 Hz, and the digital
data were upsampled to a frequency of 100 Hz for use in this study. The arterial waveform
was filtered using a 512th-order finite impulse response (FIR) window lowpass filter with a
cutoff frequency of 6 Hz. The pulse foot (diastolic trough), systolic peak, half-rise between
the diastolic trough and systolic peak, the first inflection point, and the end of the waveform
segment were calculated and identified for each waveform segment present in the arterial
waveform [18]. In the absence of an inflection point of a waveform segment, the half-
drop between the systolic peak and the following diastolic trough was calculated and
identified [16]. The identified landmarks were then used to produce features using various
mathematical manipulation techniques, based on previous research efforts [21–24], as well
as features developed internally at the U.S. Army Institute of Surgical Research (USAISR),
resulting in over 4200 features at each waveform segment of the arterial signal for each
respective swine subject. In addition, a secondary set of features was extracted from an
arterial waveform signal that was detrended using a fifth-order polynomial to eliminate
baseline drift that may be present in the signal [25]. This detrending procedure removes the
fluctuation of blood pressure seen by the pulse waves in the arterial waveform signal [26].

For the DL model, the analog data was downsampled, and the digital data was
upsampled to a frequency of 100 Hz. This was done to match the sampling frequency of the
training data used to create the DL model in previous works. To preprocess the data, it was
segmented into intervals of 5 s, matching the pretraining data previously used to develop
the DL model. No manual feature extraction was performed, as the neural network trains
with convolutional neural network layers, which automatically extract features from the
input signal [27,28].

2.3. Machine Learning Models
2.3.1. Updates to Prior ML Prediction Models

The extracted features were used to develop ML models to predict calculated metrics
for tracking both hemorrhage and resuscitation events in the animal study. Previous
work developed blood loss metrics and quantified both time- and magnitude-sensitive
hemorrhage metrics [16]. The three previously developed metrics were BLVM, PEBL, and
HemArea. These metrics were designed to quantify different aspects of blood loss and
its physiological impact. In brief, BLVM and PEBL quantified, on a 0–1 scale, how much
blood was lost compared to the maximum volume of blood lost or the estimated blood
volume of a swine, respectively. HemArea quantified blood loss over time by taking the
area under the curve of a blood loss versus time plot. These prediction metrics are further
outlined below.

BLVM = 1 − Hemorrhaged Volume (t)
Total Shed Hemorrhaged Volume

(1)

PEBL =
Hemorrhaged Volume (t)

Estimated Blood Volume Constant mL
kg × Swine Weight (kg)

(2)
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HemArea = ∑ |BLVM − 1| × ∆t (3)

In brief, BLVM was a 0–1 scale blood loss metric aimed at quantifying volumetric
blood loss. PEBL quantified the percent blood loss in a subject based on standard blood
volumes per weight constants. HemArea quantified the hemorrhage-time magnitude by
summing area slices of BLVM and linearizing the results to estimate this magnitude.

Due to the inclusion of the resuscitation portion of the swine study, these original
metrics based on blood loss had to be reworked to accurately reflect the desired prediction.
BLVM was calculated using the original BLVM equation, but at the point of maximum
blood loss, any infused whole blood volume was added instead of subtracted. This resulted
in the blood balance “recovering”, as the metric no longer decreased and increased from
the maximum volume of blood loss. The BLVM was still valued between 0 and 1, as the
whole blood infusion volume necessary to resuscitate the swine back to the target MAP
was never equal to the volume of whole blood hemorrhaged. However, its value could
extend above one in studies where excess whole blood was infused.

BLVM = 1 ± Hemorrhaged Volume (t) or Whole Blood In f usion (t)
Total Shed Hemorrhaged Volume

(4)

The PEBL prediction required little modification from the original development in
Gonzalez et al. [16]. The infusion of whole blood decreased the total blood loss of the
swine by “giving back” the hemorrhaged whole blood, allowing the originally developed
equation to be used. The subject’s estimated blood volume was changed from 80 mL/kg
for canines to 60 mL/kg for swine [29].

PEBL =
Hemorrhaged Volume (t)

60 mL
kg × Swine Weight (kg)

(5)

The HemArea prediction was previously calculated indirectly by taking slices of area
under the BLVM curve, summing them, and performing a linear regression. This was
originally done because the ML models performed poorly in predicting HemArea directly.
Due to the addition of new features, a direct ML model was developed that could track
HemArea, eliminating the need for the area under the curve process previously required.

HemArea =
∫

Hemorrhage(t)dt (6)

All prediction metrics developed in this study were smoothed using a moving mean
with a window size of 50 data points to reduce noise and generalize trends. Each prediction
underwent a linear regression vs. ground truth calculation to determine any data shifts,
if necessary.

2.3.2. Compensatory Reserve Measurement

The CRM underwent ML and DL developments in prior efforts [18,30]. These efforts
define the compensatory reserve as the sum of all mechanisms of the body that act to
protect against insufficient delivery of oxygen (DO2). To measure the compensatory reserve,
a study was conducted where subjects were sealed inside a lower body negative pressure
(LBNP) chamber, capable of redistributing blood volume from the upper body to the lower
extremities due to vacuum pressure. This created a hypovolemic condition in the upper
extremities of the participant inside the LBNP chamber. Increasing the vacuum pressure
of the chamber in steps over time brought participants to the point of hemodynamic
decompensation (HDD). This LBNP model allowed for CRM to be defined as follows:

CRM = 1 − LBNP
LBNPHDD

(7)
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LBNP is the vacuum pressure inside the chamber at a given point in time, and
LBNPHDD is the vacuum pressure in the chamber where the patient has reached HDD.
This formula places CRM on a 0–100% scale, where 0% is the point of HDD and 100%
places a patient at a full reserve. For the DL CRM model, a convolutional neural network
(CNN) was developed as described in R.W. Techentin et al. [30]. Compared to ML models,
a CNN does not require extracted features to be fed to it, as the convolutional layers with
optimized hyperparameters, perform the feature extraction on their own. The CNN model
was optimized with several hyperparameters in mind including but not limited to the
number of layers, the number of filters, and kernel sizes. The optimization step led to the
creation of a model with eight 1-D convolutional/pooling layers and other parameters
provided in the publication from Techentin et al. The ML models developed to predict
CRM consisted of a smaller pool of features than this study. The features were ranked using
a ranking algorithm and then used as inputs to a bagged tree ML model for the prediction
of CRM. The models in this study were pretrained using data that had ground truth CRM
labels. Ground truth CRM could not to be defined, as the swine were not placed inside an
LBNP chamber, and the point of HDD does not have a definition in this swine model.

2.3.3. Machine Learning Model Development

Previous work used bagged tree ML models, as they were the highest-performing
models compared in the study [18]. When retrained using the previously developed ML
development framework (CRM-ML) for the current study, bagged tree ML models were
compared to boosted tree ML models, and boosted trees performed better and were quicker
to run. Prior work comparing boosted tree ML models to bagged tree ML models confirmed
that boosted tree models provide better results in efficiency testing [31], which is important
for real-time implementation of developed algorithms. The boosted tree ML model was the
model chosen for the development of all ML models. Four groups of swine were created
for the acquisition of the features used as inputs to the ML models. To prevent features
from biasing towards a specific swine, three of the four groups of swine were concatenated,
while leaving one group out. This was done four times to incorporate all the swine data.
Each group’s features were ranked using the MRMR criterion in the MATLAB (v2023a,
MathWorks, Natick, MA, USA) Regression Learner Toolbox. All the ML models were
selected to use the top 20 features for consistency between the ML models developed from
the different groups of swine data. Additionally, the boosted tree ML models all had a
minimum leaf size of eight, a learning rate of 0.1, and went through 30 learning cycles. Once
the features were obtained and the boosted tree models were trained with their respective
groups of swine, they were tested using a cross-validation technique known as leave one
subject out (LOSO) to account for bias in the testing. A swine group, which consisted
of three swine subjects, was left out of the training process to blind test the ML model
developed from the three other swine groups. This process was repeated four times in
total, with different swine group combinations being used in the training, and the final
swine group was split into individual swine subjects to be blind tested on each model
(Figure 1). This resulted in a total of 12 LOSO processes being completed (four ML models,
three blind tests each). The entire process was repeated for each prediction metric as well
as on detrended data to identify if the ML models required overall trends in the signal for
accurate predictions.

2.4. Machine Learning Model Analysis

After ML models were tuned for each application, their results were evaluated with
blind subject holdouts (n = 3 subjects) for each LOSO model. Predictions were compared
against ground truth calculations, except for the CRM models, as defining the point of
decompensation in an anesthetized animal could not accurately be determined. Instead,
the models were compared against MAP to provide some level of comparison. Model
goodness of fit (R-Squared) and root mean squared error (RMSE) were used to compare
predictions to ground truth calculations, and the results were averaged across all blind
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subject holdouts and LOSO models to obtain a generalized performance score. This was
performed for the baseline, hemorrhage, and whole blood resuscitation datasets. Only
trends were evaluated for the resuscitation phase, as after LR fluid was infused, the fluid
balance would likely shift compared to whole blood based on characterized hemodynamic
trends during hemorrhage resuscitation [32].
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Figure 1. The ML development pathway for one of the four ML models. The ML training data was
split, resulting in an ML model (blue) after undergoing the training pipeline. The ML model (blue)
is then input into the testing stage, resulting in ML model predictions for three swine completely
left out of the training stage. The process displayed is repeated a total of four times with different
arrangements of the four groups, with each group completely left out for testing once.

In addition, receiver operating characteristic curves (ROC) were calculated for the
baseline and initial hemorrhage event to evaluate the performance of each model in accu-
rately calculating hemorrhage status. The 95th and 5th percentiles for each model over this
region were calculated using MATLAB to identify the range of possible values from each
model. This range was subdivided into 100 threshold values for distinguishing hemorrhage
and baseline regions, and true positive rate and false positive rate were calculated for each
to generate the ROC curve. The area under the ROC (AUROC) was calculated for each
model as well.

Models were further evaluated for the time taken to detect hemorrhage in each blind
test subject. This was performed by identifying the 5th percentile for the baseline region of
each dataset and determining at which time during the hemorrhage event this threshold
value was reached for 100 consecutive readings, indicating a significant change from the
baseline recording. This time was calculated for each predictive metric and MAP and
averaged across all blind test subjects. Lastly, the effect of whole blood resuscitation
on each metric was assessed by finding the average metric value in the 5 min prior to
resuscitation compared to the final 5 min of the whole blood resuscitation event to quantify
the change resulting from the resuscitation phase on each predictive metric as well as MAP.

Statistical analysis was performed to assess significant differences between each pre-
dictive model for AUROC, hemorrhage prediction time, and resuscitation responsiveness.
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This was done using Prism 10.3 (GraphPad, La Jolla, CA, USA). Normality was assessed by
Shapiro-Wilk tests, and portions of each dataset were found to be non-normally distributed.
As such, Friedman’s tests were used to compare datasets with the data from each swine
paired across all metrics. A post-hoc Dunn’s test was used to compare CRM-DL, CRM-ML,
BLVM, PEBL, HemArea, and MAP groups for AUROC, hemorrhage prediction time, and
resuscitation responsiveness. p-values below 0.05 were considered significant, and a table
of differences between each statistical test is summarized in Supplementary Tables S1–S3.

3. Results

This section details the development and results for each predictor ML model—BLVM,
PEBL, HemArea, CRM—separately, followed by comparative performance results based
on hemorrhage prediction and resuscitation tracking time.

3.1. Blood Loss Volume Metric Detrended vs. Non-Detrended Training

For the BLVM metric, ML models were developed in separate instances using non-
detrended data and detrended data in a 12 LOSO cross-validation setup as described
above. The models were then tested on both features extracted from the detrended and
non-detrended arterial waveform to compare the average R-Squared and RMSE results.
The ML models developed using non-detrended data had an R-Squared of 0.974 and 0.660
when tested on features extracted from non-detrended and detrended arterial waveforms,
respectively. The RMSE values of the non-detrended ML models were 0.045 and 0.165 for
non-detrended and detrended features, respectively. The ML models developed using
detrended arterial waveform data had an R-Squared of 0.671 when tested on detrended
features and 0.736 when tested on non-detrended features. The RMSE value of the models
tested on detrended features was 0.162, while the RMSE value of the non-detrended features
was 0.133. A summary of the BLVM R-Squared and RMSE metrics is shown in Table 1.

Table 1. Average R-Squared and RMSE values from ML models developed using blind non-detrended
and detrended waveforms on features extracted from non-detrended and detrended waveforms.

Non-Detrended ML Model,
Non-Detrended Features

Non-Detrended ML Model,
Detrended Features

Detrended ML Model,
Detrended Features

Detrended ML Model,
Non-Detrended Features

R-Squared RMSE R-Squared RMSE R-Squared RMSE R-Squared RMSE

0.974 0.045 0.660 0.165 0.671 0.162 0.736 0.133

Blind prediction result differences were evident between using non-detrended and
detrended datasets with the ML models developed using non-detrended data for BLVM,
as shown in Figure 2. Figure 2a demonstrates the blind prediction of BLVM using a non-
detrended ML model and non-detrended features and has a high correlation with the
ground truth values in the baseline, hemorrhage, and hold regions, with a slight decrease
in prediction accuracy occurring in the resuscitation region. Figure 2b demonstrates the
blind prediction of BLVM using a non-detrended ML model and detrended features. These
predictions tracked overall trends in the baseline, hemorrhage, hold, and resuscitation
regions, but were less accurate overall when compared to the ground truth values. The
overall correlation in all regions still exists, but the correlation was worse when removing
overall trends in the data from which the features were extracted.

Blind prediction result differences were evident between using non-detrended and de-
trended datasets with the ML models developed using detrended data for BLVM, as shown
in Figure 3. Figure 3a demonstrates the blind prediction of BLVM using the detrended
ML model and detrended features. The model prediction has an overall correlation with
the ground truth, though margins of error exist throughout, with an increase occurring in
the resuscitation region, resulting in the features tracking with less accuracy in this region.
Figure 3b demonstrates the blind prediction of BLVM using a detrended ML model with
non-detrended features. The overall correlation between the predictions and the ground
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truth was still present, with margins of error increasing in the baseline and the resuscitation
region, resulting in less accurate tracking in these regions.
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Figure 2. (a) ML model developed using non-detrended data tested on features extracted from
non-detrended data. (b) ML model developed using non-detrended data tested on features extracted
from detrended data.

3.2. Percent Estimated Blood Loss and Hemorrhagic Area

ML models to predict PEBL and HemArea were developed using non-detrended data
to test with blind, features extracted from non-detrended data. The average of the 12
LOSO cross-validation setup resulted in R-Squared and RMSE values of 0.958 and 0.030,
respectively, for the PEBL metric. The HemArea ML model had an R-Squared of 0.618 and
a normalized RMSE of 0.703. A summary of the R-Squared and RMSE values for the PEBL
and HemArea ML models can be seen in Table 2.

The ML models for predicting PEBL visually show a strong correlation when compared
to the ground truth, as shown in Figure 4a. PEBL increases throughout hemorrhage and
steadily drops once resuscitation starts. In Figure 4b, the predictions of the HemArea model
correlated with overall trends, particularly in the baseline and the hold region, including
the rapid oscillations during the hold. The HemArea predictions, however, have higher
margins of error in the hemorrhage and resuscitation regions. This indicated that this
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metric was more challenging to predict compared to the other metrics, BLVM and PEBL,
which had much stronger correlation scores.
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Table 2. Average R-Squared and RMSE values across 12 LOSOs of PEBL and HemArea predictions
versus their respective ground truth.

PEBL HemArea

R-Squared RMSE R-Squared RMSE *

0.958 0.030 0.618 0.703
* Normalized by the max value obtained during the LOSO process.

3.3. Compensatory Reserve Metric

Both CRM models displayed a decrease in compensatory reserve as the swine subject
underwent a hemorrhage event. The CRM-ML (Figure 5a) and CRM -DL (Figure 5b) models
both flatline during the hold region, as expected, since there was no longer an active bleed
occurring. There appeared to be an initial spike in both CRM models as the resuscitation
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was initiated, but this cannot be conclusive as the developed CRM models were trained only
until the point of HDD, which does not include hemorrhagic shock resuscitation. Overall,
both the CRM-ML and CRM-DL models perform as expected in the baseline through hold
region of the study, demonstrating evidence that the physiological similarities of swine and
humans may be applicable regarding CRM models previously developed.
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3.4. Model Predictive Performance Comparison

Next, overall performance for each metric was compared for early hemorrhage predic-
tion time and their ability to track changes due to fluid resuscitation. We first evaluated
each metric’s capability to distinguish non-hemorrhagic from hemorrhagic status during
the initial hemorrhage event via ROC analysis (Figure 6a). Overall, BLVM had the strongest
AUROC score at 0.998, with MAP and PEBL close behind at 0.979 and 0.951, respectively.
The lower-performing AUROC scores were for CRM, with the DL and ML versions at 0.777
and 0.861, respectively, and HemArea at 0.850. BLVM and PEBL AUROC were significantly
higher compared to CRM-DL, CRM-ML, and HemArea (summarized in Supplementary
Table S1).
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Hemorrhage prediction time was defined as when 100 straight readings were predicted
in the 5th or 95th percentile of the baseline reading (Figure 6b). CRM-ML had the slowest
prediction time at approximately 3000 s due to the metric often not reaching the prediction
threshold during the hemorrhage window, resulting in it being scored at the maximum
duration; all other metrics were significantly different from CRM-ML (summarized in
Supplementary Table S2). The quickest predictions were with BLVM and PEBL at 78.8 and
82.0 s, respectively, both quicker than the traditional metric MAP at 116 s. We also evaluated
how each predictive metric could be utilized for tracking the resuscitation phase of the
experiment. This was initially defined in this study as a ratio of values immediately after
resuscitation to immediately before resuscitation (Figure 6c). The strongest signal-to-noise
ratio was for BLVM at 9.70, but the coefficient of variation across predictions was large at
109% (Figure 6d). However, BLVM was significantly larger than CRM-DL, CRM-ML, and
PEBL (summarized in Supplementary Table S3). Conversely, MAP had the second highest
ratio at 1.82 and the lowest coefficient of variation at only 10.3%.
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4. Discussion

In both military and civilian trauma settings, timely definitive surgical control of
hemorrhage and appropriate fluid resuscitation to restore circulating blood volume remain
the most effective treatments for hemorrhagic shock, while delays to definitive care are asso-
ciated with worse outcomes [33]. However, the appropriate application of these treatments
requires the early and accurate identification of patients in impending hemorrhagic shock,
which may not be readily apparent by traditional vital signs. Thus, reliance on traditional
vital signs, such as blood pressure or heart rate, may delay the recognition of impending
hemorrhagic shock and, consequently, delay definitive surgical and resuscitative treatment,
leading to worse clinical outcomes. This could be especially important in the management
of patients with internal bleeding, such as hemothorax and intraabdominal-hemorrhage,
where ongoing blood loss may not always be readily apparent to clinicians. Addition-
ally, traditional vital signs may fail to accurately stratify patients by acuity, leading to
incorrect triaging of patients in mass casualty incidents when prioritizing patients for care
or evacuation is critical. Accordingly, we propose that these novel metrics may be able
to more accurately identify critically ill patients earlier than traditional vital signs, thus
allowing the appropriate selection of patients for intervention and the earlier application
of appropriate treatments, improving clinical outcomes compared to care that relies on
traditional vital signs.

For this primary motivation, we evaluated different ML approaches to develop meth-
ods to track metrics that can measure hemorrhagic blood volume loss and resuscitation
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during a hemorrhage, as well as detect the occurrence of a hemorrhagic event earlier than
traditional vital signs using a swine-controlled hemorrhage model. By tracking both hemor-
rhage and resuscitation, these advanced metrics could simultaneously assist in the accurate
diagnosis and targeted treatment of hemorrhagic shock, leading to better overall patient
outcomes. Two approaches were taken for this study—(i) evaluate previously developed
blood loss-based metrics using these new swine hemorrhage datasets and (ii) develop ML
models tuned for the swine hemorrhage and resuscitation datasets.

The previously developed ML feature selection framework was utilized to develop
models for the prediction of BLVM, PEBL, and HemArea, which were validated using a
LOSO cross-validation setup. This was critical due to the limited dataset size to conduct
blind subject testing with the maximum amount of noise to ensure models were not
overfitting noise and data artifacts. Overall, each metric showed success in tracking the
onset of hemorrhage as well as the resuscitation that followed. BLVM and PEBL showed
a higher goodness of fit metric between the ML prediction and calculated ground truth.
HemArea performed worse by comparison to these metrics but still generally tracked
the experimental phases. We previously calculated HemArea from BLVM; in this effort,
we predicted HemArea [16]. The reduced performance of this metric may be due to this
difference, and, thus, calculating of HemArea from BLVM may be a more suitable prediction
approach. Similarly, BLVM and PEBL provided earlier prediction time compared to MAP, a
more traditional metric for tracking hemorrhage onset, but HemArea took slightly longer
to detect hemorrhage. It is worth noting that all metrics provided much earlier hemorrhage
detection compared to results from our prior canine hemorrhage model (i.e., 12 min in
canines vs. 82 s in swine for PEBL). This is likely due to the splenectomy performed
in swine prior to hemorrhage, which reduced physiological compensation and was not
performed in canines. The canines likely had a larger compensatory reserve at the onset of
hemorrhage, allowing for more effective masking of an impending hemorrhage event.

Further work will be required to increase the correlation of HemArea to its ground
truth, likely by adding features that tend to correlate with HemArea based on the current
top-ranking features for HemArea. One approach will be to calculate HemArea from
BLVM predictions, as the BLVM predictive models had strong correlation scores to derive
HemArea more accurately as we have previously done [16]. In addition, spectral features
have been used for the estimation of cardiovascular parameters [34] and are currently not
used in the ML model development for this work. Adding these features may further
improve ML models for directly predicting HemArea. Future development of ML models to
track blood loss and resuscitation would entail using non-invasively obtained physiological
data, such as a photoplethysmography (PPG) waveform, as input to the feature extraction
framework developed in previous studies. Due to the PPG signal having fewer or no
overall trends like the arterial waveform data, the results from the metrics obtained from
the detrended arterial waveform may provide insight into the feasibility of transferring
this feature extraction framework into non-invasive methods. However, as observed in the
results, models that used detrended data generally performed worse than models using
non-detrended data. A range of limitations could have caused this shortcoming, including
a lack of subject variability and model complexity. This study utilized 12 different swine
subjects, where only 9 were used for training in the cross-validation setup. There is reason
to believe that 9 subjects were not sufficient for the model to generalize the data enough
to accurately track blind data. This issue has a straightforward solution—obtaining more
datasets from multiple different swine subjects—but protocols to do so are costly and
time-consuming.

We also evaluated the use of previously developed metrics for compensatory reserve
measurement. CRM was trained using hundreds of human subjects experiencing simulated
hemorrhage through LBNP exposure [35]. The original CRM model uses a DL framework,
but we have also previously evaluated the use of feature extraction and decision tree
models to track CRM in subjects undergoing an LBNP procedure to simulate central
hypovolemia [18]. Due to the similarities in physiology between humans and swine, we
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took both the DL and ML models trained using human data and made blind predictions
on swine datasets. This was also done because the point of decompensation, needed for
training the CRM model, cannot be readily defined in an anesthetized animal. While CRM
models showed trends for tracking hemorrhage onset, the results were more variable across
each swine subject, with lower signal-to-noise.

Further steps to address the limitations of this study would include addressing model
complexity. The boosted tree models were chosen for their efficiency, with the prospect that
they would be able to operate in real time. However, to effectively track blood loss, DL
may prove to be a more worthwhile approach. The boosted tree models require feature
extraction to be performed on the data, which led to the development and ranking of the top
20 features used in this study. While those top 20 features originated from a 4200+ feature
pool it is possible that an even greater feature pool exists, but this would require a higher
degree of expertise to derive additional features. This may lead to the use of CNNs, such
as the CRM DL model, for future development. The nature of performing convolutions on
a piece of data allows the model to extract features itself, and when trained adequately, the
model can rank the features necessary to track the data accurately. While CNN models can
certainly reach levels of complexity that could make them computationally burdensome
and unlikely to be used in real time, the power of even a single convolutional layer has the
potential to extract the necessary features from a waveform to make accurate predictions.

Finally, there are some limitations in using swine as a research model for humans.
While swine share many physiological similarities with humans, they are still a different
species, leading to subtle but important differences. Since machine learning algorithms are
something of a “black box”, it is not immediately clear what aspects of swine physiology
the algorithms are using to determine blood pressure, and it is therefore unclear whether
the algorithm could make the leap from one species to another. Still, large animal research
provides an avenue for robustly demonstrating proof of concept for these machine learning
approaches, such that even if the algorithms themselves cannot translate directly from
one species to another, the methods used to develop those algorithms should be able to
translate between species.

5. Conclusions

In conclusion, ML algorithms developed for tracking blood loss during hemorrhage
were successfully created using a swine model, whose physiology is similar to humans,
with accurate correlations and earlier prediction times compared to traditional vital signs.
These metrics allowed for earlier, more consistent prediction of hemorrhage compared to
traditional metrics such as blood pressure. If improved blood loss prediction metrics can be
established for hemorrhage and resuscitation, surgical intervention to control hemorrhage
and goal-directed fluid resuscitation to restore volume status could be administered earlier
than current gold standards, improving patient outcomes during civilian trauma and
combat casualty care.

6. Patents

J.M.G. and E.J.S. are co-inventors on a filed provisional patent owned by the U.S.
Army related to the blood loss volume metric and other similar predictive models (filed 14
August 2023).

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/bioengineering11111075/s1, Table S1: Statistical analysis
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rhage prediction time metric for each predictive model; Table S3: Statistical analysis for resuscitation
to hemorrhage score ratio for each predictive model.
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