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Abstract: Previous studies have observed alterations in excitation–contraction (EC) coupling during
end-stage heart failure that include action potential and calcium (Ca2+) transient prolongation and a
reduction of the Ca2+ transient amplitude. Underlying these phenomena are the downregulation
of potassium (K+) currents, downregulation of the sarcoplasmic reticulum Ca2+ ATPase (SERCA),
increase Ca2+ sensitivity of the ryanodine receptor, and the upregulation of the sodium–calcium
(Na=-Ca2+) exchanger. However, in human heart failure (HF), debate continues about the relative
contributions of the changes in calcium handling vs. the changes in the membrane currents. To
understand the consequences of the above changes, they are incorporated into a computational
human ventricular myocyte HF model that can explore the contributions of the spontaneous Ca2+

release from the sarcoplasmic reticulum (SR). The reduction of transient outward K+ current (Ito) is
the main membrane current contributor to the decrease in RyR2 open probability and L-type calcium
channel (LCC) density which emphasizes its importance to phase 1 of the action potential (AP) shape
and duration (APD). During current-clamp conditions, RyR2 hyperphosphorylation exhibits the least
amount of Ca2+ release from the SR into the cytosol and SR Ca2+ fractional release during a dynamic
slow–rapid–slow (0.5–2.5–0.5 Hz) pacing, but it displays the most abundant and more lasting Ca2+

sparks two-fold longer than a normal cell. On the other hand, under voltage-clamp conditions,
HF by decreased SERCA and upregulated INCX show the least SR Ca2+ uptake and EC coupling
gain, as compared to HF by hyperphosphorylated RyR2s. Overall, this study demonstrates that the
(a) combined effect of SERCA and NCX, and the (b) RyR2 dysfunction, along with the downregulation
of the cardiomyocyte’s potassium currents, could substantially contribute to Ca2+ mishandling at the
spark level that leads to heart failure.

Keywords: calcium; heart failure; calcium sparks; ventricular myocyte; cardiac cell; ionic currents;
RyR; LCC; Ca2+; computational modeling; heart; excitation contraction coupling

1. Introduction

The complex and coordinated mechanism of calcium-induced calcium release (CICR)
in ventricular cardiomyocytes has been rigorously studied to better understand the pro-
cesses behind excitation–contraction coupling (ECC) in cardiac cells [1]. In a healthy human
heart, the process of contraction starts with the opening of the voltage-dependent calcium
(Ca2+) channels also called dihydropyridine receptors (DHPRs) or the L-type calcium
channel (ILCC). The opening of DHPRs with depolarization, however, is insufficient to
induce a full contraction. This small influx of Ca2+ from the ILCC induces a Ca2+ release
from the sarcoplasmic reticulum (SR) through the ryanodine receptors (RyR2s) in a process
termed calcium-induced calcium release (CICR). This depolarizing Ca2+ influx in CICR
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activates the RyR2s which release Ca2+ from the sarcoplasmic reticulum into the myoplasm
([Ca2+]myo) which results in a myocyte contraction through the shortening of the sarcomere.
In the repolarization process, SR Ca2+ levels are then re-sequestered by the SR Ca2+–ATPase
(SERCA) from the myoplasm. Excess Ca2+ is further extruded from the myoplasm by
the sodium–calcium exchanger (Na+–Ca2+; INCX) which renders the cardiac cells into a
“relaxed” state.

On the other hand, asynchronous or erratic Ca2+ cycling is a prominent characteristic
of a failing human heart. Impaired SERCA function and enhanced INCX activity have been
proposed as causes of reduced SR Ca2+ load notable in cases of heart failure (HF) [2]. The
dysfunction of Ca2+ dynamics during heart failure leads to early and/or delayed afterdepo-
larizations (EADs and/or DADs) initiates ventricular arrhythmia [3,4]. These phenomena
exhibit secondary depolarization occurring before or after a complete action potential (AP)
repolarization. These arrhythmias can lead to ventricular tachycardia which often serves
as an immediate precursor to ventricular fibrillation which has been identified as a major
cause of sudden cardiac death [5]. While these observations are generally accepted in recent
studies, further understanding of excitation–contraction coupling dynamics during these
conditions is needed.

Impaired SERCA vs. Hyperphosphorylated RyR2

The mechanisms of heart failure continue to be a subject of discussion and disagree-
ment in the literature. One perspective, as previously mentioned, is the combined effect of
decreased SERCA and increased INCX activities. Another is the diastolic SR Ca2+ leak via
calstabin2-depleted “leaky” RyR2 channels caused by phosphorylation [2,6]. The latter has
been increasingly recognized as an important contributor to altered Ca2+ handling in failing
hearts. Relatedly, the amplitude and rate of decay of both contraction and the underlying
systolic Ca2+ transient ([Ca2+]i) are reduced [6]. A noteworthy study by Jiang et al. states
that RyR2 activities in both failing and healthy human and canine hearts appear structurally
and functionally normal, meaning that their differences in RyR open probabilities are not
statistically significant [7]. This is also supported by the findings of Stange et al. wherein
single site RyR2 phosphorylation does not substantially change between wild-type and
mutant RyR2s [8]. Moreover, studies by Lehnart et al. and Marx et al. suggest that hyper-
phosphorylated RyR2 channels are associated with cardiac dysfunction and arrhythmias
which overall contributes to defective Ca2+ regulation in failing hearts [9,10]. Ultimately, the
mechanisms behind the reduction of SR Ca2+ content and impaired cardiac contractility can
be traced from the following: (a) the impaired SERCA activity accompanied by increased
INCX, (b) an increased Ca2+–RyR2 sensitivity or hyperphosphorylated RyR2 channels, or
(c) both conspiring to deplete the SR Ca2+ [2,11]. Ultimately, the mechanisms behind the
reduction of SR Ca2+ content and impaired cardiac contractility can be traced from: (a) the
impaired SERCA activity accompanied by increased INCX, (b) an increased Ca2+–RyR2
sensitivity or hyperphosphorylated RyR2 channels, or (c) both conspiring to deplete the SR
Ca2+ [2,11]. A reevaluation of these factors is emphasized and suggested by the works of
Eisner and Trafford [6].

Although multiple observations have been reported in targeting principal mecha-
nisms of heart failure, further investigation at the level of the Ca2+ spark is needed. This
study presents an overall comparison of Ca2+ dynamics and sparks between SERCA/NCX
and RyR2 phosphorylation in failing human ventricular cardiomyocytes, along with its
attributable changes in AP morphology and EC coupling gain. The force–frequency rela-
tionship between healthy and failing hearts through predicted steady-state force and SR
fractional release are also further explored in this research.

2. Materials and Methods
2.1. Model

Simulations were performed using a previously published stochastic human ventricu-
lar cardiomyocyte model [12]. The cardiomyocyte’s calcium-release units (CRUs) in the
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cardiac dyad consist of L-type calcium channels (LCCs) in t-tubules which are co-localized
with ryanodine receptors (RyR2s; type 2 in cardiac cells) in a junctional SR (JSR) membrane.
The 20,000 CRUs in this model are composed of 9 individual LCCs and 49 RyRs that func-
tion as couplons and they are intricately connected through the complex organization of
the network SR (NSR) which stores the main intracellular calcium in cardiac muscle cells.
Moreover, the excitation–contraction coupling scheme incorporates 3-state RyR and 6-state
L-type Ca2+ channel mode switching that adapt to various calcium dynamics and action
potential morphology consistent with experimental findings (see [12] for further details).

2.2. Statistical Analysis

Analysis of Variance (ANOVA) and pairwise comparisons using Student’s paired
t-Tests as specified were conducted using Microsoft Excel (Redmond, WA, USA). Figures
were generated using R Software’s (version 2023.06.1, Vienna, Austria) base, stats, and
ggplot2 packages, MATLAB 2016a (Natick MA), and IDL® Software (Ballsbridge, London)—
L3HarrisGeospatial. Statistical tests were considered statistically significant at p < 0.05.

2.3. Pacing Protocol

Simulations and analyses were performed at 1 Hz for 20 s to achieve steady state
unless specified otherwise. Dynamic pacing was conducted using slow–rapid–slow pacing
at 0.5 Hz–2.5 Hz–0.5 Hz for determining the force–frequency relationship. Voltage-clamp
experiments were conducted in both control and heart-failure conditions: measurements of
Ca2+ dynamics were activated by a series of 0.2 s depolarizing steps (VTest) from −40 to
+30 mV in increments of 5 mV.

2.4. Force–Frequency Relationship and SR Ca2+ Fractional Release

Sun and Irving [13] described the molecular basis of the force–calcium relation in
the heart muscle. Changes in [Ca2+]i can directly affect cardiac contractility which helps
distinguishing factors in a defective cardiac cell. The co-operative mechanism of Ca2+

dependence in force generation was shown to be an intrinsic property of the thin filaments
(i.e., actin, tropomyosin, troponin) during contraction. This Ca2+ dependence of isometric
force generation was experimentally observed using demembranated ventricular trabec-
ulae by Sun et al. [14] The predicted force using intracellular Ca2+ is described by the
Hill equation:

force =
1

1 + 10nH(pCa−pCa50)
(1)

where nH (ranging 3 to 4) is the Hill coefficient, pCa represents peak systolic [Ca2+]myo

in log scale (pCa = −log10

[
Ca2+

]
myo

), and pCa50 (ranging 5.5 to 6.0) corresponds to

half-maximum force. For this study, nH = 3 and pCa50 = 6 were used in computing the
predicted force for each peak [Ca2+]myo concentration.

On the other hand, the fraction of the SR Ca2+ content released at a twitch, known as
“fractional SR Ca2+ release”, is an important parameter for assessing the efficiency of excitation–
contraction coupling under physiological and pathophysiological conditions [15,16]. The
global SR Ca2+ depletion amplitudes in both diastolic and systolic phases of the SR Ca2+

are recorded in this study, and the fractional release is computed by:

Fractional Release =
[Ca2+]SR,diastolic − [Ca2+]SR,systolic

[Ca2+]SR,diastolic
(2)

3. Results
3.1. Simulated Excitation–Contraction Coupling Changes in Heart Failure

Alterations in Ca2+ handling contribute to diminished contraction and relaxation in
the event of heart failure (Figure 1). Ca2+ homeostasis is essential to a normal functioning
heart; however, abnormalities in Ca2+ dynamics are key determinants in the development
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of arrhythmogenic disorders in the failing heart. In CICR, extracellular calcium entry into
the cell through ion channels in the T-tubules leads to an increase in calcium concentration
in the dyadic subspace. The model in this study examined how subspace [Ca2+]i changes
between control and heart-failure conditions by implementing previously observed changes
in ion transport proteins [17–19]. The overall simulation settings are summarized in Table 1
simulate end-stage heart failure. The K+ currents (Ito, IK1, IKr, and IKs) were downregulated
in all cases of failing hearts in this study, specifically ventricular samples from explanted
hearts from end-stage HF patients undergoing transplantation and similar cases [20–22].
NCX protein expression was increased by 100% and SR Ca2+ ATPase (SERCA) protein
was decreased by 30% [19,23]; and RyR2 Ca2+ sensitivity was increased by 50% to mimic
increased activity from chronic hyperphosphorylation [9,24–27]. Overall, these ionic effects
lead to impaired cellular functions observed in failing heart cells.
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Figure 1. Comparisons of normal cardiac cell conditions vs. heart failure. To ensure steady state
conditions, 20 s simulations at 1 Hz were performed. (A) APD prolongation with longer plateau
phase due to influx of Ca2+. Early afterdepolarizations (EADs) were also observed through the
oscillations of the membrane potential. (B) Ca2+ concentration displays an incomplete extrusion from
the myoplasm. (C) RyR2 open probability is decreased during heart failure, and small openings were
observed during EAD occurrence. (D) SR Ca2+ also displays incomplete recovery, mainly due to
decreased SERCA activity and increased NCX expression.
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Table 1. Normal and heart-failure simulation settings.

Parameter Normal Heart Failure Reference

IK1
Inward rectifier potassium current GK1 = 0.238 mS/µF Reduced 56% [20,28]

Ito
Transient outward potassium current Gto = 0.618 mS/µF Reduced 67% [20,28]

IKr
Rapid delayed rectifier potassium current GKr = 0.0488 mS/µF Reduced 20% [22,29]

IKs
Slow delayed rectifier potassium current GKs = 0.0224 mS/µF Reduced 28% [20]

RyR2 sensitivity k+ryr = 14 (unitless) Increased 50% [9,10,27]
Ap

SERCA pump concentration 150 µM Reduced 50% [19,30]

INCX
Sodium–calcium exchanger GNCX = 1000 µA/µF Increased 100% [23]

Simulations at 1 Hz pacing displayed APD prolongation and a loss of the distinctive
“notch” in the action potential shape during HF similar to the experiment (Figure 1A).
Multiple EADs were also observed during a 20 s simulation of heart failure under slow
0.5 Hz pacing (Appendix A Figure A1) which was also demonstrated by Li and colleagues
in canine hearts [31] where EADs occur more than 40% on average during a slow 0.5 Hz
frequency. On the other hand, myoplasmic Ca2+ concentration displays a slower decay due
to attenuated sequestration back to the SR due to reduced SERCA function (Figure 1B); a
small “notch” can also be observed in HF (red) and this phenomenon was demonstrated
in experimental studies [32–34]. The RyR open probability shows decrease peak and
more dispersed activation late in the AP under HF conditions (Figure 1C) which is further
discussed in the next section. Lastly, because SR Ca2+ influx is directly influenced by SERCA
in transporting Ca2+ from the myoplasm—the SERCA is impaired in this case—overall
levels of SR Ca2+ concentration are decreased (Figure 1D), which can account for the
reduced RyR open probability in spite of the increased Ca2+ sensitivity because of RyR
phosphorylation. Furthermore, the decreased SR Ca2+ content also reduces the driving force
for Ca2+, contributing to the reduced amplitude of the Ca2+ transient (Figure 1B). These
results are consistent with the early work of Vermeulen and colleagues [35,36] using human
ventricular trabeculae from patients with terminal heart failure and further simulation
studies from Priebe and Beuckelmann [37].

3.2. Contributions of K+ Currents to Heart-Failure Phenotype

Several experimental studies have shown varying degrees of protein expression
of the repolarizing K+ currents in end-stage, diseased, and failing human ventricular
cells [20,22,28]. Specifically, the inward rectifying (IK1), transient outward (Ito), and the
slow delayed rectifier (IKs) K+ currents are downregulated in all cases of cells exhibiting
abnormal histology. The downregulation of the rapid delayed rectifier (IKr) K+ current in
failing human ventricular myocytes remains controversial in the literature due to statisti-
cally non-significant results, but nevertheless, a shift in the hERG1a:hERG1b isoform stoi-
chiometry at the protein level was observed [22] (further analysis of this case is explained
in Section 4. Discussion). This study therefore includes its potentially arrhythmogenic
contribution to APD prolongation.

The differential expressions from the reported voltage-dependent K+ currents in heart
failure could provide defining characteristics in the action potential and calcium dynamic
profiles in cardiac cells. From the data in Table 1, each respective downregulation of the
K+ currents was factored into the reduction of conductance without the effects of SERCA,
INCX, and RyR modulations (Figure 2A). All K+ current blocks can potentially prolong the
APD, but Ito shows a prominent effect on the “notch”, which is a distinctive feature of the
human AP. This effect is expected because Ito is responsible for the repolarizing current



Biomolecules 2024, 14, 1371 6 of 23

in phase 1 of the action potential, but its other consequences are also observed in other
channels and cellular Ca2+ concentrations.
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One of the known arrhythmia mechanisms in cardiac hypertrophy and heart failure is
a slowed Ca2+ transient [38,39]. However, there is little information on the possible effects
of K+ currents in the prolonged time-to-peak of intracellular Ca2+ from the SR. Hence,
we tested each of the K+ current modifications as previously stated in Table 1 simulation
settings. We observed that Ito shows a notable effect on slowed time-to-peak Ca2+ transient
from ~0.02 to ~0.04 s (Figure 2B). ILCC peak density also decreased approximately 30–35%
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(Figure 2C) from the effects of downregulated Ito alone. This occurs because the loss of
the notch (increased membrane potential) reduces the driving force for Ca2+. Moreover,
the reduction in ILCC reduces the number of dyads activated and thus reduces RyR2 open
probability by ~20–25% (Figure 2D). This contributes to the delayed kinetics of SR Ca2+

release into the cytosol (Figure 2E) and occurs mainly through the reduction in Ito compared
with other repolarizing currents.

Figure 3 explores force–interval relations. Because of the decreased repolarizing K+

currents shown in Figure 2B, the Ca2+ transient also exhibits a small increase in amplitude,
with the exception of Ito’s effects (in blue). The APD is generally prolonged due to these
effects and more Ca2+ is transported inside the cell.
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Figure 3. Dynamic slow–rapid–slow pacing (0.5–2.5–0.5 Hz) [Ca2+]myo concentrations between
normal, HF with K+ block (i.e., Ito, IK1, IKr, and IKs), and HF without K+ block. To ensure steady state
conditions, 45 s simulations were performed. (A) Erratic Ca2+ transient peaks were observed during
0.5 Hz pacing in failing hearts. HF with reduced K+ currents (red) slightly elevated the [Ca2+]myo

amplitude during high pacing (2.5 Hz) as compared to normal (black) and HF without K+ reductions
(yellow). (B) Predicted force using the same color schemes. HF with reduced K+ currents (red) exhibit
higher predicted force using peak systolic [Ca2+]myo concentrations in rapid pacing.

The next set of simulations uses the slow–rapid–slow pacing (0.5–2.5–0.5 Hz) proto-
col to explore excitation–contraction coupling potentiation during rapid pacing. In the
context of Ca2+ dependence of isometric force generation using peak systolic [Ca2+]myo
(Equation (1)), dynamic slow–rapid–slow pacing (Figure 3) shows that the potentiation of
the Ca2+ transient and force that occurs with rapid pacing is attenuated with the changes to
RyR sensitivity, SERCA, and NCX (red) vs. normal healthy myocytes. The changes in the
membrane K+ current attenuates the potentiation during the rapid pacing at 2.5 Hz. High
pacing of 2.5 Hz was chosen as the peak frequency for this simulation, which was observed
to reach the maximal developed force in humans from experimental recordings [40].
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3.3. RyR2 Hyperphosphorylation vs. Impaired SERCA and Upregulated NCX

Competing hypotheses of key determinants in the altered Ca2+ cycling of failing hearts
have long been debated. Maladaptive protein kinase hyperphosphorylation of RyR2 in
failing hearts alters channel function, which may cause SR Ca2+ depletion and its diastolic
release [2]. On the other hand, the widespread agreement in earlier studies suggests that a
decreased SR Ca2+ content was due to a decrease in SERCA coupled with an increase in
NCX, which decreases the capacity of the SR to accumulate calcium [41]. However, they
suggest that the relative contributions of changes of SERCA and RyR2 to heart failure be
reevaluated [6], which will was done in this study.

In pathological conditions of failing hearts, substantial evidence suggests that cardiac
contractility is associated with the reduction in SR Ca2+ at the cellular level [3,42–44]. How-
ever, little is known about its consequences for the functionality of the calcium-releasing
units (CRUs). The next set of simulations in Figure 4 compares normal healthy myocytes to
failing myocytes (red) compared to normal healthy myocyes (black). There are contribu-
tions for each of the changes to Ca2+ dynamics (increased RyR Ca2+ sensitivity, decreased
SERCA expression, and increased NCX expression). In each of the simulations, the changes
(except Normal) to the K+ current are included. RyR open probability and ILCC density are
decreased (Figures 4A and 4B, respectively). Furthermore, because hyperphosphorylated
RyR2s is a known physiological abnormality in HF, its activity is presumed to have direct
anomalous behavior as part of the CRU. Therefore, peak amplitudes of RyR2 open proba-
bility and the ILCC current were measured (Figures 4C and 4D, respectively). We observe
that the increased RyR sensitivity can decrease L-type calcium channel density (Figure 4D,
blue bar) more than its own open fraction (Figure 4C, blue bar). A single-factor ANOVA
test for independent measures also reveals that each of the HF-related changes of measured
RyR and LCC amplitudes are significantly different (p < 0.05) from a normally functioning
CRU. On the other hand, it is important to note that the overall Ca2+ levels in SR are
decreased in HF. However, variation in levels of SR Ca2+ concentrations are consistent
with each of the effects of hyperphosphorylated RyR2 versus impaired SERCA, and NCX
(Figure 4E). It could also be inferred that the ILCC peaks (Figure 4D) affect the allowable
Ca2+ released by the SR during systole—the lowest peak of ILCC by phosphorylated RyR
alone also corresponds to the least SR flux into the cytosol (Figure 4E).

In order to generalize this inference, we applied the same dynamic slow–rapid–slow
pacing (0.5–2.5–0.5 Hz) in the network SR with the same isolated mechanisms (Figure 5):
normal cardiomyocyte (Figure 5A), decreased SERCA activity and upregulated NCX
(Figure 5B), hyperphosphorylated RyR2 (Figure 5C), combination of both cases (Figure 5D),
and each of their respective SR Ca2+ fractional releases (Figure 5E). Once again, in all cases
except Normal, the K+ changes reflect those seen in HF. On an important note, a diminished
Bowditch or staircase phenomenon is a hallmark of heart failure [45]. This diminished
Bowditch effect is observed in Figure 5B,D, largely caused by the downregulated SERCA
and upregulated NCX.

3.4. Voltage Dependence and ECC Gain

Gain is commonly referred to as a CICR amplification factor assessed through voltage
dependence of affected currents and Ca2+ transients in the myoplasm [46]. Furthermore, it
has been previously demonstrated experimentally that altered SR Ca2+ content can dramat-
ically affect E-C coupling gain [47], and this phenomenon was presumed to be an effect of
intra-SR Ca2+ on RyR2 gating [48]. Through a voltage-clamp protocol of 0.2 s depolarizing
steps (VTest) from −40 to +30 mV, various SR Ca2+ fluxes and associated currents were
obtained. Under voltage-clamp conditions, it shows that (1) hyperphosphorylated RyRs
contribute more to the SR Ca2+ release flux than (2) upregulated INCX and decreased SERCA
activity, and (3) all combined cases (i.e., hyperphosphorylated RyR, upregulated INCX, and
decreased SERCA) for HF (Figure 6A). It is important to note that the contraction of striated
muscle is triggered by the opening of RyR Ca2+ release channels in the SR membrane in
response to depolarization of the transverse invaginations of the plasma membrane by the
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T-tubules [49]. Hence, increased sensitivity of RyR2s in the heart muscle during the varying
degrees of incremental increase in voltage is expected to release more Ca2+ from the SR.
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Figure 4. Comparisons of normal cardiac cell conditions vs. heart failure. To ensure steady state
conditions, 20 s simulations at 1 Hz were performed. (A) Peak RyR2 open probability and (B) L-type
calcium channel is generally decreased with each HF-related change, i.e., (1) RyR hyperphosphoryla-
tion (blue), (2) downregulated SERCA and increased NCX (green), and (3) combination of both (red)
mechanisms. (C) On average, RyR2 open probabilities and (D) L-type calcium channel densities are
significantly different from normal conditions in HF-related changes (PANOVA < 0.05). (E) Reductions
in SR Ca2+ concentrations, both at systole and diastole, are observed in heart failure. In all cases
except Normal, the K+ changes reflect those seen in HF. The legend on the bottom shows the increase
or decrease of the different components.
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Figure 5. SR Ca2+ dynamic pacing (0.5–2.5–0.5 Hz) and fractional release. To ensure steady state
conditions, 45 s simulations were performed. (A) Normal cardiomyocyte. (B) Due to impaired SERCA
to re-sequester Ca2+ back into the SR and accompanied with stronger extrusion of Ca2+ by NCX,
SR Ca2+ concentrations stay at 800 µM during 2.5 Hz pacing. (C) Increased RyR sensitivity shows
diminished amplitudes between systole and diastole, but still exhibits a staircase effect. (D) the
combined effects of three HF-related Ca2+ regulatory proteins display the absence of the Bowditch
effect, which could be related to the deficient cardiac output seen in failing hearts. (E) SR Ca2+

fractional release is generally increased in cases of HF, but hyperphosphorylation of RyR2 alone
accounts for lower Ca2+ release (blue). In all cases except Normal, the K+ changes reflect those seen
in HF. The legend on the bottom shows the increase or decrease of the different components. The
computed fractional release from the diastolic and systolic [Ca2+]SR values from simulation results
are in the Supplemental Materials: HF Supplementary Materials.rar.

On the other hand, E-C coupling in cardiac cells occurs by CICR where a small Ca2+

current (ICa,L) through the L-type Ca2+ channels locally controls a larger Ca2+ release from
the SR via RyR2s [50]. In the early studies of failing rabbit heart cells, ICa,L’s current
is decreased from −10 mV to positive membrane potentials due to the upregulation of
INCX [51]. This phenomenon was observed in simulated HF; however, the ICa,L current can
also increase in hyperphosphorylated RyR2s (Figure 6B). Data on ICa,L has been reviewed
in detail in early studies of Hart [52] which described that ICa,L may be increased in mild
hypertrophy, unchanged in moderate degrees of hypertrophy, and reduced in severe
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hypertrophy with failure [53]. Although the relationship between mechanisms of ECC gain
and ICa,L’s voltage dependence cannot be directly attributed to the cases of hypertrophied
hearts, this could be an area of research worth pursuing.
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the SR Ca2+ release channel and a scaffolding protein that localizes key regulatory proteins 
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Figure 6. Excitation–contraction coupling gain. (A) The amount of SR Ca2+ release (in µM)—
hyperphosphorylated RyR2s (blue) generally increase release flux as compared with impaired SERCA
and upregulated NCX (green). (B) Peak ICaL (in µA) observed—upregulation of INCX decreases the
amount of Ca2+ current (green). However, as RyR2 is 50% more sensitive, more Ca2+ is released from
the SR (blue). (C) ECC gain is altered at negative (−40 mV to −25 mV) and at positive potentials
(from 15 mV and above). (D) RyR open probabilities (PO,RyR) are statistically insignificant and are
also observed in experimental findings by Jiang et al. in failing canine and human hearts [7]. (E) A
50% reduction in SERCA activity accounts for the least Ca2+ sequestration into the SR. (F) Systolic
SR Ca2+ levels are decreased in HF due to the decreased SR Ca2+ content and other relative HF
conditions. The legend on the bottom shows the increase or decrease of the different components.

The measurement of excitation–contraction coupling gain is computed as the ratio of
peak SR Ca2+ release flux and the peak flux of [Ca2+]i across the cell membrane [47,54,55].
This study aims to differentiate each HF’s underlying mechanism and the measurement of
the EC coupling gain shows that increased RyR2 sensitivity corresponds to the highest gain
in negative membrane potentials (Figure 6C). Changes in gain with other pathological and
experimental conditions have been used to make inferences about the microscopic struc-
tures responsible for Ca2+ sparks [50], and more importantly, defective EC coupling cardiac
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hypertrophy and heart failure has been previously described [56] (relative characteristics of
calcium sparks are discussed in the next section).

Hyperphosphorylation of RyR2s also minimally affects its open probability (Figure 6D).
This statistically insignificant finding was previously reported by Jiang et al. [7] in the
experimental recordings of failing canine and human hearts. To further support this
finding, we conducted paired Student’s t-tests to mimic an experimental situation of a
failing human cardiac cell from a single sample with different HF conditions, and all yielded
to insignificant results (p > 0.05). This minimal effect to the RyR open fraction is because
RyR activation is not sensitive to levels of Ca2+, but rather to their (a) proximity to the
L-Type calcium channels [57], and (b) RyR2 adaptability when exposed to higher Ca2+ [58].

Moreover, because human cardiac cells rely on the SERCA pump to a lesser degree
(~60%) than rodents (~90%), limited information is known in the direct implication of a
reduction in SERCA activity in human failing hearts for overall contractile function [59].
This study demonstrates that the voltage dependence of SR Ca2+ reuptake by SERCA is
directly related to its functionality, wherein the 50% reduction in SERCA activity in HF
accounts for the least sequestration of Ca2+ back into the SR (Figure 6E, green line). And as
previously described in Figure 4E, SR Ca2+ content is generally reduced in failing hearts and
its systolic levels can vary with each underlying pathophysiological condition (Figure 6F).

3.5. Calcium Sparks in Failing Hearts

Ca2+ sparks are discretized calcium release events due to random and collective open-
ings of the RyR2 channels clustered in a calcium release unit (CRU). On a fundamental
level, these sparks result from spontaneous openings of single SR calcium-release channels
supported by ryanodine-dependent changes of spark kinetics [60]. The RyR is both the SR
Ca2+ release channel and a scaffolding protein that localizes key regulatory proteins such
as calmodulin, calsequestrin, and other proteins at the luminal SR surface [1]. Local CRU
Ca2+ sparks were investigated using the mathematical model of Williams et al. [61] which
includes spatial nanodomain determinants of individual CRU organization and a realistic
number of 20,000 CRUs. The systolic [Ca2+]i transient activates L-type Ca2+ channels at
the surface membrane and at transverse tubules, which then elevates [Ca2+]i locally in the
dyadic subspace compartment between the t-tubular and terminal SR membranes. This sit-
uation is amplified when RyR2 clusters are activated by a locally elevated subspace [Ca2+]i
during CICR (see ref. [62] for a physiological review). This spontaneous local increase in
intracellular calcium concentration from the SR produces calcium sparks (Figure 7A).

On the other hand, in early studies of cardiomyopathic ventricular cells, it was deter-
mined that failing ventricular cells were intrinsically predisposed to early afterdepolariza-
tions and spontaneous depolarizations [63,64]. EADs have been linked to the pathogenesis
of long Q-T syndrome and this reflects an increased propensity for abnormal repolariza-
tion and prolonged APD-related arrhythmias [63]. Computational studies suggest that
the changes in heart failure, such as APD prolongation and an increase in late phase of
Ca2+ release during AP, result in an increased diastolic spark rate [65] (Figure 7B). To
illustrate this phenomenon, we paced the HF model in 0.5 Hz because the occurrence
of EADs is at least 40% higher in lower pacing observed in failing cardiomyocytes [31]
(Appendix A Figure A1).

Early investigations have emphasized that each RyR cluster is associated with multiple
LCCs observed in both rat and rabbit ventricular cells [50,66,67], and results suggest that
the small ICaL could be a highly effective trigger of SR Ca2+ release. Accompanied during
this SR Ca2+ release is the occurrence of calcium sparks which was discovered through the
ryanodine-dependent changes of spark kinetics [60]. During systole in HF, SR Ca2+ levels
are generally decreased (Figure 8A). However, differences in the average number of sparks
seem to depend on the underlying pathophysiological condition in HF. Increased RyR2
sensitivity exhibits the most abundant number of sparks (Figure 8B) and displays a more
lasting duration by two-fold longer than a normal cell (Figure 8C). This longer duration
could also be related to prolonged Ca2+ transient (see Appendix A Figure A2 for simulation
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results). In contrast, there is little or no notable difference among all the HF mechanisms on
each respective average spark peak (Figure 8D). On the same note, the variability of spark
characteristics observed during K+ block conditions only (devoid of SERCA, INCX, and
RyR dysfunction) are negligible (Appendix A Figure A3).
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Figure 7. Representative sample (0.1% of 20,000 CRUs) of detected calcium sparks in the local
subspace from 20 CRUs. Superimposed action potential from pacing at 0.5 Hz depicting relationship
between AP and Ca2+ sparks (Nsparks). (A) Ca2+ spark behavior in a normally functioning human
AP. Minimal Ca2+ leak was observed in the late phase of the AP during extrusion of Ca2+ ions in cell
repolarization. (B) Ca2+ spark behavior in heart failure with superimposed AP in the occurrence of
early afterdepolarization (EAD). An increase in diastolic spark rate is evident in the late phase of
the action potential, which causes APD prolongation and potential presence of EADs. The different
colors in the plots indicate the Ca2+ spark from different CRUs.
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normal and other HF conditions. (C) Similarly, increased RyR sensitivity prolongs spark duration.
(D) Modest differences in average spark peaks in all stated underlying cardiac cell impairment.
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4. Discussion

In cardiac-modeling studies, the increase in spontaneous Ca2+ leak in failing hearts is
simulated mainly through the increase in SR Ca2+ release by hyperphosphorylated RyR2,
decreased outward potassium currents, and impaired calcium-extruding pumps such as
SERCA and NCX. Accompanied with the reduced K+ currents, the cell then becomes
oversaturated with Ca2+, which prolongs the APD, and the increase in cytosolic calcium
is caused by the excessive calcium entry and reduced calcium efflux [68]. In contrast,
decreased RyR2 mRNA expressions were also observed in failing human hearts [69–71]
which helps explain the reduction of RyR2 open probability. Furthermore, in the context of
calcium dynamics, it was observed by Arnáiz-Cot and colleagues [72] that the heart failure
due to defective RyR2 led to a longer calcium transient decay, longer spark duration, and
decreased spark peak, which prove to be consistent in this study.

4.1. SERCA and INCX vs. RyR: Alterations in SR Ca2+ Content

The presence of EADs at low pacing (0.5 Hz) is also possible throughout the oscillation
of the membrane potential which re-depolarizes the myocyte due to the reduced outward
currents. If spontaneous CICR from the SR occurs before repolarization is complete, the
consequent stimulation of inward INCX may oppose and reverse repolarization [73]. In
comparison, SERCA transports two Ca2+ ions per ATP consumed, whereas extrusion by
NCX only pumps one Ca2+. The shift in competition from the SR Ca2+-ATPase toward
NCX also tends to limit SR Ca2+ loading in heart failure [74], hence lowering SR Ca2+

content recovery. Moreover, it was previously observed in experiments using isolated RNA
human left ventricular myocardium of 30 cardiac transplant recipients with end-stage heart
failure [75] that the overall expression of SERCA mRNA was diminished by 50%, thus
altering the Ca2+ handling that contributes to systolic and diastolic dysfunction in heart
failure patients.

During heart failure, RyR2s are hyperphosphorylated, which increases their sensitivity
to Ca2+. In the model, this is simulated by increasing the Ca2+ sensitive RyR opening rate,
thereby increasing open probability for a given subspace and SR Ca2+ level. However,
with the increased RyR open probability, there is more Ca2+ leak out of the SR, reducing
the SR load as shown by this model (Figure 2E black vs. blue traces and in previous
modeling and experimental work) [2,5,6,61,76]. A decrease in SR Ca2+ load can lead to a
decreased probability of sparks. In the simulations, there is a reduction in the peak RyR
open probability, but an increase in the RyR open probability (and number of Ca2+ sparks)
late in the action potential and during diastole. Hence, the total number of Ca2+ sparks
and non-spark leak increases in spite of a reduction in peak RyR open probability during
the AP.

Previously reported evidence suggests that cardiac contraction would be further
reduced if it were not for concomitant modulations to RyR2s, which sensitize release clusters
to release Ca2+ [77]. These SR Ca2+ alterations were observed and reported to increase Ca2+

spark frequency and fractional SR Ca2+ release during ECC in failing cardiomyocytes as
compared to healthy cells [78–80]. On the other hand, Kubalova et al. reported that an event
of diminished SR Ca2+ release in failing myocardium could be explained by the increased
sensitivity of RyR2s [80]. From Figure 5B, this study shows that SR Ca2+ fractional release
could be altered depending on the impairment of calcium-related proteins—(a) diminished
SERCA function and enhanced INCX can increase SR fractional release while (b) increased
sensitivity of RyR2s can decrease it. Determining these phenomena could provide a
therapeutic advantage for drug targets.

EC coupling gain was clearly altered at negative membrane potentials by changes in
SR Ca2+ content and fluxes. Other studies have also reported altered E-C coupling gain
independent of SR Ca2+ load, although this was not considered a universal finding [81];
pirfenidone treatment for human pulmonary fibrosis increases ILCC expression by twofold
and was shown to increase ECC gain at negative potentials [82]. This study suggests that
ECC gain can also be increased by hyperphosphorylation of RyR2s as suggested by the
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results of voltage-clamp experiments. As pointed out by Trafford et al. [83], sudden increase
or decrease in Ca2+ release through the RyR2 for a given stimulus will cause alterations in
the SR Ca2+ load. The increase in L-type Ca2+ current also increases the Ca2+ entry into the
cell, with a resulting higher SR Ca2+ content which was also observed experimentally in rat
and ferret ventricular myocytes [84]. In the context of Timothy syndrome (LQT type 8), a
disease caused by a gain-of-function mutation in the L-type calcium channels [85], Ca2+

influx is increased, which also prolongs the APD that causes arrhythmogenic effects. It
was demonstrated by Drum et al. [86] in LQT-8 mouse ventricular cells that even small
alterations to the LCCs were sufficient to induce maximal changes in resting systolic and
diastolic intracellular calcium, which eventually resulted into an increased SR Ca2+ load
and increased ECC gain.

4.2. Importance of Transient Outward Potassium Current (Ito) Effects

AP morphology and duration are directly influenced by the inward and outward
currents, and these current abnormalities have been comprehensively described in hu-
man heart-failure experiments [38,53]. Several studies examining Ito in heart failure
used calcium-buffered internal solutions, which eliminates any possible role of calcium-
dependent processes [38] and multiple pieces of evidence suggest that Ito can also influence
overall action potential duration [28,63,87]. Moreover, it was observed that Ito downregula-
tion in failing left and right ventricular human cardiac cells accounts for the diminished
phase 1 repolarization of the action potential [20,88] and multiple diseases stemming from
this altered Ito function have also been reported [89,90]. The cause of Ito changes has been
linked to changes in transcription factor activation [91]. The model simulations show that
with the reduction in Ito the notch in the AP disappears, leading to increased membrane
potential when the peak L-type Ca2+ occurs. With the increased membrane potential,
there is less driving force for Ca2+, thereby reducing the peak L-type Ca2+ current. This
leads to less triggered RyR activity, further impacting Ca2+ dynamics. This research also
demonstrates that Ito downregulation, other than the expected loss of “notch” in the action
potential, can also lead to slower time-to-peak transfer of calcium to the cytoplasm. This
kinetic trait was experimentally recorded and observed as a slowed Ca2+ transient under
the conditions of hypertrophy or heart failure [38,39].

4.3. Limitations
4.3.1. Rapid Delayed Rectifier Potassium Current (IKr) Downregulation

The downregulation of IKr in failing human cardiac cells is currently being debated
and its experimental evidence is still undergoing investigation. Its protein expressions from
animal heart-failure models were reported to be inconsistent: felines with hypertrophy and
rabbits on pacing-induced HF were observed to have significantly lower IKr expression
than normal left ventricular cells [92,93], while, on the other hand, rats, guinea-pigs, and
canines show no changes [31,94,95]. Recently, Holzem et al. [22] observed that in failing
human left ventricular cell, they found no statistically significant differences in the mRNA
expression levels when comparing failing to donor human heart tissue. However, they
did emphasize in their experiments that IKr is functionally downregulated in human heart
failure—the hERG1a mature protein had a 0.55-fold reduction (p = 0.51) in the epicardium
of failing compared with healthy hearts and total hERG1a protein trended toward reduction.
Moreover, the stoichiometry of hERG1a:hERG1b isoforms was altered in failing versus
donor hearts, with 0.58-fold reduction in the epicardium. Another perspective involves
cardiac safety—the analysis of IKr blocking effects in associative risk of drug-induced
arrhythmia is mandatory in the development of new drugs [21,96]. Therefore, we slightly
decreased the conductance of IKr in this study to emulate a modest contribution to APD
prolongation as seen in experimental findings.
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4.3.2. Other Ionic Currents Present in Heart Failure

Several alterations seen in ionic current behaviors and Ca2+ regulatory proteins were
previously described in multiple cases of hypertrophy and heart failure. For example,
a mutation in the CACNA1C gene encoding the L-type calcium channel (ILCC) was as-
sociated with reduced voltage-dependent inactivation and displayed a propensity for
arrhythmogenesis [97]. Another example is that the functional changes, especially in the
gain-of-function, of the late sodium current (INa) inhibition were considered a major contrib-
utor to electrophysiological and calcium dynamic abnormalities from patients with human
hypertrophic cardiomyopathy (HCM) [98]. However, this study focused on the contribu-
tions of the K+ currents and other calcium regulatory proteins such as SERCA, RyR, and
the sodium–calcium exchanger (INCX) due to their relative contribution to repolarization
and prolonged APD.

It was previously described by Tomaselli et al. [38] that there is a dispersion of action
potential duration in the ventricle of both man [99] and animals [100] and it is possible
that changes in the expression of K+ currents could enhance this dispersion of action
potential repolarization. In the ventricular action potential, IKs is a major contributor to
the ventricular “repolarization reserve” by providing a redundant current to maintain
rapid repolarization during increases in cardiac rate or during conditions in which other
ventricular potassium currents are reduced, specifically the IKr current in humans [101].
From a spatial perspective, Q-T interval dispersion accompanied in sudden expected
death in chronic heart failure has been reported [102]. Temporally, the beat-to-beat Q-T
interval variability was also evidently described in ischemic and non-ischemic dilated
cardiomyopathy, which reflects withdrawal of parasympathetic tone accompanying heart
failure [103]. Potassium currents are responsible for the repolarization of the cardiac action
potential, and spatial and temporal dispersion of repolarization are altered in the failing
human heart. This dispersion of repolarization has a major role in long Q-T, short Q-T,
and Brugada syndromes and may also underlie polymorphic ventricular tachycardia and
ventricular fibrillation [38,104–106].

4.3.3. T-Tubule-Remodeling During Heart Failure

In HF cardiomyocytes, the rising phase of the Ca2+ transient is slower than healthy
cells which contributes to its impaired contractility. It was previously reported by Louch
et al. that dyssynchronous Ca2+ transients in failing mouse ventricular myocytes results
in a subset of Ca2+ sparks with slow kinetics and they suggest that this observation is
predicted to be the result of the reorganization of the calcium release units [107]. They also
report that these slowed sparks occur at intact failing cardiac dyads and not in orphaned
RyR2s. In mice, a re-organization of the t-tubular systems and orphaning of the RyRs
(decoupling form the L-type Ca2+ channels in the dyad) observed by Wagner and co-
workers was shown to provide a local mechanism for delayed subcellular Ca2+ release and
action potential prolongation through computational modeling [17]. However, although
in human heart ventricular myocytes the t-tubular system is not as dense as in rodents,
there are still changes seen in heart failure [108]. In dog and pig hearts, which have a
more similar AP to human than rodents, there is a large number of areas of the healthy
ventricular myocyte showing low t-tubule density. However, similar studies in healthy
human hearts are scarce [108,109]. In one such study, Lyu and colleagues observed t-tubule
remodeling and RyR orphaning in aging otherwise healthy human hearts [110]. On the
other hand, a recent study by Seidel and co-workers used samples from end-stage HF
patients undergoing left ventricular assist device surgery [111]. The patients were stratified
into two groups, one that had ejection fraction improvement before surgery and one that
did not. The group showing no improvement after surgery had decreased t-tubule density
and RyR orphaning compared to the group that showed ejection fraction improvement
after surgery. In the group with t-tubule remodeling, there the Ca2+ transient was delayed
and more asynchronous, similar to the modeling predictions of Wagner and co-workers in
rats [17]. In fact, Wei and co-workers have suggested that t-tubule remodeling is crucial
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for the transition from ventricular hypertrophy to heart failure [112]. In Figure 8, this
study also demonstrates that the slowed kinetics and higher occurrences of calcium sparks
in failing hearts are largely influenced by the altered RyR2 function through increased
sensitivity. Relatedly, however, potassium current blockade as described in Figure 2
minimally contributes to the overall spark characteristics of failing hearts. Therefore, this
insight prompts the importance of investigating abnormal CRU reorganization at a cellular
perspective in future studies.

5. Conclusions

Diseased or failing hearts are known to pathologically regulate a wide variety of
ion channels and Ca2+-handling proteins, which eventually contribute to their associated
ventricular arrhythmogenesis. Alterations in contraction and relaxation of failing hearts can
be directly associated with corresponding alterations in Ca2+ cycling. Specifically, this study
demonstrates that SERCA, NCX, and RyR2 dysfunction, along with the downregulation
of the cardiomyocyte’s potassium currents, could substantially contribute to heart failure.
Despite major progress in cardiovascular studies, heart failure still remains one of the
leading causes of death. Therefore, early detection of defective cardiac cell behavior is
crucial for preemptive onsets of abnormal cardiac contractility and overall help mitigate
this life-threatening disease.
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Figure A2. Simulation results of various HF conditions. RyR hyperphosphorylation (blue) displays
more distinctive characteristics, especially in the prolonged calcium transient.
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