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Abstract: The widespread application of exoskeletons driven by soft actuators in motion assistance
and medical rehabilitation has proven effective for patients who struggle with precise object grasping
and suffer from insufficient hand strength due to strokes or other conditions. Repetitive passive
flexion/extension exercises and active grasp training are known to aid in the restoration of motor
nerve function. However, conventional pneumatic artificial muscles (PAMs) used for hand rehabili-
tation typically allow for bending in only one direction, thereby limiting multi-degree-of-freedom
movements. Moreover, establishing precise models for PAMs is challenging, making accurate con-
trol difficult to achieve. To address these challenges, we explored the design and fabrication of a
bidirectionally bending PAM. The design parameters were optimized based on actual rehabilitation
needs and a finite element analysis. Additionally, a dynamic model for the PAM was established
using elastic strain energy and the Lagrange equation. Building on this, an adaptive position control
method employing a radial basis function neural network, optimized for parameters and hidden layer
nodes, was developed to enhance the accuracy of these soft PAMs in assisting patients with hand
grasping. Finally, a wearable soft hand rehabilitation exoskeleton was designed, offering two modes,
passive training and active grasp, aimed at helping patients regain their grasp ability.

Keywords: pneumatic artificial muscle; neural network; position control; grasp training; soft hand
exoskeleton

1. Introduction

There has been an increase in patients with hand dysfunction caused by diseases such
as hemiplegia and strokes [1]. According to statistics, around 13.68 million people suffer
new strokes globally each year, with about 70% of survivors experiencing some degree of
upper limb and hand motor function impairment [2]. About 67% of stroke complication
patients are still unable to use their hands even four years after onset. Key goals of hand
rehabilitation include grasping objects, transferring, manipulating, coordinating finger
movements, and maintaining flexibility [3]. Repetitive hand flexion and extension training
is required to restore motor nerve function [4,5]. In clinical practice, rehabilitation is
primarily conducted by physicians, and while effective, this approach has low efficiency.
Consequently, researchers globally have extensively investigated the design and control
of hand rehabilitation robots. Rigid structure hand exoskeletons [6,7], mainly driven by
linkages, motors, and ropes, and underdriven structure hand rehabilitation robots [8] using
spring drives offer precise control but have poor wearability. These rigid or semi-rigid
devices can cause secondary injury during improper operation.

Soft robots driven by pneumatic artificial muscles (PAMs), made from soft materials
such as silicone rubber and fabric, produce movements like bending, elongation, and
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twisting through changes in air pressure. This significantly enhances wearability and safety
compared to rigid robots [9]. Soft rehabilitation robots offer unparalleled advantages in
human–robot interaction, rehabilitation training, and assisted grasping.

Research has shown that PAM actuators, using pneumatic pressure as a power source,
have many advantages. They are a central focus and challenge in the design and control
of soft rehabilitation robots and represent an important trend for future development [10].
In recent years, soft PAMs that fit the body have been applied in soft rehabilitation ex-
oskeletons. A typical bending PAM is made of silicone rubber airbags. Asymmetric airbags
or limiting layers with fibers result in varying degrees of elongation on both sides of the
PAM, enabling unidirectional bending [11]. Han et al. [12] designed a fiber-reinforced
soft pneumatic bionic actuator that bends by utilizing the strain difference between the
chamber and the limiting layer. Wang Tianyu et al. [13] from Shanghai Jiao Tong Univer-
sity proposed a pneumatic grid torsion actuator with a programmable grid shape design.
Liu Chih-Hsing et al. [14] developed a soft pneumatic bending actuator using a grid-type
structure. Their hand claw comprises three grid-type bending actuators connected in paral-
lel by end actuators. Panagiotis P. et al. [15] utilized the enhancement effect of fiber threads
in different directions to design a new bending PAM. Integrating bending PAMs with
soft fabric gloves to create a hand rehabilitation exoskeleton minimizes damage during
repetitive rehabilitation training. This approach is crucial for improving rehabilitation
efficiency in clinical settings, enabling remote rehabilitation, and reducing the repetitive
workload of physicians [16].

However, existing research on soft hand rehabilitation devices faces several problems,
such as a lack of soft multi-degree-of-freedom PAMs and an inability to create lightweight
PAMs that adapt to the natural range of motion of fingers of different lengths. Consequently,
many scholars have turned their attention to designing novel cavity and braiding structures,
optimizing PAM structural parameters, and modeling PAM kinematics through finite
element simulation.

Due to the characteristics of soft materials, such as their nonlinearity and complex fiber-
constrained structures, realizing precise position control of hand rehabilitation exoskeletons
driven by PAMs is a significant research direction [17]. Many researchers use simple PID
control methods, but the control accuracy and speed are insufficient [18]. Some researchers
delve into the dynamic characteristics of PAM to establish its dynamic model [19]. For the
modeling of soft PAM actuators, empirical model building, geometric model analysis, and
finite element analysis methods are commonly used [20]. Wang Boran et al. [21] proposed
a way to establish the relationship between the compilation angle and output force using
finite element simulation to analyze the PAM. For the very complex nature of the dynamics
of fluid soft actuators, Wang Tao et al. [22] used a second-order transfer function to describe
the kinetic behavior of the motion from the driving air pressure to the bending angle of the
soft actuator. Given the advantages of neural networks in handling nonlinear problems,
applying neural networks to PAM control can effectively reduce tracking errors and achieve
better position control and trajectory tracking. Elgeneidy. K et al. [22] proposed a purely
data-driven PAM modeling method for controlling the bending angle of the PAM actuator,
and a data-driven modeling technique using a regression analysis and artificial neural
networks was used to derive an empirical model based on the generated experimental data.

In this paper, we design a soft wearable hand rehabilitation exoskeleton for stroke
patients. We develop parallel chamber bidirectional bendable PAM actuators, analyze the
static bending characteristics using a finite element analysis, and optimize their structural
parameters. The reduced order forms of aerodynamic muscle strain energy, generalized
force, kinetic energy, and gravitational potential energy were substituted into the La-
grangian equation to obtain the dynamic equation of PAM, and considering the need for
precise position control of PAMs during rehabilitation grasp training, an optimized radial
basis function neural network adaptive control algorithm (RBFNNO) based on parameter
and hidden layer node optimization is designed. Finally, we design a hand rehabilitation
exoskeleton that uses PAMs to drive the patient’s fingers for grasp training. The rest of the
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paper is organized as follows: Section 2 describes the design and fabrication of the parallel
chamber PAMs and soft exoskeleton. Section 3 presents the PAM dynamic modeling and
control methods. Section 4 details the hand rehabilitation experiments. Section 5 contains
the discussion, followed by the conclusion in Section 6.

2. Bio-Inspired Mechanical Design

Strokes, hand trauma, and nerve injuries lead to hand dysfunction, significantly
impacting patients’ daily lives. The hand is a highly complex mechanism with over
20 degrees of freedom (DOFs). The DOFs of the hand joints are illustrated in Figure 1.
In patients with hand dysfunction, muscle contraction and impaired joint movement reduce
the DOFs and range of motion.
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Figure 1. Hand bone structure and joint freedom.

Traditional hand rehabilitation primarily relies on one-on-one repetitive training by
physicians, but the low efficiency and insufficient training volume can result in suboptimal
rehabilitation outcomes. Hand rehabilitation exoskeletons are clearly beneficial in reducing
repetitive labor and enhancing rehabilitation quality. The hand exoskeleton is designed to
drive the fingers to bend at specific angles and transmit appropriate forces to the fingers.
To design a hand exoskeleton with a high fit, flexibility, and dexterity, the bidirectional
bendable parallel chamber PAM is selected as the actuator to drive finger movement
through muscle flexion.

Considering the requirements for daily hand rehabilitation, this paper designed a
parallel chamber PAM actuator by comparing the fiber-reinforced actuators developed by
current researchers. Inspired by the motion of hand tendons, a parallel chamber structure
was used in the design of the bending PAM to accommodate the needs of finger flexion
and extension movements, as shown in Figure 2. The overall design of the actuator is
cylindrical to ensure high power density and fast response. To meet the requirements for
effective hand rehabilitation, the actual bending angle of the PAM should exceed 100◦, and
the fingertip force should be greater than 0.8 N.

The soft PAM consists of a silicone rubber shell and two independent asymmetric
chambers. To limit the radial expansion and torsional bending of the PAM, Kevlar fiber lines
are wrapped around the surface in a double-helix pattern, with the intersection of the helix
ideally aligned along the axis of the chamber. The number of turns of the fiber lines affects
the actual bending performance of the PAM. Too many turns increase stiffness, requiring
higher inflation pressure to achieve the same bending effect, which reduces the PAM’s
power density. Conversely, too few turns do not adequately constrain the PAM’s expansion,
leading to excessive radial expansion that severely impacts bending performance.

Since the angles required for finger flexion and extension are different, Chambers A
and B were designed with different radii. Chamber A is larger than Chamber B. When
Chamber A is inflated, it produces significant bending to assist finger flexion, while Cham-
ber B generates less bending to aid finger extension. Compared to single-chamber PAMs,
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our design of a double-chamber PAM enhances the extension function, providing better
assistance for patients with muscle weakness.
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Figure 2. PAM structure design.

In order to verify the actual bending effect, the simulation analysis of the PAM bending
angle was carried out using ABAQUS finite element software (Version 6.14). The analysis of
the soft body drive model using ABAQUS software mainly includes creating parts, setting
material properties, and dividing the mesh, assembly, boundary conditions, and loads.

The Yeoh model can be simply used for the deformation behavior of nonlinear materi-
als, and the model parameters can be well fitted by uniaxial tensile experiments, and the
Yeoh model strain density function model is as follows.

W = ∑N
i=1 C10(I1 − 3)i + ∑N

k=1
1
dk

(J − 1)2k (1)

W = C10(I1 − 3) + C20(I1 − 3)2 (2)

where N, Ci0, and dk are material constants determined by uniaxial tensile tests. The initial
shear modulus µ = 2C10.

The control variable method was used to simulate and compare various factors affect-
ing the bending performance of PAMs in finite element simulations, as shown in Figure 3.
This approach helps in selecting optimal parameters that meet finger rehabilitation require-
ments. The specific simulation results are detailed in Section 4.2. The optimized design
parameters are listed in Table 1. A double-helix wire with a pitch of 3 mm was chosen
for winding the PAM body, which has lengths of 100 mm and 120 mm. To prevent the
fiber-wound wire from being exposed outside the silicone rubber housing, an additional
1 mm silicone rubber sleeve was added to cover the exterior of the PAM.
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Table 1. PAM parameters.

Parameters Numerical Value

Drive length/mm 100/120
Drive radius/mm 8

Inner diameter of cavity A/mm 3.5
Inner diameter of cavity B/mm 3.0

Distance of cavity A center deviation from drive
center/mm 3.5

Distance of cavity B center deviation from drive
center/mm 3.0

Number of spiral wire windings N 34/42
Winding pitch/mm 3

Drive mass/g 25/31

We employ silicone casting to produce PAMs, utilizing a 1:1 mixture of Dragon-skin 30
silicone. The mold was designed using SOLIDWORKS based on specific design parameters
and fabricated with a Stratasys F170 3D printer. The manufacturing process for the PAM,
as illustrated in Figure 4, involves several key steps: mold design and production, mixing
the silicone solution, pouring the matrix with cavities, attaching fiber threads, pouring the
outer silicone, and assembling the end caps.
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Velcro is sewn onto the fabric glove. Velcro is used to secure the PAMs. The PAMs
were secured to the distal interphalangeal (DIP) and metacarpophalangeal (MCP) joints
with straps, fitting well with the patient’s fingers, as shown in Figure 5. To guarantee the
durability of the PAM, each actuator is tested multiple times to confirm proper operation
within a specific pressure range.

The bending angle range of the five fingers of the hand exoskeleton is determined by
the PAMs. The thumb and little finger use 100 mm PAMs, while the index, middle, and ring
fingers use 120 mm PAMs. As shown in Table 2, the five PAMs made for exoskeletons have
different bending ranges. Patients with hand injuries cannot bend their fingers normally,
making it difficult to reach the maximum bending angle of healthy fingers. It is also difficult
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to stretch after bending the fingers. The PAMs drive the movement of the patients’ fingers,
enabling them to complete rehabilitation training.
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Table 2. Actual range of motion of PAMs.

Finger Flexion Angle Extension Angle

Thumb 0–89◦ 0–12◦

Index finger 0–118◦ 0–21◦

Middle finger 0–120◦ 0–18◦

Ring finger 0–119◦ 0–20◦

Little finger 0–91◦ 0–11◦

The hand exoskeleton assisted the patient in performing various rehabilitation ex-
ercises. At different rehabilitation stages, the hand exoskeleton offers various modes to
optimize rehabilitation outcomes, aiding in nerve recovery and enhancing hand movement
abilities. In the early stage of rehabilitation, a passive training mode involving repetitive
flexion and extension was designed for patients. The hand exoskeleton drove the patient’s
fingers to complete these passive training tasks. As the patient’s hand strength and nervous
system had recovered to some extent, an active grasping rehabilitation training mode based
on the mapping of the healthy and affected side was implemented. The angular signal of
the patient’s healthy hand during object grasping was collected by a motion capture system
and used to control the exoskeleton to assist in grasping objects.

3. Methods
3.1. Pneumatic Muscle Dynamic Modeling

The PAM is primarily composed of silicone rubber and fiber threads. The relationship
between the bending angle and the input air pressure can be established by analyzing a
geometric model. The model is based on the following assumptions [23]: the silicone rubber
material is incompressible when charged with air pressure, meaning the total volume of
the silicone rubber remains constant; the actuator remains cylindrical during inflation and
bending [24]; the actuator maintains a circular shape during bending and exhibits an overall
constant curvature change; and the fiber helix restricts radial extension and is always in
contact with the outer surface of the PAM.

The dynamic model of PAM is shown in Figure 6. The nonlinear terms in the strain
energy density function and the sine and cosine terms in the robot dynamics are approxi-
mated using Taylor series. Lagrangian dynamics are an element of analytical mechanics that
combines work, energy, and generalized coordinates to reformulate Newtonian mechanics.
Unlike Newtonian mechanics, Lagrangian dynamics do not rely on a spatial coordinate
system and do not require analysis of the binding forces within the system.
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Figure 6. Block diagram of PAM dynamic derivation process.

The cross-sectional and side views of the PAMs are shown in Figure 7. The bending
radius R, eccentricity of cavity A e1, eccentricity of cavity B e1, and bending angle θ are
selected to describe the bending degree of the actuator under varying air pressures. The
radius R0 represents the original radius of the pneumatic muscle, while r10 and r20 denote
the original radii of cavities A and B, respectively. L1 and L2 represent the lengths of the
central axes of cavities A and B after the pneumatic muscle inflates and deforms.
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The strain energy density function of the Yeoh model is used to calculate the elastic
strain energy, and the strain energy density function can be expressed as follows:

W = C10

(
λ2

1 + λ2
2 + λ2

3 − 3
)

(3)

In the above equation, λ1, λ2, and λ3 are the axial, radial, and circumferential principal
stretch ratios of the PAM, respectively. C10 is the Yeoh model material parameter.

When a certain air pressure is filled in cavity A, the dimensional variation of the driver
cavity in three directions—axial, radial, and circumferential—can be obtained according to
the driver wall thickness parameters [25]:

λ1 = l1
L0

λ2 = r1
R0

λ3 =
(

t1
t10

+ t2
t20

+ t3
t30

+ t4
t40

)
/4

(4)
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where L0 represents the initial length of the central axis and R0 denotes the initial radius of
the PAM when the PAM is not deformed.

The thickness of the front and rear sides of cavity A are t10 and t30. The thickness of
the left and right sides of cavity A are t20 and t40. After inflating cavity A, the thicknesses
t10/t20/t30/t40 become t1/t2/t3/t4.

The PAM inflation deformation resembles a circular arc with the center of circle O,
which can be obtained by geometric structure analysis:

t1 = R − e1 − r1

t2 =
√

R2 − e1
2 − r1

t3 = R + e1 − r1

t4 =
√

R2 − e1
2 − r1

(5)

By the binding of the radial fiber threads, the driver is barely deformed in the radial
direction. It can be assumed that the radial stretch ratio λ2 is 1. The axial stretch of the
silicone rubber varies with the height in the cross section, and the axial stretch ratio λ1 can
be set as shown in the following equation, where β is the variation of the thickness along
the bottom to the top.

λ1 = 1 +
θ

L
β (6)

λ3 = λ1
−1 (7)

The strain energy density is therefore rewritten as the following equation, where G is
the shear modulus of the silicone rubber material.

ρw =
G
2

(
λ1

2 + λ1
−2 − 2

)
(8)

The strain energy Ew is expressed as integrating the entire silicone rubber, ignoring
the uninflated cavity B.

Ew = 2
∫ π

2

− π
2

dφ
∫ R0

0
EwLtdt − 2

∫ π
2

0
dφ

∫ 2e1sinφ

0
EwLtdt (9)

The gravitational potential energy Eg is mainly determined by its average relative
height in the vertical direction, and the gravitational potential energy can be expressed as
follows:

Eg = −mg

∫ θ
0 Rsinψdψ

θ
= −mgL

θ2 (1 − cosθ) (10)

where m is the PAM mass and g is the gravitational acceleration. The analysis of kinetic
energy reduces the drive to a curve, and the coordinates of each point on the drive can be
expressed in the following equations:

x(s) =
L
θ
(1 − cos

sθ

L
)) (11)

y(s) =
L
θ

sin
sθ

L
(12)

where s is the arc length between the point on the PAM and the origin.
The total kinetic energy Ek can be calculated by the following equation:

Ek =
m
2L

∫ L

0

[(
dx
dt

)2
+

(
dy
dt

)2
]

ds = mL2θ2
[

1
6θ2 +

1
θ4 (1 + cos θ)− 2

θ5 sin θ

]
(13)
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According to the principle of virtual work, the generalized force caused by the inflation
pressure can be expressed as follows:

fp = u
∂Vh(θ)

∂θ
= π

[
2r1(L0 + e1θ)·dr1

dθ
+ r2

1·e1

]
u = kpu (14)

where u is the air pressure, Vh(θ) is the volume of the cavity A after inflation and deforma-
tion, and kp is the coefficient used to simplify the expression.

Based on the potential and kinetic energies calculated above, the Lagrangian function
is as follows:

L f = Ek − Eg − Ew (15)

The Lagrangian kinetic equations are as follows:

d
dt

∂L f

∂
.
θ

−
∂L f

∂θ
= fp − ξ

.
θ (16)

where ξ is the coefficient used to account for the damping characteristics and viscous
resistance.

Using series expansion (1 + kθ)−2 = 1 − 2kθ + 3(kθ)2 − 4(kθ)3 for Equation (8), we
can obtain the following:

ρw =
G
2

[
1 + 4

θ2

L2 β2 − 4
θ3

L3 β3
]

(17)

So, Equation (9) can be simplified as

Ew = G
∫ π

2
− π

2
dφ

∫ R0
0 [1 + 4 θ2

L t3sin2t − 4 θ3

L2 t4sin3t]dt

−
∫ π

2
0 dφ

∫ 2e1sinφ
0

∫ R0
0 [L + 4 θ2

L t3sin2 φ − 4 θ3

L2 t4sin3 φ]dt = k1θ2 − k2θ2 − k3θ3
(18)

The sine and cosine functions in Equations (10) and (13) use the series expansion and
ignore the terms above the sixth order in the cosine function and above the seventh order
in the sine function as follows:

Eg = mgL
(

θ2

24
− 1

2

)
(19)

Ek =

(
1
40

− θ2

1008

)
mL2

.
θ

2
(20)

By substituting Equations (14) and (18)–(20) into Equation (16), the dynamic model
can be obtained as follows:[(

1
20

− θ2

504

)
mL2

]
..
θ +

[
ζ − θ

252
mL2

.
θ

]
.
θ +

[
2(k1 − k2)− 3k3θ +

mgL
12

]
θ = kpu (21)

When the derivative term is neglected, the equation simplifies to a static model.

3.2. RBFNN Adaptive Control
3.2.1. Optimization Methods for RBFNN Nodes and Parameters

The three-layer structure of the RBFNN is shown in Figure 8, including the input layer,
hidden layer, and output layer. The input is the data source node. The transformation from
the input layer to the hidden layer is achieved using a nonlinear Gaussian basis function,
while the transformation from the hidden layer to the output layer is linear. The output of
the hidden layer is represented as a quadratic term through the weights.
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The choice of the radial basis function in an RBFNN determines its mapping ability.
The Gaussian kernel function is the most used radial basis function, as shown in the
following equation:

hj(t) = exp(−
∥∥x(t)− cj(t)

∥∥2

2b2
j

), j = 1, ..., m (22)

In Equation (20), cj(t) and bj represent the center and width of the kernel function,
respectively, and are calculated using an optimization method based on an improved
k-means clustering algorithm.

The desired trajectory angle θ and angular velocity
.
θ of the PAM are sampled to form

a sample set D = {x1, x2, · · · , xm}. A random sample from D is selected as the centroid µ1.
Additional centroids are selected based on the following criteria. When selecting a new
centroid µr+1, the minimum distance between the samples ( xj

)
and the selected centroids

(µ1, µ2 · · · µr) is calculated as follows:

D
(
xj
)
= argmin

∥∥xj − µ1,2··· ,r
∥∥2 (23)

The larger the value of D(xi) is, the higher the probability that the sample will be
selected until k centroids are selected is. Next, the distance dji =

∥∥xj − µi
∥∥

2 is calculated
from each sample xj to each centroid.

dji =
∥∥xj − µi

∥∥
2 (24)

The variable xj is assigned to cluster Ci, corresponding to the nearest centroid. Finally,
the centroid of each cluster Ci is computed to update the original centroids:

µi =

(
1

|Ci|

)
·∑ x, x ∈ Ci (25)

The final centroids µ1,··· ,k are the centers cj(t) of the kernel functions.
Next, the average distance between each centroid and the other centroids is calculated

as the basis for width selection:

meanD
(
µj
)
=

∑i ̸=j dis
(

µi, µj

)
k − 1

(26)
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For the cluster Cj belonging to the same cluster center µj, the variance and scaling
factor are calculated as follows:

Sj =
1

size
(
Cj
) ∑

xi∈Cj

dis
(

xi, µj
)2 (27)

ε j =
Sj

1
k ∑k

j=1 Sj
(28)

The width corresponding to each center is then given by the following:

bj = ε j·meanD
(
µj
)

(29)

For a specific approximation error, the distribution of hidden nodes optimized by
the improved k-means algorithm and the variance-based width selection scheme will
significantly reduce the number of hidden nodes and the complexity of the RBF network
structure. The advantages of the optimized allocation scheme for hidden layer nodes
can be understood in the following ways: all hidden layer nodes are effective for the
approximation task, and unnecessary hidden nodes disappear, thus significantly reducing
the number of hidden nodes, especially for high-dimensional input RBFs; each hidden
layer node works at its maximum approximation capacity.

3.2.2. Control Law

Equation (21) can be simplified as a static model of PAMs as follows:

M(θ)
..
θ + C

(
θ,

.
θ
) .

θ + G(θ) = kpu (30)

where θ,
.
θ, and

..
θ are the vectors of PAM bending angle, angular velocity, and angular

acceleration, respectively, and u is the input air pressure vector. This equation is rewritten
as a second-order nonlinear system of bending PAMs.

..
θ = − 1

M(θ)

[
C
(

θ,
.
θ
) .

θ + G(θ)
]
+

kp

M(θ)
u (31)

State variables are used to represent x1 = θ, x2 =
.
x1 and y = x1.

x2 =
.
x1.

x2 = f (x1, x2) + g(x1, x2)u
y = x1

(32)

where f
(

θ,
.
θ
)

and g
(

θ,
.
θ
)

are nonlinear functions and u ∈ Rn and y ∈ Rn are the control
inputs and outputs of the system, respectively.

The desired tracking trajectory is yd; then, the error can be expressed as follows:

e = yd − y = yd − x1, E =
(
e,

.
e
)

(33)

Substituting the above equations into the second-order nonlinear system yields the
error system:

..
e + kpe + kd = 0 (34)

Let K = (kP, kd)
T so that the roots of polynomial s2 + kds + kp = 0 are all in the left

half of the complex plane. Then when t → ∞ , e(t) → ∞ and
.
e(t) → ∞ .

The RBFNN is employed to approximate the nonlinear function:

f = WTh(x) + ε (35)
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Replacing the nonlinear function in Equation (29) with the RBFNN output gives the
control law: u = 1

g(x)

[
−
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(x) +
..
yd + KTE

]

Biomimetics 2024, 9, x FOR PEER REVIEW 11 of 23 
 

 

𝜀𝑗 =
𝑆𝑗

1
𝑘
∑ 𝑆𝑗
𝑘
𝑗=1

 (28) 

The width corresponding to each center is then given by the following: 

𝑏𝑗 = 𝜀𝑗 ∙ 𝑚𝑒𝑎𝑛𝐷(𝜇𝑗) (29) 

For a specific approximation error, the distribution of hidden nodes optimized by the 

improved k-means algorithm and the variance-based width selection scheme will signifi-

cantly reduce the number of hidden nodes and the complexity of the RBF network struc-

ture. The advantages of the optimized allocation scheme for hidden layer nodes can be 

understood in the following ways: all hidden layer nodes are effective for the approxima-

tion task, and unnecessary hidden nodes disappear, thus significantly reducing the num-

ber of hidden nodes, especially for high-dimensional input RBFs; each hidden layer node 

works at its maximum approximation capacity. 

3.2.2. Control Law 

Equation (21) can be simplified as a static model of PAMs as follows: 

𝑀(𝜃)𝜃̈ + 𝐶(𝜃, 𝜃̇)𝜃̇ + 𝐺(𝜃) = 𝑘𝑝𝑢 (30) 

where 𝜃, 𝜃̇, and 𝜃̈ are the vectors of PAM bending angle, angular velocity, and angular 

acceleration, respectively, and 𝑢 is the input air pressure vector. This equation is rewrit-

ten as a second-order nonlinear system of bending PAMs. 

𝜃̈ = −
1

𝑀(𝜃)
[𝐶(𝜃, 𝜃̇)𝜃̇ + 𝐺(𝜃)] +

𝑘𝑝

𝑀(𝜃)
𝑢 (31) 

State variables are used to represent 𝑥1 = 𝜃, 𝑥2 = 𝑥̇1  and 𝑦 = 𝑥1. 

{

𝑥2 = 𝑥̇1
𝑥̇2 = 𝑓(𝑥1, 𝑥2) + 𝑔(𝑥1, 𝑥2)𝑢
𝑦 = 𝑥1

 (32) 

where 𝑓(𝜃, 𝜃̇) and 𝑔(𝜃, 𝜃̇) are nonlinear functions and 𝑢 ∈ 𝑅𝑛 and 𝑦 ∈ 𝑅𝑛 are the con-

trol inputs and outputs of the system, respectively. 

The desired tracking trajectory is 𝑦𝑑 ; then, the error can be expressed as follows: 

𝑒 = 𝑦𝑑 − 𝑦 = 𝑦𝑑 − 𝑥1, 𝐸 = (𝑒, 𝑒̇) (33) 

Substituting the above equations into the second-order nonlinear system yields the 

error system: 

𝑒̈ + 𝑘𝑝𝑒 + 𝑘𝑑 = 0 (34) 

Let 𝐾 = (𝑘𝑃 , 𝑘𝑑)
𝑇 so that the roots of polynomial 𝑠2 + 𝑘𝑑𝑠 + 𝑘𝑝 = 0 are all in the left 

half of the complex plane. Then when 𝑡 → ∞, 𝑒(𝑡) → ∞ and 𝑒̇(𝑡) → ∞. 

The RBFNN is employed to approximate the nonlinear function: 

𝑓 = 𝑊𝑇ℎ(𝑥) + 𝜀 (35) 

Replacing the nonlinear function in Equation (29) with the RBFNN output gives the 

control law: 

{
𝑢 =

1

𝑔(𝑥)
[−𝑓̑(𝑥) + 𝑦̈𝑑 + 𝐾

𝑇𝐸]

𝑓̑(𝑥) = 𝑊̑𝑇ℎ(𝑥)

 (36) 

The constant 𝛾 and constant matrix 𝑄 are the parameters that need to be set in the 

experiment. The designed adaptive law for weight updating can be expressed as follows: 

(x) =

Biomimetics 2024, 9, x FOR PEER REVIEW 11 of 23 
 

 

𝜀𝑗 =
𝑆𝑗

1
𝑘
∑ 𝑆𝑗
𝑘
𝑗=1

 (28) 

The width corresponding to each center is then given by the following: 

𝑏𝑗 = 𝜀𝑗 ∙ 𝑚𝑒𝑎𝑛𝐷(𝜇𝑗) (29) 

For a specific approximation error, the distribution of hidden nodes optimized by the 

improved k-means algorithm and the variance-based width selection scheme will signifi-

cantly reduce the number of hidden nodes and the complexity of the RBF network struc-

ture. The advantages of the optimized allocation scheme for hidden layer nodes can be 

understood in the following ways: all hidden layer nodes are effective for the approxima-

tion task, and unnecessary hidden nodes disappear, thus significantly reducing the num-

ber of hidden nodes, especially for high-dimensional input RBFs; each hidden layer node 

works at its maximum approximation capacity. 

3.2.2. Control Law 

Equation (21) can be simplified as a static model of PAMs as follows: 

𝑀(𝜃)𝜃̈ + 𝐶(𝜃, 𝜃̇)𝜃̇ + 𝐺(𝜃) = 𝑘𝑝𝑢 (30) 

where 𝜃, 𝜃̇, and 𝜃̈ are the vectors of PAM bending angle, angular velocity, and angular 

acceleration, respectively, and 𝑢 is the input air pressure vector. This equation is rewrit-

ten as a second-order nonlinear system of bending PAMs. 

𝜃̈ = −
1

𝑀(𝜃)
[𝐶(𝜃, 𝜃̇)𝜃̇ + 𝐺(𝜃)] +

𝑘𝑝

𝑀(𝜃)
𝑢 (31) 

State variables are used to represent 𝑥1 = 𝜃, 𝑥2 = 𝑥̇1  and 𝑦 = 𝑥1. 

{

𝑥2 = 𝑥̇1
𝑥̇2 = 𝑓(𝑥1, 𝑥2) + 𝑔(𝑥1, 𝑥2)𝑢
𝑦 = 𝑥1

 (32) 

where 𝑓(𝜃, 𝜃̇) and 𝑔(𝜃, 𝜃̇) are nonlinear functions and 𝑢 ∈ 𝑅𝑛 and 𝑦 ∈ 𝑅𝑛 are the con-

trol inputs and outputs of the system, respectively. 

The desired tracking trajectory is 𝑦𝑑 ; then, the error can be expressed as follows: 

𝑒 = 𝑦𝑑 − 𝑦 = 𝑦𝑑 − 𝑥1, 𝐸 = (𝑒, 𝑒̇) (33) 

Substituting the above equations into the second-order nonlinear system yields the 

error system: 

𝑒̈ + 𝑘𝑝𝑒 + 𝑘𝑑 = 0 (34) 

Let 𝐾 = (𝑘𝑃 , 𝑘𝑑)
𝑇 so that the roots of polynomial 𝑠2 + 𝑘𝑑𝑠 + 𝑘𝑝 = 0 are all in the left 

half of the complex plane. Then when 𝑡 → ∞, 𝑒(𝑡) → ∞ and 𝑒̇(𝑡) → ∞. 

The RBFNN is employed to approximate the nonlinear function: 

𝑓 = 𝑊𝑇ℎ(𝑥) + 𝜀 (35) 

Replacing the nonlinear function in Equation (29) with the RBFNN output gives the 

control law: 

{
𝑢 =

1

𝑔(𝑥)
[−𝑓̑(𝑥) + 𝑦̈𝑑 + 𝐾

𝑇𝐸]

𝑓̑(𝑥) = 𝑊̑𝑇ℎ(𝑥)

 (36) 

The constant 𝛾 and constant matrix 𝑄 are the parameters that need to be set in the 

experiment. The designed adaptive law for weight updating can be expressed as follows: 

T
h(x)

(36)

The constant γ and constant matrix Q are the parameters that need to be set in the
experiment. The designed adaptive law for weight updating can be expressed as follows:

.
Ŵ = −γET PBh(x) (37)

The RBFNN adaptive control is illustrated in Figure 9. The center cj and width bj
of the Gaussian function in the neural network are determined using an improved k-
means algorithm, while the weights Ŵ are updated in real time according to an adaptive
law. This allows the neural network to continuously approximate the unknown nonlinear
components
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The constant 𝛾 and constant matrix 𝑄 are the parameters that need to be set in the 

experiment. The designed adaptive law for weight updating can be expressed as follows: 

(x) of the PAM dynamic model, ultimately computing the output u based on
the control law. Stability analysis can be found in Appendix A.
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4. Experiments and Results
4.1. Experiment Setup

The hand exoskeleton system, as shown in Figure 10, consisted of an upper computer,
a data acquisition module, an air pump, proportional valves, bending angle sensors, and
the hand exoskeleton. To accommodate varying finger lengths, flexible angle sensors, such
as the customizable version of the Sparkfun FLEX4.5, were used. The data acquisition
module (Product Model: USB-6210; Company: National Instruments) provided real-time
feedback of bending angle signals to the upper computer. The upper computer processed
these data and output corresponding voltage signals through the data acquisition module
to control the proportional valve. The proportional valve adjusted the air pressure in
the PAM cavity according to changes in input voltage, resulting in the PAMs bending to
different angles.

We conducted three sets of experiments. The first set involved using finite element
simulation software, Abaqus, to analyze the impact of various factors such as wall thickness,
length, radius, and cavity shape on the performance of PAMs. Based on the optimal
parameters identified from these simulations, PAMs were fabricated, and their bending
characteristics were compared between physical experiments and simulations. The second
set of experiments focused on controlling a single PAM, comparing the proposed RBFNNO
control algorithm with other algorithms to demonstrate its effectiveness. The third set
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of experiments tested the hand exoskeleton in both passive training mode and active
grasping mode. In passive training mode, the PAMs assisted the fingers in moving along a
specified trajectory. In active grasping mode, the motion trajectory of the healthy hand was
captured using a motion capture system, and the exoskeleton worn on the affected hand
was controlled to perform the corresponding grasping task.
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To prevent data loss due to occlusion during movement, we selected reflective markers
with a diameter of 3 mm, distributing them evenly across the joints of the hand. The
placement of the hand markers was shown in Figure 11. Each of the five fingers had three
markers attached at the MCP, proximal interphalangeal (PIP), and DIP joints to calculate
finger bending angles. A reflective marker was placed on the wrist to serve as the origin
of the spatial coordinate system. MATLAB was used to process the coordinate changes of
each marked point and convert them into joint angles
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4.2. Simulation and Physical Testing of PAM

To simulate the flexion and extension movements of fingers, PAMs operate in two
modes: flexion and extension. Several factors, including the length of the parallel chamber
actuator, cavity shape, eccentric structure of the pneumatic chamber, cavity radius, and
helix line, influence the bending deformation effect of these pneumatic muscles. This
section explores the factors affecting the bending and extension deformations of PAMs
through a simulation analysis.

As shown in Figure 12a,b, the best performance is achieved with a semicircular cross-
section. However, it is challenging to design a suitable parallel chamber structure, so
we opted for a circular cavity. Figure 12c,d indicated that longer PAMs result in greater
bending and extension angles. Considering the length of the fingers, we chose 120 mm long
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PAMs to assist the index, middle, and ring fingers, and 100 mm long PAMs for the other
fingers. Figure 12e,f showed that larger cavity radii can enhance bending ability under
high pressure. To maintain a sufficient wall thickness and prevent rupture during inflation,
we set the radius to 3–3.5 mm based on finger size. Figure 12g,h demonstrated that both
larger and smaller spiral angles of the fiber lines reduce bending performance, especially at
higher pressures. Therefore, we selected a spiral angle of 2◦ for the bi-directional winding
of the fiber lines.
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Based on the analysis of the simulation results, the parameters affecting the bending
of the PAM, ranked from largest to smallest influence, are as follows: wall thickness,
length, chamber diameter, cavity shape, and center diameter. To achieve an optimally
bending PAM, geometric parameters such as longer length, larger chamber diameter,
smaller center diameter, and thinner wall thickness are preferred. However, considering
actual rehabilitation needs, manufacturing difficulty, durability, large pressure tolerance,
and power density, we selected two PAMs with a length of 100/120 mm, a chamber
diameter of 3.5/3.0 mm, a center diameter of 8 mm, and a wall thickness of 1.5 mm for
physical fabrication.

To verify the effectiveness, we performed a finite element analysis on the flexion
and extension movements of the PAMs. The simulation applied a load to one of the
parallel chambers, using pressure settings from 0 to 180 kPa in increments of 20 kPa. The
displacement contour plots of the PAM in ABAQUS for this state were shown in Figure 13.
The first seven images illustrated the application of air pressure from 0 to 180 kPa in
Chamber A, corresponding to finger flexion. The last two images showed air pressure
applied from 30 kPa to 60 kPa in Chamber B, corresponding to finger extension.

Next, we manufactured the PAM based on the selected parameters. Inflation pressure
was incrementally increased by 20 kPa, ranging from 0 kPa to 180 kPa. Once the PAM
reached the maximum inflation pressure and stabilized, the steady-state bending angle
and fingertip force were measured. Ten steady-state tests were performed at each pressure
level. To ensure accuracy, the data were averaged after excluding the maximum and
minimum values.
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The experimental test results shown in Figure 14 closely match the static model
simulations of the PAM. Some errors in the bending angle curve during the actual test were
due to the exclusion of the gravity term in the simulation and modeling. The maximum
forward bending angle reached 125◦, while the reverse bending angle reached 50◦. The tests
confirmed that the PAM’s bending angles exceeded the normal range for finger bending
and extension. Therefore, PAMs can be integrated with soft fabric gloves to assist patients
in repetitive grasp training.
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4.3. PAM Angle Tracking Control

To validate the effectiveness of the proposed control algorithm, both simulations and
experimental tests were conducted on the control of a single PAM. The desired trajectory
was set to yd = 0.5sinπt + 0.5. The initial state was x1 = 0, x2 = 0. Parameters were set

as Q =

[
500 0

0 500

]
, kd = 50, kp = 30, and the adaptive parameter γ = 1200. A duration

of 2000 s was selected for trajectory tracking. The first 20 s (initial state) and the last 20 s
(stable tracking) were analyzed separately, with a sampling interval of 0.01 s.

The distribution of RBFNN hidden layer nodes was optimized using the improved
k-means algorithm. The number of clustering centers, which corresponded to the hidden
layer nodes of the RBFNN, was set to 5, 10, 15, and 20. For each cluster center, a variance-
based width optimization algorithm was used to calculate the width of each radial basis
function. The initial weights of the network were set to zero and were iteratively updated
using an adaptive rate. The parameters ci were determined based on the clustering centers
selected by the algorithm.
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As shown in Figure 15, when tracking the desired trajectory, the RBFNN becomes
more complex with an increasing number of hidden layer nodes, resulting in improved
tracking of the PAM trajectory. The PAMs start at rest, leading to a significant initial tracking
error. Due to the nonlinearity and hysteresis, the tracking error is most pronounced in the
inflation deflation transition stage.
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The more hidden layer nodes there are in the initial state, the better the trajectory
tracking effect is, and the number of hidden layer nodes accelerates the initial tracking effect.
However, as shown in Figure 16, after achieving stable tracking, the error of the RBFNN
with 20 hidden layer nodes increases and becomes larger than that of the RBFNN with 10
and 15 hidden layer nodes. The results indicate that reducing the number of hidden layer
nodes not only reduces the complexity of the neural network but also improves stability.
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To verify the advantages of the RBFNNO method, fuzzy PID control and BP neural
network control were selected for a comparison analysis. The PAM trajectory tracking
is shown in Figure 17. It can be seen that the error convergence is fast, and the control
accuracy is high when using the RBFNNO method.
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4.4. Hand Exoskeleton Control

To validate the role of the hand exoskeleton in aiding rehabilitation training for
patients, passive rehabilitation training for each finger was conducted after the patient was
fitted with the exoskeleton. Each finger was controlled by individual PAMs with minimal
coupling between fingers. The desired trajectory was tracked using the RBFNNO methods.

Based on the rehabilitation needs, the maximum bending angle was designed to be
1.2 radians, with one inflation and deflation cycle lasting 25 s for slow rehabilitation. When
the angle signal is tracked stably, the angle tracking trajectory and angle trajectory tracking
error results for the five fingers are shown in Figure 18.
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The maximum error of the five fingers is primarily due to the hysteresis effect and
jitter. As shown in Table 3, the mean squared deviation of the thumb is greater than that of
the index finger despite having relatively small mean error values. From the Figure 18, it
is evident that the hysteresis effect of the thumb is slightly smaller than that of the index
finger. For the shorter PAMs, it is generally easier to return to the initial position during
the deflation phase, although their jitter and vibration are more pronounced.

Table 3. Trajectory tracking error for five fingers.

Finger Maximum Error/Rad Mean Error/Rad Mean Square
Error/Rad

Thumb 0.3308 0.0651 0.1219
Index finger 0.3596 0.0788 0.1141

Middle finger 0.3291 0.0815 0.1183
Ring finger 0.3194 0.0803 0.1179
Little finger 0.3517 0.0705 0.1217

In the active grasping mode, the trajectories of the five healthy fingers during object
grasping were first collected to serve as the target trajectory for the hand exoskeleton. The
subjects were instructed to sit in a relaxed state at the center of the motion capture space
and perform full grasping movements using their healthy hand. The hand movement
coordinates were recorded from the start of grasping, through object manipulation, to the
completion of the grasping action.

Figure 19a showed the angle changes of the thumb and little finger during gripping
actions in a healthy hand. Figure 19b displayed the angle changes of the remaining fingers
during the same action. The extracted finger trajectories from the healthy hand served as
the desired trajectories for the exoskeleton.
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Figure 19. The angle trajectory of grasping objects with healthy hands: (a) the thumb and little finger;
(b) the index finger, middle finger, and ring finger.

The exoskeleton assisted the affected hand in completing grasping movements ac-
cording to the trajectories recorded from the healthy hand. Figure 20 showed the gripping
action of a healthy hand and the affected hand wearing the exoskeleton while grasping the
same object. Figure 21 illustrated the trajectory changes of the affected hand’s index finger
during the gripping process along with the error compared to the healthy hand’s index
finger trajectory. As demonstrated in Figures 20 and 21, the hand rehabilitation exoskeleton
effectively aids patients with muscle weakness in grasping different objects.
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5. Discussion

By analyzing the mechanism of finger joint movement and the rehabilitation needs of
the hand, a parallel chamber PAM with bidirectional bending capabilities was designed to
assist patients in finger flexion and extension movements. The bending performance of the
PAM with different structural parameters was compared using a finite element analysis,
and the structural parameters were optimized based on actual rehabilitation needs. The
mold design was carried out in SOLIDWORKS, and the mold was fabricated using 3D
printing technology.

Compared to rigid hand rehabilitation exoskeletons [26] and motor-driven soft hand
rehabilitation exoskeletons [27], the designed actuator is lighter and soft, with a single PAM
weighing only 25 g, making it more comfortable to wear. Compared to existing soft hand
exoskeletons driven by PAMs, our developed exoskeleton features an improved structure
and algorithm, resulting in enhanced performance and higher precision. The bending
angle of the PAM designed by Li et al. [28] for hand rehabilitation is only around 0 to 70◦,
which is much smaller than the −50◦ to 125◦ range of our developed PAM. The fingertip
force of the rehabilitation glove developed by Han et al. [12] is approximately 0.40 N to
0.50 N, which is lower than the fingertip force of 1.25 N of the exoskeleton we developed.
Additionally, many PAM-driven hand rehabilitation exoskeletons [15] only assist with
finger bending and cannot help patients with muscle weakness extend their fingers for
repeated grasping. The bidirectional bending capability of our PAM better supports finger
extension and enables patients to complete multiple grasping tasks in daily life.

We derived a dynamic model of the PAM by substituting the reduced-order forms of
strain energy, generalized force, kinetic energy, and gravitational potential energy into the
Lagrange equation. Given the requirement for precise position control of PAMs during
rehabilitation training, an optimized radial basis function neural network adaptive control
algorithm was developed, focusing on parameter and hidden layer node optimization. The
algorithm utilizes a k-means clustering algorithm to determine the centers of the radial basis
functions and optimizes their widths based on sample distribution, thereby accelerating
network convergence and enhancing the position control accuracy. This approach offers
higher accuracy and greater stability compared to control methods such as PID, fuzzy logic,
and unoptimized neural networks used in other hand rehabilitation exoskeletons. For
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example, the PID control method used by Tejada et al. [29] can only bend the pneumatic
muscles to 90% of the maximum expected angle. Haghshenas et al. [30] reported an average
error of 12.4◦ in the movement of the index finger during bilateral therapy.

We designed both a passive training mode and an active grasping mode for the hand
exoskeleton. In the early stages of rehabilitation, patients undergo passive flexion and
extension training for individual fingers or the entire hand. In the later stages, grasping
rehabilitation training is implemented using joint trajectory mapping between the healthy
and affected hands to enhance hand muscle strength during active rehabilitation. The
combination of these modes provides more effective support for patients in completing
rehabilitation tasks and daily activities.

Our research currently has some shortcomings. Single fingers can only flex and
extend, lacking the ability for independent control of multiple joints in one finger or
for abduction/adduction. The thumb’s multi-degree-of-freedom motion requires more
advanced PAMs. We plan to improve the design of PAMs and the exoskeleton to better
match hand movement characteristics. Additionally, using motion capture systems or
multiple bending sensors may make the exoskeleton cumbersome and difficult to use, so
we aim to investigate PAMs with embedded sensors to enhance wearability. Since hand
sizes vary among users, the required sizes for the exoskeleton and PAMs will differ as well.
To improve usability and simplify manufacturing, we need to develop an automated design
tool that customizes PAM and exoskeleton parameters based on individual hand sizes.

In terms of control, we also need to reduce response time and enhance human–machine
interaction. The current control method has significant errors and delays during the infla-
tion and deflation phases, which require improvement. In the future, we could maintain a
certain pressure in one chamber while inflating the other. This control method, resembling
antagonistic muscle pairs, would allow us to adjust the stiffness of the PAM. Additionally,
we hope to incorporate physiological signals, such as electromyographic (EMG) signals, to
monitor the patient’s movement capabilities in real time. This would enable the exoskeleton
to automatically switch between active and passive grasping training.

6. Conclusions

This paper explores the design, modeling, and control methods of bidirectional bend-
able PAMs for the soft hand rehabilitation exoskeleton. A PAM dynamic model based on
the Lagrangian method is established, and an adaptive control algorithm using an RBFNN
with parameter and node optimization is designed to achieve accurate position control.
The integration of PAMs with fabric gloves results in a softer and more wearable hand re-
habilitation exoskeleton compared to motor-driven hand exoskeletons, better aligning with
the rehabilitation needs of stroke patients. We have developed both passive training and
active grasping modes to enhance patients’ grasping ability and increase their motivation
for rehabilitation. Next, we plan to enhance the functionality of exoskeletons by improving
the performance of PAM and integrating physiological signals such as EMG. We plan to
collaborate with hospitals in the future to conduct more experiments involving patient
participation. This involvement will better validate the effectiveness of the rehabilitation
exoskeleton across various rehabilitation modes.
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Appendix A. Stability Analysis

Substituting Equation (36) into Equation (32) yields the expression for the closed-loop
system as follows:

..
e = −KT +

[
f̂ (x)− f (x)

]
(A1)

Due to Λ =

[
0 1

−kp −kd

]
, B =

[
0
1

]
, the above equation can be rewritten as

.
E = ΛE + B

[
f̂ (x)− f (x)

]
(A2)

The optimal weight is given by

W∗ = argmin
[
sup

∣∣∣ f̂ (x)− f (x)
∣∣∣] (A3)

The model approximation error is defined as follows:

ω = f̂ (x|W∗ )− f (x) (A4)

Equation (36) can be written as follows:

.
E = ΛE + B

{[
f̂ ( x|)− f̂ (x|W∗ )

]
+ ω

}
(A5)

Substituting
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Replacing the nonlinear function in Equation (29) with the RBFNN output gives the 

control law: 
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𝑢 =

1
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The constant 𝛾 and constant matrix 𝑄 are the parameters that need to be set in the 

experiment. The designed adaptive law for weight updating can be expressed as follows: 

(x) =
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acceleration, respectively, and 𝑢 is the input air pressure vector. This equation is rewrit-

ten as a second-order nonlinear system of bending PAMs. 

𝜃̈ = −
1

𝑀(𝜃)
[𝐶(𝜃, 𝜃̇)𝜃̇ + 𝐺(𝜃)] +

𝑘𝑝

𝑀(𝜃)
𝑢 (31) 

State variables are used to represent 𝑥1 = 𝜃, 𝑥2 = 𝑥̇1  and 𝑦 = 𝑥1. 

{

𝑥2 = 𝑥̇1
𝑥̇2 = 𝑓(𝑥1, 𝑥2) + 𝑔(𝑥1, 𝑥2)𝑢
𝑦 = 𝑥1

 (32) 

where 𝑓(𝜃, 𝜃̇) and 𝑔(𝜃, 𝜃̇) are nonlinear functions and 𝑢 ∈ 𝑅𝑛 and 𝑦 ∈ 𝑅𝑛 are the con-

trol inputs and outputs of the system, respectively. 

The desired tracking trajectory is 𝑦𝑑 ; then, the error can be expressed as follows: 

𝑒 = 𝑦𝑑 − 𝑦 = 𝑦𝑑 − 𝑥1, 𝐸 = (𝑒, 𝑒̇) (33) 

Substituting the above equations into the second-order nonlinear system yields the 

error system: 

𝑒̈ + 𝑘𝑝𝑒 + 𝑘𝑑 = 0 (34) 

Let 𝐾 = (𝑘𝑃 , 𝑘𝑑)
𝑇 so that the roots of polynomial 𝑠2 + 𝑘𝑑𝑠 + 𝑘𝑝 = 0 are all in the left 

half of the complex plane. Then when 𝑡 → ∞, 𝑒(𝑡) → ∞ and 𝑒̇(𝑡) → ∞. 

The RBFNN is employed to approximate the nonlinear function: 

𝑓 = 𝑊𝑇ℎ(𝑥) + 𝜀 (35) 

Replacing the nonlinear function in Equation (29) with the RBFNN output gives the 

control law: 

{
𝑢 =

1

𝑔(𝑥)
[−𝑓̑(𝑥) + 𝑦̈𝑑 + 𝐾

𝑇𝐸]

𝑓̑(𝑥) = 𝑊̑𝑇ℎ(𝑥)

 (36) 

The constant 𝛾 and constant matrix 𝑄 are the parameters that need to be set in the 

experiment. The designed adaptive law for weight updating can be expressed as follows: 

− W∗
)T

h(x) + ω

]
(A6)

The Lyapunov function is designed as follows:

V =
1
2

ET PE +
1

2γ

(
Ŵ − W*

)T(
Ŵ − W*

)
(A7)

where γ is a constant and the matrix P is symmetric positive definite and satisfies the
following Lyapunov equation:

ΛT P + PΛ = −Q (A8)

where Q > 0; let V1, V2 be

V1 =
1
2

ET PE (A9)

V2 =
1

2γ

(
Ŵ − W*

)T(
Ŵ − W*

)
(A10)

Then, differentiating V1 and V2, we derive the following:

.
V = −1

2
ETQE + ET PBω +

1
γ

(
Ŵ − W*)T

[ .
Ŵ + γET PBh(θ)

]
(A11)

Substituting Equation (34) into the above equation, we obtain the following:

.
V = −1

2
ETQE + ET PBω (A12)
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Since − 1
2 ETQE ≤ 0, the RBFNN can be designed such that the approximation error w

is sufficiently small, making
.

V ≤ 0.
∥B∥ = 1 and |ω| ≤ ωmax, then

.
V ≤= − 1

2∥E∥[λmin(Q)∥E∥ − 2ωmaxλmax(P)], where
λmin is the minimum eigenvalue of matrix Q and λmax is the maximum eigenvalue of
matrix P.

Since
.

V = 0, if and only if ∥E∥ = 2ωmaxλmax(P)
λmin(Q)

, as t → ∞ , ∥E∥ → 2ωmaxλmax(P)
λmin(Q)

, and the
convergence rate of the system depends on λmin.

Given V ≥ 0 and
.

V ≤ 0, when t → ∞ , V is bounded, implying that
∼
W is also bounded.

In summary, the system is stable.

Appendix B. Variable Definition

Table A1. Definition and explanation of variables.

Variable Definition Variable Definition

R Bending radius of PAM e1 Eccentricity of cavity A
e2 Eccentricity of cavity B θ Bending angle of PAM
r10 Original radius of cavity A r20 Original radius of cavity B

L1
Length of the central axe of

cavity A L2
length of the central axe of

cavity B
Ci0 Yeoh model material parameter. λ1 Axial stretch ratios
λ2 Radial stretch ratios λ3 Circumferential stretch ratios
L0 Initial length of the central axis R0 Initial radius of the PAM

t10/t30 The thickness of the front and rear sides of cavity A
t20/t40 Thickness of the left and right sides of cavity A

t1/t2/t3/t4 t10/t20/t30/t40 after inflating β
The variation of the thickness

along the bottom to the top
ρw Strain energy density Eg Gravitational potential energy
m PAM mass g Gravitational acceleration
Ew Strain energy Ek Kinetic energy
s The arc length between the point on the PAM and the origin
fp Generalized force Vh(θ) Volume of the cavity A
u Air pressure L f Lagrangian function

k1/k2/k3/kp
Coefficients used to simplify

equations ξ
The coefficient for the damping
characteristics and resistance

hj(t) Gaussian kernel function x(t) Input of RBFNN

cj(t) The center of the kernel function bj
The width of the kernel

function
W Weight of RBFNN Ŵ Estimated value of W
D Sample set µi Clustering center
xj A sample in D Ci Cluster belong to µi
dji Distance from xj To µi Sj The variance
ε j Scaling factor y Actual trajectory
yd Desired trajectory
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𝑓 = 𝑊𝑇ℎ(𝑥) + 𝜀 (35) 

Replacing the nonlinear function in Equation (29) with the RBFNN output gives the 

control law: 

{
𝑢 =

1

𝑔(𝑥)
[−𝑓̑(𝑥) + 𝑦̈𝑑 + 𝐾

𝑇𝐸]
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