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Abstract: Objective physical function assessment is crucial for determining patient eligibility for
treatment and adjusting the treatment intensity. Existing assessments, such as performance status, are
not well standardized, despite their frequent use in daily clinical practice. This paper explored how
artificial intelligence (AI) could predict physical function scores from various patient data sources and
reviewed methods to measure objective physical function using this technology. This review included
relevant articles published in English that were retrieved from PubMed. These studies utilized AI
technology to predict physical function indices from patient data extracted from videos, sensors, or
electronic health records, thereby eliminating manual measurements. Studies that used AI technology
solely to automate traditional evaluations were excluded. These technologies are recommended for
future clinical systems that perform repeated objective physical function assessments in all patients
without requiring extra time, personnel, or resources. This enables the detection of minimal changes
in a patient’s condition, enabling early intervention and enhanced outcomes.

Keywords: objective physical function assessment; short physical performance battery; timed up and
go; walking speed; grip strength; machine learning

1. Introduction

Physical function assessment is crucial for clinical decision-making and for guiding
treatment strategies across various medical specialties. Surgical treatment, as well as medi-
cal treatments, such as dialysis and respiratory management, have an invasive aspect, and
physical function is an extremely important indicator determining whether the patient
can overcome such invasiveness and accept the therapeutic benefits [1]. Medical profes-
sionals use one or more physical function assessment tools, medical history, and hospital
impressions to determine treatment strategies. Even among patients of the same age and
disease status, variations in physical functions can lead to different treatment approaches
and intensities [2].

The importance of physical function assessment in the practice for patients with cancer
is no exception. Cancer rates are rising; 35 million are estimated to be newly diagnosed in
2024, an increase from 20 million in 2022 [3]. This trend applies not only to older people
but also to younger people [4,5]. Although various guidelines suggest standard treatments
according to the cancer stage, they cannot be applied uniformly because patients vary in
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their ability to accept invasion. Furthermore, due to global aging trends, cancer treatment
decisions and clinical trial eligibility can no longer be based solely on chronological age [6].
Failure to adequately assess tolerability in patients can lead to adverse events, reduced
quality of daily life after treatment, death, and decreased satisfaction among patients and
their families. Moreover, inappropriate aggressive and invasive cancer treatments can
cause economic losses [7]. Thus, effectively determining each patient’s ability to tolerate
cancer treatment is critical; physical function is especially important.

The Eastern Cooperative Oncology Group Performance Status (ECOG PS) is the most
commonly used physical function assessment tool in oncological practice [8]. ECOG PS
is used to determine indications for treatment and as an eligibility criterion for clinical
trials [9]. It is an easy-to-understand 5-point scale (0–4) [8] but largely depends on subjective
judgment [9]. For decades, discrepancies in evaluations between those conducted by
oncologists and physicians, physicians and nurses, and physicians and patients have been
noted [10–12]. This interrater variability in ECOG PS prevents the medical team from
sharing a unified treatment plan. In addition, despite the simplicity of the ECOG PS
assessment, its documentation rate in electronic health records is approximately 50% for
patients with colorectal cancer [13]. This percentage was markedly lower than expected.

Additionally, several measuring tools in oncological practice have been proposed for
physical function assessment: the Short Physical Performance Battery (SPPB), Timed Up
and Go (TUG) test, grip strength, and walking speed (4 m/6 m/8 m/10 m walking time, or
6 min walking time) [14]. These are called objective physical function assessments, which
are quantitative and do not rely on the individual judgment of assessors [9,14]. SPPB is
rated on a 12-point scale across three domains: 4 points for the ability to maintain closed-leg
standing, semi-tandem, and tandem for 10 s; 4 points for the time to walk 4 m; and 4 points
for the time required to stand and sit five times [15]. The TUG test measures the total time
required to stand up from a chair, walk back and forth a distance of 3 m, and sit down [16].
Several measurement methods have been proposed for walking speed based on distance or
time [14]. Grip strength was measured using a dynamometer [14].

Associations between objective physical function assessments and clinical outcomes
in cancer patients have been reported. Some systematic reviews have highlighted the corre-
lation between SPPB, TUG, walking speed, grip strength, and all-cause mortality [17,18]. In
the surgical field, the SPPB is a predictor of prolonged hospital stay [19] and hospitalization-
associated disability [20]. TUG is associated with severe postoperative complications and
90-day [21] or 5-year postoperative mortality [22]. In the field of chemotherapy, SPPB
and grip strength predict treatment plan modifications or dose reduction [23–25]. The
nutritional status of patients with cancer has also been associated with SPPB and grip
strength [26,27]. Repeated objective physical function assessment enables the monitoring
of the impact of treatment and determination of the effectiveness of rehabilitation interven-
tions [28–30]. Furthermore, a decline in gait speed by 0.1 m/s results in an 8% increased
risk of cardiovascular diseases [31]. Objective physical function assessment is also related
to frailty and has attracted increased attention due to global aging trends [32]. Objective
physical function assessment tools, such as SPPB, TUG, and walking speed, especially the
10-Meter Walk Test, are listed in the physical function domain according to the National
Comprehensive Cancer Network Guidelines for Older Adult Oncology [33].

Thus, objective physical function assessments are highly informative due to the associ-
ation between their results and various clinical outcomes. Conversely, they have several
limitations. Although implementing physical function assessment may seem simple, the
assessor must consider the possibility of the patient falling during the evaluation. Ad-
ditionally, constraints related to personnel, time, and space limit the incorporation of
these assessments into hospital care, especially in outpatient settings, which hinders their
implementation in daily clinical practice [1]. As mentioned earlier, changes in physical
function can be monitored through repeated assessments over time [28–30]; however, a
single assessment at one point during each clinical course may not be adequately conducted
owing to these barriers (Figure 1). Consequently, objective physical function assessment
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tools have not been widely adopted in clinical practice. The recent COVID-19 pandemic has
further strained healthcare resources, leading to a shortage of therapists, particularly those
conducting objective physical function assessments [34]. Moreover, the uneven distribution
of therapists across regions has resulted in healthcare disparities [35].
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Figure 1. Challenges of objective physical function assessments in clinical settings. Key obstacles
include: (A) space constraints—limited room for assessments; (B) time demands—assessments
require significant time; (C) human resources—shortage of trained personnel; (D) specialized
instruments—need for specific equipment; and (E) fall risk—ensuring patient safety and managing
fall risk. These barriers make single assessments difficult during clinical courses. Additionally, the
manual nature of these evaluations can lead to interrater variability, complicating their broader
implementation.

To address these limitations, several studies have simplified the measurement of SPPB
and TUG using Doppler sensors [36], one-dimensional light detection and ranging [37],
automated multiple cameras [38], and instrumented inertial measurement units [39]. While
these technologies automate the process of objective physical function assessment, they do
not alleviate the constraints of space, personnel, or additional equipment. Furthermore,
the cameras and other tools used may not be suitable for actual clinical use in terms of
functionality.

Artificial intelligence (AI) technology has garnered attention in recent years owing to
advances in machine learning (ML) with the advent of deep learning; advances in informa-
tion infrastructure technology, such as the emergence of inexpensive and high-performance
graphics processing units; and the ease of utilizing large-scale data, such as the expansion
of public databases with the advent of the big data era [40,41]. The medical field is no
exception, with active medical research utilizing AI technology in various forms, including
medical image analysis [42–45], omics analysis [46–48], and natural language processing,
with a focus on electronic medical records (EHRs) [49,50]. Importantly, medical devices
utilizing AI technology are being promoted in rapid succession. According to the latest
U.S. FDA database, more than 800 AI-powered medical devices have been approved [51].
AI technology is also being studied for objective physical function assessment, where AI
is being used to provide promising options for estimating established physical function
indicators from videos of various movements, sensor data, and EHR table data without the
need to perform special movements. In fact, we are also currently developing an AI model
to assess a patient’s physical function from routine clinical activities, such as entering and
exiting the consultation room or sitting and standing from a chair. Research on this concept
is novel, making it essential to explore which types of data—whether video, images, sensor
data, or clinical information—can effectively predict objective physical function using
AI. Therefore, in this review, we will discuss the effectiveness and issues of using AI to
evaluate physical function by comprehensively surveying related papers published to date,
assuming that AI technology will be used to objectively, accurately, and easily evaluate
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physical function. In particular, since ML is the fundamental technology behind current
AI research [52], we focus on and discuss objective physical function assessments using
ML technology.

2. Methods
2.1. Search Strategy

PubMed was searched in April 2024 for relevant studies using the following search
strategy: (“Short Physical Performance Battery” OR “Timed up and Go” OR “grip strength”
OR “walking speed” OR “gait speed” OR “fall risk”) AND (“artificial intelligence” OR
“machine learning” OR “deep learning”). The titles and abstracts of the selected papers
were searched.

2.2. Selection Criteria

The inclusion criteria for selecting the papers were that they should have been written
in English. The publication period was not restricted. Notably, we determined that,
in light of patients’ quality of life and the current situation in clinical practice, there
is a need to develop a system that uses ML to predict the results of objective physical
function assessments from videos of patients’ movements in hospitals during routine
medical examinations, without conducting additional assessments. Thus, we reviewed
techniques that can be adopted in clinical practice without requiring specific conditions
solely for assessing physical function. Specifically, this review included studies where
SPPB, TUG, walking speed, and grip strength were predicted using ML from videos,
sensor data, or clinical information from EHR without manual measurement or additional
clinical resources. Conversely, we excluded studies that utilized ML solely to automate
the evaluation process, such as those that performed TUG in front of a camera without a
measurer or conducted TUG or SPPB at home with attached sensors. Similarly, studies that
used inertial measurement units (IMUs) or Doppler technology to automate the assessment
of SPPB and TUG to reduce human resources were excluded. The same applied to walking
speed, where the goal was to simplify the measurement of the 6 min walk or 10 m walk.
From another perspective, several studies used ML to segment successive movements
(such as standing up, walking, and turning) and extract gait parameters from IMU data
or videos related to SPPB, TUG, and walking speed. Additionally, studies that used
grip strength as an explanatory variable to predict SPPB scores or past TUG test scores
and to predict future TUG test scores were included in the review. Only recent studies
by the same authors were included, while studies by the same authors with different
concepts were also included. Predicting gait speed posed challenges owing to the different
movements involved. Therefore, we selected studies proposing systems for future use in
clinical practice.

3. Results
3.1. Overall Trends in AI-Based Objective Physical Function Assessment Research

The initial search yielded approximately 370 articles with the following distribution:
SPPB, 11; TUG, 68; fall risk, 132; walking or gait speed, 116; and grip strength, 40. In most
studies, SPPB, TUG, and walking speed/gait speed were considered explanatory variables
for predicting clinical outcomes such as survival and complications using ML. From these
results, we identified 26 articles that fit our objective physical concept without performing
the assessment process itself. A summary of these results is presented in Table 1. The
predicted labels and number of studies were as follows: 9 papers on TUG or SPPB, 2 papers
on grip strength, and 15 papers on walking speed. Over half of these studies used sensors
such as IMUs, smartphones, smart home sensors, smartwatches, global navigation satellite
systems (GNSSs), and Kinect V2 as input data. Most selected studies employed internal
validation methods like k-fold cross-validation (CV), leave-one-out CV, train–test split, or
train–val–test split. To evaluate the classification model, metrics such as accuracy, F1-score,
and area under the ROC curve (AUC) were used. Common metrics for evaluating the
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regression model included errors and correlation indices. We summarized the results in
the following sections, focusing first on the labels and then on the input data.

Table 1. Objective physical function assessment with ML technology.

Reference
Main Device to
Obtain Input
Data

Details of Input
Variable or Device

Label
Setting/Label
Measurement
Method

Output
Label/Sort of
Task

ML Technology Validation
Method

Metrics from
Best Model

Baseline
Characteristics Concept

Polus et al. [53] IMU

4 sensors during TUG:
above and below each
knee before and 2
weeks after THA

TUG > 14(6 weeks
after THA) TUG/classification LDA, SVM 10-fold CV LDA: Accuracy

0.87

72 patients
undergoing
THA

Preventing falls by
predicting their risk
based on TUG

Friedrich et al. [54] IMU Single sensor on the
right side of the hip

SPPB: score itself
TUG: <10, 11–19,
20–29

SPPB/regression
TUG/classification LSTM+CNN Train–val–test

Accuracy (TUG)
95.9%
Accuracy (SPPB)
94.3%

20 older
patients
(OTAGO study)

Predicting TUG on
real-life IMU data

Bloomfield et al.
[55] IMU+EHR

·4 sensors: above and
below each knee
during TUG
·Clinical information
·Patient-reported
subjective measures

(Preoperative
TUG—
postoperative)
>2.27

TUG/classification SVM, NB, RF, 10-fold CV RF: Accuracy
0.80

82 patients
undergoing
TKA

Predicting functional
recovery for
appropriately adjusting
patient expectations

Zhuparris et al. [56] Smartphone
·Health-related data
from smartphone
·Sensor in smartphone

TUG score itself TUG/regression Elastic Net, RF,
xgBoost 5-fold CV Elastic Net:

R2 0.59
38 patients with
FSHD

Quantifying
FSHD
progression
with TUG

Dubois et al. [57] Depth sensor
Kinect V2 placed in
each room of the
rehabilitation center

TUG ≥ 13.5 s TUG/classification
AdaBoost, NB,
KNN, SVM, RF,
NN

Leave-one-out
CV

KNN, NN:
Accuracy 1.0

30 older
patients in a
rehabilitation
center

Preventing fall
with
home-sensor
data

Hasegawa et al.
[58] EHR

·Clinical information
mainly from EHR
·Physical
measurements

SPPB ≤
6(men)/≤9(women)
as fall risk

SPPB/classification

Prediction One.
Ver3.0.1.3
(SONY)
BLRA

Train–test split Prediction One:
Accuracy 0.74

797 older
patients at
frailty
outpatient
service

Comparing
model
performance of
predicting fall
risk based on
SPPB

Kraus et al. [59] EHR Clinical information
from HER TUG score itself TUG/regression GLM, SVM, RF,

xgBoost 5-fold CV RF: MAE 2.7
103
orthogeriatric
patients

Predicting TUG
without
mobility data

Sasani et al. [60] Tabular data Components of GA TUG < 10 s, TUG ≥
10 s, uncertain TUG/classification Decision Tree

Classifier None
Decision Tree
Classifier:
Accuracy 78%

1901 old
patients
undergoing
cancer surgery

Predicting
accurately TUG
score with ML

Li et al. [61] Video Stereo camera TUG score itself TUG/regression
Mask R-CNN+
polynomial
regression

None
RE <0.1 (20
participants in
40)

40 older adults
in a daycare
facility

Assessing the
health status of
the older
patients with
TUG

Hwang et al. [62] Tabular data

Variables from
physical profile and
body part
measurements (not
from EHR)

Grip strength score
itself

Grip
strength/regression

MLP regression
and different
polynomial
regressions

K-fold CV MLP regression:
correlation 0.88

164 healthy
young
volunteers

Predicting grip
strength
accurately to
reduce the risk
of upper
extremity
disorder

Bae et al. [63] Big Data

Tabular data from
Korean National
Fitness Award Data
from 2009 to 2019

Grip strength score
itself

Grip
strength/regression

LR, LASSO,
Ridge, RF,
xGBoost, Light
GBM, CatBoost

5-fold CV CatBoost: MSE
16.6

107,290
participants
aged over 65

Predicting grip
strength
without
measuring

Supratak et al. [64] IMU Single sensor on the
lower back

25-foot walking test
in clinic

Walking speed/
regression SVR Correlation Correlation 0.98

32 young
patients with
MS

Validating gait
speed at home
against a 25-foot
walking test

Soltani et al. [65] IMU+GNSS 2 sensors: on each
wrist

Walking speed
measured by GNSS

Walking speed/
regression

LASSO (feature
extraction) CV RMSE 0.05

40 healthy
young
volunteers

Estimating
walking speed
with
personalization

Dobkin et al. [66] IMU 2 sensors: above each
ankle

Walking speed
measured by
stopwatch

Walking speed/
regression

Sensor system
(Medical Daily
Activity
Wireless
Network
algorithm)

Correlation Correlation 0.98

12 patients with
stroke
6 healthy
participants

Acquiring
quantitative
data on daily
performance

Mannini et al. [67] IMU Single sensor on the
right shoe

Walking speed
manually
measured

Walking speed/
regression

·Hidden
Markov model
·Strap-down
integration
·LR

Leave-one-out
CV R2 0.96 23 healthy

adults

Exploring the
ML method to
predict walking
speed

McGinnis et al. [68] IMU
5 sensors: on sacrum,
bilateral thigh, and
bilateral shank

6 min walking test
on a treadmill

Walking speed/
regression SVR Leave-one-out

CV

RMSE 0.12
(patients with
MS)

17 healthy
participants
30 patients with
MS

Resolving the
hurdle of
assessing
walking speed

Aziz et al. [69] IMU Single sensor inside
one shoe

Slow/normal/fast
speed

Walking speed/
classification

RF, xgBoost,
SVM Train–test split RF: Accuracy

1.0 10 healthy men
Analyzing gait
patterns of aged
people

Atrsaei et al. [70] IMU Single sensor on the
waist 10 m walk test Walking speed/

regression GPR Leave-one-out
CV RMSE 1.10 35 participants

with MS

Predicting
walking speed
at home with
IMU

Juen et al. [71] Smartphone Smartphone in waist
belt at L3 6 min walking test Walking speed/

regression SVM, GPR Leave-one-out
CV SVM: Error 3.23

28 patients with
pulmonary
disease
10 healthy
participants

Monitoring
individual
health status
continuously

Aziz et al. [72] Smartwatch Smartwatch on the
right wrist

Speed during
treadmill walking:
0.5, 0.75, 1.0, 1.25,
1.5, 1.75 m/s

Walking speed/
regression GPR None MAPE 4% (best,

1.0 m/s)
10 healthy
young adults

Assessing
walking speed
for preventing
chronic diseases

Lee et al. [73] Optical motion
capture+ EHR

·Clinical information
from EHR
·Variables extracted
from optical motion
capture

The difference
between
post/pre-operative
gait speed

Walking speed/
classification GBM 10-fold CV AUC 0.86

128 female
patients
undergoing
bilateral TKA

Predicting
postoperative
walking speed
by preoperative
clinical variable
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Table 1. Cont.

Reference
Main Device to
Obtain Input
Data

Details of Input
Variable or Device

Label
Setting/Label
Measurement
Method

Output
Label/Sort of
Task

ML Technology Validation
Method

Metrics from
Best Model

Baseline
Characteristics Concept

Davis et al. [74] Big Data Tabular data GSR = MGS—UGS Walking speed/
regression HGBR 5-fold CV R2 0.21

3925
participants
from TILDA
wave3

Predicting gait
speed from
population
statistical data

Sikandar et al. [75] Image

5 ratio-based body
measurement from
marker free video
images

Slow (2 to 3 km/h),
normal (4 to
5 km/h), and fast
(6 to 7 km/h)

Walking speed/
classification BiLSTM 17-fold CV Accuracy

92.79%

34 participants
(OU-ISIR
dataset A)

Classifying
walking speed
with body
measurements

Chen et al. [76] Image Plantar region
pressure images

(0.8, 1.6, 2.4 m/s)
and (10, 20 min)

Walking speed/
classification ROI+CNN Train–test split

F1-score: 1.00
(first toe,
2.4 m/s for
10 min)

12 healthy
young
participants

Detecting
appropriate
exercise
intensity

Kidzinski et al. [77] Video
Timeline keypoint data
derived from
OpenPose

Walking speed
measured by the
VICON system

Walking speed/
regression

OpenPose+
(CNN/RF/Ridge) Train–val–test OpenPose+CNN:

Correlation 0.73

1026 pediatric
patients with
cerebral palsy

Simplifying the
quantitative gait
assessment

Lonini et al. [78] Video
Below-waist videos of
patients recorded by
normal camera

Walking speed
measured by
GAITRite

Walking speed/
regression

DeepLabCut(ResNet
based)

Leave-one-out
CV Correlation 0.92 eight patients

with stroke

Predicting the
walking speed
of patients with
stroke without
expensive
instrument

Abbreviations: ML, machine learning; IMU, inertial measurement unit; EHR, electronic health record: GA, geriatric
assessment; TUG, Timed Up and Go test; SPPB, Short Physical Performance Battery; LDA, linear discriminant
analysis classifier; SVM, support vector machine; LSTM, long short-term memory; BiLSTM, bidirectional long
short-term memory; CNN, convolutional neural network; NB, naive Bayes classifier; RF, random forest; xgBoost,
eXtreme gradient boosting; AdaBoost, adaptive boosting; KNN, k-nearest neighbors; NN, neural network; BLRA,
binomial logistic regression analysis; GLM, generalized linear model; MLP, multilayer perceptron regression;
LR, linear regression; GBM, gradient boosting machine; CatBoost, categorical boosting; SVR, support vector
regression; GPR, gaussian process regression; HGBR, histogram gradient boosting regression; CV, cross validation;
ROI, region of interest; MAE, mean absolute error; MSE, mean squared error; RMSE, root mean square error; RE,
relative error; MAPE, mean absolute percentage error; AUC, area under the curve; R2, R-squared value; ICC,
intraclass correlation coefficient; GSR, gait speed reserve; MGS, maximum gait speed; UGS, usual gait speed;
GNSS, global navigation satellite systems; TKA, total knee arthroplasty; THA, total hip arthroplasty; FSHD,
facioscapulohumeral muscular dystrophy; MS, multiple sclerosis; OU-ISIR, Osaka University Institute of Scientific
and Industrial Research; TILDA, The Irish Longitudinal Study on Aging.

3.2. Characteristics of Studies Setting TUG/SPPB as an Output Label

Of the studies that used ML technology to objectively evaluate physical function, nine
used TUG or SPPB as the output label (Table 1) [53–61]. Five of these studies used sensor
data as input data: IMU, smartphone as an inertial sensor, and Kinect V2 as the depth
sensor. In contrast, one study used videos of walking back and forth in front of a stereo
camera as input data [61]. All labeled data were measured manually. Of the eight studies
that used the TUG test as the label, five used classification tasks, and three used regression
tasks. However, of the two papers that used the SPPB as the label, one used regression,
and the other used classification. For the classification of SPPB and TUG, the cutoff values
were set independently for each study: TUG, 10/13.5/14/20 and SPPB, six (male)/nine
(female). As a distinctive label setting, Bloomfield et al. performed a classification for
patients undergoing total knee arthroplasty (TKA) with a TUG test preoperatively and
postoperatively and determined as a label whether there was an improvement of 2.27 s [55].

The ML techniques employed in most studies include orthodox techniques, such as
support vector machine and elastic net, and ensemble methods, such as AdaBoost and
XGBoost. Friedrich et al. used long short-term memory (LSTM) and a convolutional neural
network (CNN) with sensor data [54]. Hasegawa et al. used commercial machine learning
software with no coding required, such as Prediction One version 3.0.1.3 (Sony Corporation,
Tokyo, Japan) [58].

The characteristics of the dataset cohort included preoperative orthopedic patients,
older patients in institutions or receiving outpatient care, patients with cancer, and patients
with neurological diseases such as facioscapulohumeral muscular dystrophy. Friedrich
et al. used the OTAGO dataset of older adults with frailty, which is an existing open-source
dataset [54,79].

3.3. Characteristics of Studies Setting Grip Strength an Output Label

Two studies on grip strength used regression analyses [62,63]. Hwang et al. used
variables from physical profiles and body part measurements as input data for 164 healthy
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young volunteers [62]. In this study, various combinations of variables, including demo-
graphic and anthropometric information and posture, were tested and compared for each
participant, and an attempt was made to propose the model with the highest predictive
power. The methods used were MLP regression and three different polynomial regressions,
and the results of comparing the performance of the regressions showed that including
all the variables performed better than other combinations of variables. In addition, MLP
regression showed higher performance than polynomial regression, and MLP regression
that considers all variables, achieved the best performance in grip strength prediction. Bae
et al. used national big data from billions of people aged over 65 years, called the Korean
National Fitness Award data [63]. The aim was to determine the best ML regression model
for predicting grip strength in adults aged 65 years and over using various independent
variables, such as body composition, blood pressure, and physical ability. The dependent
variable was grip strength, and it was shown that the CatBoost Regressor had the lowest
mean square error and the highest R2 value among the seven prediction models tested.

These results show that a regression model based on ML can accurately predict the
grip strength of older adults and may be useful for reducing the risk of musculoskeletal
disorders of the upper limbs.

3.4. Characteristics of Studies Setting Walking Speed an Output Label

Similarly to studies that set the SPPB/TUG as an output label, the most common types
of input data were recorded by the IMU, IMU with GNSS, smartphone as an inertial sensor,
smartwatch, or 3D optical motion capture. However, two studies employed images, such
as plantar pressure images and silhouettes of walking individuals [75,76], and the same
number of studies used videos that tracked participants’ walking as input data [77,78].
For measuring walking speed as label data, Soltani et al. used GNSS measurements [65];
Kidzinski et al. used the Vicon (OMG plc, Oxford, UK) system [77,80], an optical motion
capture system; and Lonini et al. used the GAITRite system, a gait analysis system with
an electronic walking mat [78]. Other studies used manual measurements or treadmill
gait settings. Canonical measures of walking speed included the 25-foot walking test [64],
10 m walking test [70], and 6 min walking test [68,71]. Eleven studies predicted walking
speed as a regression task, while four studies approached it as a classification task. As a
distinctive label setting, Lee et al. established the cutoff point for the classification task
based on the difference between the preoperative and postoperative walking speeds for
patients undergoing TKA; the difference was categorized as either an increase of over 10%,
a decrease of over 10%, or neither [73]. Davis et al. performed a regression using the gait
speed reserve of adults aged > 50 years in Ireland, which was defined as the maximum gait
speed minus the usual gait speed [74].

For studies that obtained input data from sensors, ML techniques were similar to the
general types used in the SPPB/TUG studies. However, for studies using images as input
data, Sikandar et al. employed Bidirectional LSTM [75], while Chen et al. utilized CNN [76].
Both studies that used videos as inputs relied on pose estimation models. Kidzinski et al.
compared the accuracy of walking speed estimation with CNN, random forest (RF), and
Ridge, using features extracted via OpenPose [77]. Lonini et al. implemented DeepLabCut,
an open-source pose estimation model with a graphical user interface [78].

The most common diseases in the dataset cohort were neurological disorders such as
stroke [66,78], multiple sclerosis (MS) [64,68,70], and cerebral palsy [77]. Approximately
half of the participants were healthy. Davis et al. used the large dataset from TILDA Wave
3 [74,81], while Sikandar et al. utilized the gait dataset from the Osaka University Institute
of Scientific and Industrial Research dataset A [75,82].

3.5. Summary of Sensor Data Acquisition

Many studies predicting SPPB, TUG, and walking speed, but not grip strength, have
used sensor data, mainly IMUs, as inputs. Smartphones and smartwatches were also used
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as IMUs. In studies in which the GNSS and IMU are used together, the GNSS is not counted
as an IMU. The number of attached IMU sensors ranged from one to a maximum of five.

In the case of two or more IMUs, the attachment points are symmetrical. Polus et al.
performed the TUG test for patients undergoing total hip arthroplasty (THA) with sensors
above and below the knee bilaterally 2 weeks before and 2 weeks after surgery, classifying
the TUG scores (more than 14 s or not) at 6 weeks postoperatively using 55 spatiotemporal
and joint-specific metrics extracted from a series of sensor data [53]. Bloomfield et al. were
part of the same research group as Polus et al., and the sensor attachment sites and extracted
variables were the same. By contrast, Bloomfield et al. aimed to predict postoperative TUG
improvements based on preoperative TUG tests [55]. McGinnis et al. had participants walk
bilaterally on a treadmill with sensors placed above and below the knees. Seven patterns
were set up with combinations of sensor positions, and a linear model trained on data from
17 healthy participants was used to estimate the 6 min walk of 30 patients with MS on
the ground. The best model (root mean square error = 0.12) was developed using a single
sensor on the sacrum [68].

In the case of single sensors, the site of fixation was either a shoe or a pelvic area such
as the waist, sacrum, or lower back. When a smartwatch is used as the sensor, it may be
fixed to the wrist [72], but Juen et al. used a smartphone fixed with a belt at the L3 level to
collect data [71]. Further, Zhuparris et al. used participants’ smartphones as accelerometers
but instructed them to handle them as usual without any specific fixation [56].

Only one study used optical sensor data as the input. Lee et al. predicted an im-
provement in walking speed after TKA using clinical information from the EHR and gait
parameters extracted from walking at the Human Motion Analysis Lab [73]. When smart
home sensors and Kinect V2 were installed in facilities and residences, the data collection
period ranged from 8 h to 7 days [57,83]. In some cases, the collection lasted for several
weeks (Figure 2) [84].
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Figure 2. Utilization of sensor data to assess physical function. (A) IMU or GNSS: used for TUG
classification, SPPB regression, and walking speed regression/classification. (B) Smartphone: em-
ployed for TUG and walking speed regression. (C) Smartwatch: applied for walking speed regression.
(D) Smart home sensor: utilized for TUG classification and walking speed regression data collection
in facilities and residences spanning from 8 h to several weeks for continuous monitoring. (E) Optical
motion sensor: used for walking speed classification.

3.6. Studies with Image Input Data

Of the papers reviewed, two studies predicted walking speed using images as input
data, whereas no studies predicting SPPB, TUG, or grip strength utilized images as input
data. Sikandar et al. extracted five features (full-body height, full-body width, mid-body
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width, lower-body width, full-body area, apparent body area, and area between two legs)
from a series of silhouette images at three different walking speeds. These five features were
engineered into time series data, and a walking speed classification task was performed
using bidirectional long short-term memory [75]. Chen et al. also established a region
of interest for plantar foot pressure images, including the first toe, first metatarsal head,
second metatarsal head, and heel. The images were classified into three levels of walking
speed and two levels of walking duration using a CNN with each image as the input
(Figure 3A) [76].
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Figure 3. Utilization of images, videos, and tabular data in assessing physical function. (A) Image:
walking silhouettes are used for walking speed classification. These images are from the OU-ISIR
Dataset A. Plantar pressure is also used for walking speed classification. Plantar foot pressure images,
including the regions of interest (T1, M1, M2, and HL), were classified using a convolutional neural
network (CNN) at different walking speeds and times. (B) Video: walking in front of the camera,
utilized for TUG and walking speed regression. Common pose estimation models, such as OpenPose
and Mask R-CNN, were used for keypoint extraction. (C) Tabular data from big data and EHR,
among others; used for TUG classification, grip strength regression, and walking speed regression.

3.7. Studies with Video Input Data

Of the papers reviewed, one study predicted TUG and one study predicted walking
speed using video as input data. Yuan et al. recorded facility residents walking in front of a
stereo camera, extracted gait parameters using a mask R-CNN, and obtained gait speed
and step length as the core features. They developed an original multiple regression model
with various variables, including these core features, to estimate TUG scores [61]. Kidzinski
et al. tracked and filmed the gait of 1026 pediatric patients with cerebral palsy using a
single camera and obtained 1792 videos [77]. Key points were extracted using OpenPose, a
common video pose estimation model, and the data for each coordinate were input as time
series data to the CNN, along with summary statistics, such as the mean and percentiles
for the RF/ridge regression. Gait parameters, such as walking speed and indices, were
predicted. The OpenPose + CNN strategy yielded the best metrics for all prediction labels.



Bioengineering 2024, 11, 1154 10 of 15

Lonini et al. employed DeepLabCut, a ResNet-based pose estimation model, to
predict the walking speed of patients with stroke. Only the lower-body movements of
the participants were recorded in the gait videos. In addition, the walking parameters
measured using the GAITRite system were used as ground truth data (Figure 3B).

3.8. Studies with Tabular Input Data

Some studies employed tabular data as inputs. These mainly included clinical infor-
mation extracted from EHRs and other sources or tabular datasets of existing datasets,
including body part measurements or other objective measures of physical function as
explanatory variables. Hasegawa et al. included calf circumference and grip strength
as explanatory variables and conducted a binary classification task for the SPPB score
with a cutoff value [58]. Kraus et al. also included the grip strength of the dominant and
non-dominant hands as explanatory variables and conducted a regression analysis for the
TUG score [59]. Hwang et al. conducted a grip strength regression task with variables
including hand width and length in addition to age, height, and weight. Using data from
the Korean National Physical Fitness Award, Bae et al. predicted grip strength using several
variables, including TUG scores and walking speed (Figure 3C) [63].

4. Discussion

Research papers predicting the results of objective physical function assessments (TUG,
SPPB, grip strength, and walking speed) using sensor data, videos, images, questionnaires,
EHR items, and big data were reviewed. Most of the articles were related to walking
speed and were published earlier than those related to other objective physical function
assessments. Compared to SPPB, TUG, and walking speed, grip strength does not require
much effort to measure if only a meter is available, which may explain why fewer studies
have predicted grip strength using the ML method. However, fewer studies on the SPPB
and TUG than on walking speed may be attributed to the components of the SPPB other
than walking, such as maintaining balance and standing up. The TUG test includes getting
up, transitioning to walking, and changing directions, making it a more challenging task to
predict.

The types of objective physical function assessments and task types varied across the
reviewed studies. Walking speed has been shown to correlate with disease when changes
of 0.1 m/s occur [31], while grip strength changes of 5–6.5 kg may be considered clinically
significant [85]. SPPB scores of 0–3 vs. 10–12, 4–6 vs. 10–12, and 7–9 vs. 10–12 are associated
with differences in all-cause mortality [86]. For TUG, studies indicate that categorizing
results as slow (≥15 s), intermediate (11–14 s), and fast (≤10 s) correlates with increased
rates of postoperative complications and mortality temporally [87]. While it is challenging
to establish a clear standard for best metrics among the reviewed studies, prediction at a
finer resolution is essential.

Several studies employed IMUs and other sensors as modalities for extracting input
data. Although the use of smartwatches and smartphones as sensors is reasonable, the
impact of COVID-19 may present challenges in attaching things, bringing things into the
living environment, and installing things touched by an unspecified number of people. In
addition, smartphones have evolved remarkably in recent years; however, the challenge
for older adults may still be high, and having to instruct them on the use of the application
is a burden. Even if patients are instructed to wear these devices at home, the quality and
quantity of the data can be unassured. However, the need for additional sensor equipment
poses a barrier; using a single sensor, such as a smartphone, smartwatch, or IMU, may
reduce the psychological burden on participants by minimizing the effort required for
device attachment or set up.

Some studies have also used tabular data from EHRs and other sources, and these
datasets include measurements of body parts or other types of objective functional assess-
ment results (e.g., walking speed is used to predict grip strength, and conversely, grip
strength is used to predict SPPB). Thus, despite efforts to resolve these challenges, other
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physical function assessment procedures in clinical practice may require an additional
burden. In this respect, video, which is non-contact and can obtain data at a fixed point,
has an advantage. However, there are challenges in clinical implementation, such as video
shooting conditions that serve as inputs and the need for a video camera operator to track
the walker. A video-based model that replaces the existing physical function evaluation
process and results by extracting features of walking, standing, and sitting in a clinical
setting would be beneficial. This would reduce the burden on medical professionals and
enable more detailed observation of physical functions.

Aside from grip strength, the task of predicting physical function measures was either
a classification or regression task in the reviewed studies. While classification tasks are
useful for screening and determining eligibility or ineligibility for treatment by setting
certain cutoff values, they fall short in expressing the degree of deviation from these
cutoffs and cannot track changes in physical function over time. On the other hand, for
measures like the TUG and walking speed, the amount of change—whether improvement
or worsening—has been reported to correlate with clinical outcomes [88] and the risk of
vascular diseases [31]. Therefore, regression tasks may be more useful than classification
tasks. Even multilevel classification tasks with finer categories are preferred.

Furthermore, the distribution of the label data and the size of the dataset are very
important for training ML models. Several studies have predicted walking speed using
datasets from younger age groups, whereas studies predicting the SPPB/TUG have been
conducted on older individuals, leading to imbalanced data. To develop a regression model
that effectively screens and tracks score trends over time, careful consideration of the cohort
size and participant background during research design is crucial.

Lastly, none of the reviewed studies were validated using external data. To address the
limitations of the dataset size, several studies have employed k-fold CV and leave-one-out
CV to evaluate model performance. Only a few studies used large datasets from self-
administered centers. Most studies were based on datasets with fewer than 100 participants.
In the future, it will also be important to create an environment for external validation
using large-scale datasets by preparing public datasets that include tabular data, sensors,
and video data related to objective physical function evaluation.

5. Conclusions

We reviewed the literature on the prediction of objective physical function indices
such as the SPPB, TUG, grip strength, and walking speed using AI technology without
performing the evaluation. If objective physical function assessment can be easily and
repeatedly performed using such technologies, it will be possible not only to determine
eligibility at the start of treatment but also to detect minimal changes over time, which may
contribute to personalized medicine. In particular, the number of elderly cancer patients is
increasing, and to determine the optimal treatment plan based on each patient’s physical
function, it is crucial to develop an AI system that can accurately predict the results of
objective physical function assessments from in-hospital motion videos when considering
the QOL of elderly cancer patients.
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