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Abstract: Breast cancer ranks first in incidence and second in deaths worldwide, presenting alarm-
ingly rising mortality rates. Imaging methodologies and/or invasive biopsies are routinely used
for screening and detection, although not always with high sensitivity/specificity. MicroRNAs
(miRNAs) could serve as diagnostic and prognostic biomarkers for breast cancer. We have designed
a computational approach combining transcriptome profiling, survival analyses, and diagnostic
power calculations from 1165 patients with breast invasive carcinoma from The Cancer Genome Atlas
(TCGA-BRCA). Our strategy yielded two separate miRNA signatures consisting of four up-regulated
and five down-regulated miRNAs in breast tumors, with cumulative diagnostic strength of AUC 0.93
and 0.92, respectively. We provide direct evidence regarding the breast cancer-specific expression of
both signatures through a multicancer comparison of >7000 biopsies representing 19 solid cancer
types, challenging their diagnostic potency beyond any of the current diagnostic methods. Our
signatures are functionally implicated in cancer-related processes with statistically significant effects
on overall survival and lymph-node invasion in breast cancer patients, which underlie their strong
prognostic implication. Collectively, we propose two novel miRNA signatures with significantly
elevated diagnostic and prognostic power as a functionally resolved tool for binary and accurate
detection of breast cancer and other tumors of the female reproductive system.

Keywords: miRNA; breast cancer; biomarker; diagnosis; prognosis; multi-cancer transcriptomics;
ROC

1. Introduction

Breast invasive carcinoma (BRCA) is the most frequent type of cancer in females and
the fourth leading cause of cancer-related deaths for both sexes worldwide. In 2022, there
were 2.3 million new cases and more than 650,000 deaths. France, Australia, New Zealand,
Northern Europe, and the Northern USA exhibit the highest incidence rates, while Fiji
Island, Western Africa, and Polynesia display the highest mortality rates, underscoring
the geographical heterogeneity of the disease [1]. Female breast cancer is heterogeneous,
with distinct molecular subtypes and clinical outcomes [2]. The majority of BRCA cases
(85–90%) are sporadic and mainly correlate to environmental risk factors such as lifestyle,
obesity, alcohol consumption, and late menopause. However, a percentage of 5–10% of
BRCA cases are hereditary and arise from mutations inherited from parents to offspring.
BRCA1/2, PTEN, ATM, CHECK2, and PALB2 are the most frequently mutated genes [3].
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Adenocarcinomas account for almost 95% of BRCAs, with ductal and lobular adeno-
carcinomas representing the most frequent subtypes [4]. Comprehensive gene expression
profile studies, mainly based on the PAM50 gene signature, have led to the molecular
classification of BRCAs. In 2021, the TCGA consortium suggested five groups, namely
Luminal A, Luminal B, HER2-enriched, Basal-like, and Claudin-low, based on genomic
analysis of 1095 primary BRCA patient samples. However, in their study, they included not
only the most frequent histological subtypes but also six rare special histological subtypes.
This approach enabled a consensus classification of 12 subgroups, organized into four
broader groups of low-, high-differentiation, luminal, and basal [5].

Molecular subtyping is a valuable tool for oncologists as it facilitates patient man-
agement, providing them with the most appropriate treatment. Currently, treatment of
Luminal A/B tumors expressing hormonal receptors (estrogen, progesterone) relies on en-
docrine therapy with aromatase or estrogen receptor inhibitors (tamoxifen). HER2-enriched
BRCAs, which represent a 15% to 20% percentage of newly diagnosed cases, undergo treat-
ment with chemotherapy or targeted therapy against HER2 activity, such as TKI inhibitors
(e.g., Lapatinib) or humanized monoclonal antibodies (e.g., Trastuzumab). Triple-negative
BRCA cases are usually treated with chemotherapeutic agents (e.g., paclitaxel, docetaxel),
while for BRCA1/2 mutated tumors, PARP inhibitors are recommended (e.g., Olaparib,
Talazoparib) [6–8].

Notwithstanding significant advances in breast cancer treatment, patients develop
resistance to treatment, but the associated mechanisms are still unclear. Within the first
three years, 10–15% of BRCAs present metastases. Cellular plasticity and the tumor
microenvironment can influence diagnosis and prognosis. Beyond that, the existence of
inter- and intra-tumoral heterogeneity weakens current treatment options. The 12 consensus
groups proposed by the TCGA group verify the complicated nature of breast cancer, while
histological and molecular profiles, genomic and epigenetic alterations, and metabolic
changes can explain the currently observed high mortality rates [9].

Early detection is essential for preventing the development of distal metastases and for
minimizing mortality rates in all cancer types, including female breast cancer. Mammog-
raphy is an established technique for early BRCA diagnosis; however, false negative and
mainly false positive results can lead to unnecessary biopsies and radiation exposure [10].
The sensitivity of mammography ranges from 62.2% to 89.5%, while specificity approaches
62.7%. Dense breasts and calcified lesions reduce sensitivity and hinder early breast cancer
diagnosis. Ultrasound (US) may serve as a supplementary test, but its assessment is influ-
enced both by the equipment and the operator [11]. A recent study comparing the imaging
findings from different methods with the subsequent pathological diagnoses concluded
that the diagnostic accuracy of mammography, US, and Magnetic resonance imaging (MRI)
were 77.9%, 85%, and 86.9%, respectively. MRI showed a sensitivity of 72.2% and US of
61% [12]. Furthermore, invasive biopsy either through a core needle or surgically is painful
with possible side effects and unpleasant to patients. Hence, current research focuses on
exploring non-invasive biomarkers that can be accurately detected in both tissues and
bodily fluids, with prognostic and predictive potential.

Recently, high-throughput techniques have facilitated a comprehensive analysis of
genetic and epigenetic profiles in many cancers, thereby expanding our knowledge. miR-
NAs are small, non-coding molecules with a length of 21 to 24 nucleotides that regulate
the expression of genes implicated in cellular processes such as differentiation, prolifera-
tion, and carcinogenesis [13]. miRNAs exert “oncogenic” or “tumor suppressor” activities.
Up-regulation of oncogenic miRNAs (OncomiRs) or down-regulation of tumor-suppressor
miRNAs can lead to breast cancer development. As previously reported, certain miRNAs,
such as miR-122, miR-22, and miR-93, exhibit both functions in BRCAs [14–16].

Several studies have been focusing on miRNA investigation, assessing their diag-
nostic, prognostic, and therapeutic potential. According to their results, breast cancer
subtypes exhibit specific patterns of miRNA expression [17]. miRNA molecules interplay
in various processes such as apoptosis, autophagy, and epithelial-to-mesenchymal tran-
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sition (EMT) [18]. Previous studies have proposed that up-regulation of hsa-mir-7-5p,
hsa-mir-15a, hsa-mir-16, and hsa-mir-17-5p levels can induce apoptosis in breast cancer
cells [19–21]. Autophagy is implicated in the regulation of tumor recurrence and resis-
tance to cancer treatment. Elevated levels of hsa-mir-20a are negatively correlated with
autophagy pathway function and are also linked to a higher incidence of copy number vari-
ants and mutations in BRCAs [22]. hsa-mir-26b and hsa-mir-129-5p also inhibit autophagy.
Additionally, hsa-mir-129-5p and hsa-mir-200c can reduce the radio-resistance of breast
cancer cells. The EMT process is linked to cell mobility and migration and is affected by
several up-regulated and down-regulated miRNAs. In breast cancer cells, elevated levels
of hsa-mir-23a and hsa-mir-27a are linked to migration and metastatic potential [23,24]. To
date, despite the existence of 55 studies registered on the Clinical Trials platform for using
miRNAs as diagnostic or prognostic biomarkers in breast cancer, there is no commercially
available panel based on miRNAs.

In this study, we present the results of a computational pipeline that relies on a
multifaceted analysis of publicly available TCGA data to evaluate miRNA expression levels
in terms of diagnostic and prognostic performance for female breast cancer diagnosis. Our
analysis provided two molecular signatures consisting of four up-regulated and five down-
regulated miRNAs that collectively outperform existing diagnostic methods based on ROC
AUC calculations. Both signatures exhibit strong diagnostic and prognostic power and
upon clinical validation, could serve as an auxiliary to the existing diagnostic approaches
test for breast cancer detection.

2. Materials and Methods
2.1. Transcriptome Data Acquisition and Preprocessing

miRNA transcriptome data were acquired as normalized miRNA expression values
from the GDC Data portal (https://gdc.cancer.gov/, accessed on 8 January 2020). The final
complete dataset consisted of 1.165 samples, further subdivided into 90 paired paracancer-
ous biopsies and 181 Stage_I, 614 Stage_II, 245 Stage_III, 22 Stage_IV, and 13 Stage_X tumor
samples from male and female patients. miRNA expression data filtering was performed
as previously described [25], resulting in the removal of 471 low or non-expressed miRNAs
in the BLCA dataset (25% of the total). The remaining 1399 miRNAs were subsequently
subjected to downstream analysis as indicated below.

2.2. miRNA Transcriptome Analysis and Venn Diagram Comparisons

The filtered raw expression data were cross-normalized and subjected to differen-
tial expression analysis with the Bioconductor package edgeR (https://bioconductor.org/
packages/release/bioc/html/edgeR.html, v4.2.2, accessed on 21 February 2024, [26]) in
R. The analysis was focused on the following comparisons: (i) Paracancerous vs. all tu-
mors, (ii) Paracancerous vs. Stage_I tumors, (iii) Paracancerous vs. Stage_II tumors, (iv)
Paracancerous vs. Stage_III tumors, and (v) Paracancerous vs. Stage_V tumors. The
applied thresholds selecting the differentially expressed miRNAs were FDR < 0.05 and
log2FC > 1 or <−1 for tumor up-regulated or tumor down-regulated miRNAs, respec-
tively. Volcano plots were prepared with the EnhancedVolcano Bioconductor package in R
(https://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html, v1.22.0,
accessed on 21 February 2024). Venn diagrams were also performed in R.

2.3. Heatmap Construction

The Bioconductor ComplexHeatmap package [27] was used to generate heatmap
illustrations of normalized (log2 and z-score transformed) miRNA signature expression
in BRCA samples or across all cancer types from the multi-cancer panel according to
previously described arguments [25].

https://gdc.cancer.gov/
https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html
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2.4. ROC Analysis of miRNA Expression in TCGA BRCA

All remaining miRNAs from the TCGA BRCA dataset after filtering were subjected
to ROC analysis using the R package EasyROC [28]). The Optimal Cutpoint package [29]
was used for the cut-off analysis with the application of previously reported selection
criteria [25]. All ROC plots were generated in R.

2.5. Box Plot Analysis of miRNA Expression Across Clinical Manifestations

Patients were stratified according to three clinical manifestations of BRCA (pathologi-
cal t stages T1–T4 and TX, AJCC regional lymph node status N0–Nx, AJCC distant organ
metastasis M0-Mx) according to the associated clinical information. ANOVA Holm–Sidak
test followed by multiple comparisons analysis was performed with SigmaPlot v11 https:
//alfasoft.com/software/statistics-and-data-analysis/data-visulization/sigmaplot/, ac-
cessed on 23 February 2024). Box/dot plots were generated with ggplot2 (https://ggplot2
.tidyverse.org/, accessed on 23 February 2024) in R.

2.6. miRNA Target Network and Functional Enrichment Analysis

miRNET [30] was used to generate the miRNA target network, using the miRbase IDs
of both miRNA panels as input for network construction and considering the miRTarBase v8
genes for target prediction. Functional analysis was performed with KEGG and DisGeNET
through hypergeometric enrichment.

2.7. Kaplan Meier Analysis of miRNA Signatures

The R RTCGA package [31] was used for prognostic evaluation of both miRNA sig-
natures in the form of Kaplan–Meier analysis in R. Patient stratification was performed
through the calculation of the optimal cutpoint for each miRNA signature through the
survival cutpoint function, while statistical analysis was based on logrank p-value calcula-
tion for overall survival and lymph node invasion as previously described [25]. Prognostic
analysis results were visualized with ggplot in R.

3. Results
3.1. miRNA Transcriptome Analysis in the TCGA Breast Cancer Patient Cohort

Differential expression analysis was performed with the aim of isolating miRNAs that
significantly alter their expression in breast tumors compared to paracancerous mammary
tissue. The analysis utilized 1165 biopsies from the breast carcinoma (BRCA) patient cohort
of The Cancer Genome Atlas (TCGA) (Supplementary Table S1). Initially, all-staged tumors
were compared against the paracancerous biopsies, revealing 413 differentially expressed
miRNAs. Interestingly, the majority (73.8%) of these differentially expressed miRNAs
increased their expression in cancerous compared to paracancerous tissues (Figure 1A,
Supplementary Table S2).

We independently performed differential expression analysis for each tumor stage
against the paracancerous samples to investigate miRNA expression changes across dis-
ease progression. Venn analysis revealed that the majority of the significantly up- or
down-regulated miRNAs were commonly and unidirectionally affected across all tumor
stages (Figure 1B). This observation suggests that the regulatory events that drive miRNA
expression are not only established early upon malignant transformation but are stably
maintained during neoplastic progression. Based on the results of the miRNA transcrip-
tome analysis, we selected two miRNA panels consisting of four commonly up-regulated
(hsa-mir-190b, hsa-mir-183, hsa-mir-3610, and hsa-mir-429) and five commonly down-
regulated (hsa-mir-10b, hsa-mir-99a, hsa-mir-5683, has-mir-1262, and hsa-mir-337) miRNAs
across all tumor stages (Figure 1C, Supplementary Table S3), which we evaluated further
in terms of diagnostic power in BRCA patients.

https://alfasoft.com/software/statistics-and-data-analysis/data-visulization/sigmaplot/
https://alfasoft.com/software/statistics-and-data-analysis/data-visulization/sigmaplot/
https://ggplot2.tidyverse.org/
https://ggplot2.tidyverse.org/
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Figure 1. miRNA transcriptome analysis in breast cancer patients (TCGA-BRCA cohort) (A) Vol-
cano plot summarising the up-regulated (red) and down-regulated (green) miRNAs between can-
cerous (N = 1075) and paracancerous (N = 90) breast biopsies. Dashed lines indicate statistical sig-
nificance cutoffs (horizontal) or >1/<–1 log2 fold change cutoffs (vertical) respectively. (B) Venn di-
agrams highlighting the commonly up- (left) or down-regulated (right) miRNAs across all breast 
tumor stages. (C) Heatmap analysis illustrating the selected up- or down-regulated miRNA 

Figure 1. miRNA transcriptome analysis in breast cancer patients (TCGA-BRCA cohort) (A) Vol-
cano plot summarising the up-regulated (red) and down-regulated (green) miRNAs between can-
cerous (N = 1075) and paracancerous (N = 90) breast biopsies. Dashed lines indicate statistical
significance cutoffs (horizontal) or >1/<−1 log2 fold change cutoffs (vertical) respectively. (B) Venn
diagrams highlighting the commonly up- (left) or down-regulated (right) miRNAs across all breast
tumor stages. (C) Heatmap analysis illustrating the selected up- or down-regulated miRNA signa-
tures across all BRCA patient biopsies. The control miRNA panel, consisting of the hsa-mir-153,
hsa-mir-618, hsa-mir-149, hsa-mir-135a, and hsa-mir-1248, is also shown for comparison. Boxplots on
the right summarize the expression of each miRNA signature across all BRCA biosamples.

3.2. Evaluation of the Diagnostic and Prognostic Power of the Up-Regulated miRNA Signature

We subjected the up-regulated miRNA signature to ROC analysis designed to evaluate
its collective diagnostic potential for tumor biopsies compared to paracancerous breast
tissues. The AUC performance of the up-regulated panel was 0.92 (CI: 0.89–0.95), followed
by 0.89 sensitivity and 0.85 specificity (Figure 2A, Supplementary Table S4). In terms
of individual miRNA performance, hsa-mir-3610 had the lowest AUC (0.79) in contrast
to hsa-mir-183, which was associated with the highest AUC score (0.95) among the four
up-regulated miRNAs (Supplementary Table S4). In sharp contrast, the collective ROC
performance of the control miRNA signature was lower (AUC = 0.52, sensitivity = 0.53,
specificity = 0.64) and not statistically significant (Figure 2A, Supplementary Table S5). As
expected, the elevated discriminatory power of the up-regulated miRNA panel compared to
the control miRNAs was strongly reflected in the distribution of miRNA expression among
paracancerous and tumor BRCA samples, effectively combining the differential expression
properties with ROC performance for these miRNAs (Figure 2A). In conclusion, ROC anal-
ysis revealed that the up-regulated miRNA panel is associated with high and statistically
significant diagnostic power for breast tumors compared to paracancerous tissues.
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Figure 2. Diagnostic and prognostic properties of the up-regulated miRNA signature in breast
cancer patients (A) ROC analysis for the up-regulated (red curve) and the control miRNAs (green
curve). Upper left plot indicates ROC AUC performance for separating tumor and paracancerous
biopsies. The upper right plot demonstrates the distribution of miRNA expression in tumor (TM,
shown in red) or paracancerous (PC, shown in blue) biopsies. The plots at the bottom correspond
to the AUC or distribution of miRNA expression for the control miRNAs. (B) Beeswarm plot
illustrating the expression of the up-regulated miRNAs (upper plot) across all tumor stages compared
to paracancerous levels. Control miRNAs (bottom plot) are also shown for comparison. Horizontal
dashed line indicates the average of paracancerous expression (C) Same as (B) for AJCC lymph node
invasion (D) Same as (C) for AJCC distant organ metastasis (E) Kaplan–Meier analysis comparing
lymph node invasion between patients with high (red curve) and low levels (green curve) of miRNA
signature (log2rank = 0.016). (F) Same as (E) for overall survival (OS, log2rank = 0.014). Asterisks in
all graphs indicate the level of statistical significance based on ANOVA (***: p-value < 0.001).

Beyond diagnostic performance, we profiled the expression of the up-regulated
miRNA signature across multiple clinical manifestations of the disease, challenging its
prognostic potential. Initially, we confirmed that our selected miRNAs are significantly
up-regulated in all tumor stages compared to paracancerous levels even when a different
tumor staging system is considered (Figure 2B, Supplementary Table S6). We dissected fur-
ther the apparent connection between miRNA expression and tumor status to observe that
these miRNAs are significantly expressed in all stages of lymph node invasion (Figure 2C,
Supplementary Table S6) or distant organ metastasis (Figure 2D, Supplemantary Table S6)
compared to paracancerous biopsies. Of note, the expression of the control miRNAs re-
mained unchanged between tumor and paracancerous tissues, regardless of tumor stage,
invasion status, or distant organ metastasis (Figure 2B–D). Importantly, high miRNA levels
in breast tumors were significantly associated with the shortening of disease progression
time, as manifested through Kaplan–Meier analysis for lymph node invasion (Figure 2E).
As a result, elevated levels of the up-regulated miRNA panels were associated with a
significant shortening of overall survival time for breast cancer patients (Figure 2F). Taken
together, these data indicate that our selected up-regulated miRNA signature, apart from an
enhanced diagnostic potential, also exhibits significant prognostic power for breast cancer
patients. In addition, these observations suggest that up-regulation of these miRNAs occurs
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during the early stages of the disease and persists during all subsequent stages of breast
tumor progression.

3.3. Evaluation of the Diagnostic and Prognostic Power of the Down-Regulated miRNA Signature

Having demonstrated the significant diagnostic and prognostic association of our up-
regulated miRNA panel for breast cancer, we subsequently focused on the down-regulated
miRNA signature. This time we challenged through ROC analysis the down-regulated
miRNAs for discrimination of the paracancerous tissues against all tumor stages. The down-
regulated signature was associated with a ROC AUC of 0.91 (CI: 0.89–0.93) along with 0.91
sensitivity and 0.83 specificity for breast paracancerous tissues (Figure 3A, Supplementary
Table S7).
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Figure 3. Diagnostic and prognostic properties of the down-regulated miRNA signature in breast
cancer patients (A) ROC analysis for the down-regulated (blue curve) or control (green curve)
miRNAs. Upper left plot indicates ROC AUC performance for separating between paracancerous
and tumor breast tissues. The upper right plot demonstrates the distribution of miRNA expression in
tumor (TM, shown in red) or paracancerous (PC, shown in blue) biopsies. The plots at the bottom
correspond to the AUC or distribution of miRNA expression for the control miRNAs. (B) Beeswarm
plot illustrating the expression of the down-regulated miRNAs (upper plot,) across all tumor stages
compared to paracancerous levels. Control miRNAs (bottom plot) are also shown for comparison.
Horizontal dashed line indicates the average of paracancerous expression (C) Same as (B) for AJCC
lymph node invasion (D) Same as (B) for AJCC distant organ metastasis (E) Kaplan–Meier analysis
comparing lymph node invasion between patients with high (red curve) and low levels (green curve)
of miRNA expression (log2rank = 0.016) (F) Similar to (E) for overall survival (OS, log2rank = 0.014).
Asterisks indicate the level of statistical significance based on ANOVA (***: p-value < 0.001).

With regards to individual miRNA performance, hsa-mir-99a was associated with
the highest AUC score (0.90), while the lowest ROC AUC performance was observed for
hsa-mir-1262 (0.77). Again, we observed a good correlation between an enhanced ROC
performance and a higher distribution of miRNA expression in paracancerous tissues
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compared to breast cancer tumors or the random miRNAs (Figure 3A). To summarize,
these results confirm that the selected down-regulated miRNA panel is associated with an
elevated diagnostic power against paracancerous breast tissues.

In agreement with the up-regulated miRNA analysis, the observed diagnostic per-
formance of the down-regulated panel was accompanied by significant prognostic power.
Expression of this miRNA signature was significantly reduced in all breast tumor stages
(Figure 3B, Supplementary Table S6) and was maintained low in breast tumors regardless
of lymph node invasion (Figure 3C, Supplementary Table S6) or distant organ metastasis
status (Figure 3D, Supplementary Table S6). Furthermore, patients with low levels of these
miRNAs are more likely to be associated with an increased likelihood for advanced disease
progression manifested in the form of lymph node invasion (Figure 3E) or poor disease
outcome in the form of shortening of overall survival time (Figure 3F). Collectively, these
observations support the notion that both the up- and down-regulated miRNAs hold great
promise as diagnostic and/or prognostic biomarkers for breast cancer.

3.4. Multi-Cancer Analysis of Both miRNA Signature Panels

For us, an important prerequisite for creating a successful biomarker signature is the
specialization of its presence and/or function against a certain disease, and miRNAs are
well known for their tissue- and cancer-specific expression properties. To challenge the
performance of our selected signatures beyond breast cancer, we took advantage of our
access to a diverse panel of miRNA transcriptomes representing TCGA patients from nine-
teen different forms of cancer. This analysis allowed us to compare the expression of both
selected miRNA panels or the control miRNAs in more than 7000 tumor and paracancerous
biopsies organized according to organ primaries into reproductive, uropoetic, thoracic,
gastrointestinal, and other.

Focusing on the up-regulated miRNAs, their average fold change between tumors
and paracancerous tissues was higher in BRCA patients (log2FC = 2.89) compared to
all other cancer types, except for cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC) in which miRNA fold expression change (log2FC = 3.0) was
slightly higher (Figure 4A). This collective pattern of expression was largely reflected
also in the individual miRNAs that constitute the up-regulated signature. hsa-mir-3610
was associated with the best individual performance for BRCA across all cancer types,
while hsa-mir-429 was associated with reduced specialization since six other types of
cancer demonstrated higher tumor/precancerous fold changes for this particular transcript
compared to BRCA. Interestingly most miRNAs were upregulated in related cancers of the
female reproductive system (CESC, uterine corpus endometrial carcinoma, UCEC) but not
in prostate cancer. Beyond the reproductive system, the same miRNAs were associated with
elevated tumor/paracancerous fold changes in several gastrointestinal malignancies, while
patients with uropoietic forms of the disease consistently demonstrated reduced levels of
tumor miRNA expression compared to paracancerous levels. In addition, a comparison
of the tumor fold change for the up-regulated panel against the control miRNAs was
statistically significant in BRCA or all other tumors of the female reproductive organs
but not in the remaining primaries, with the exception of the gastrointestinal tumors,
highlighting increased specialization for the female reproductive forms of the disease
(Supplementary Table S8).
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Figure 4. miRNA multi-cancer expression analysis and target network construction (A) Heatmap
comparing normalized fold change for both miRNA signatures or the control miRNAs across nineteen
cancer types. Biopsies are shown according to organ primaries. Box plots on the right summarize
miRNA signature expression. Dot plots below the heatmap demonstrate average miRNA expression
in each cancer (horizontal dashed line indicates average miRNA expression in BRCA). Beanplots at
the very bottom, summarize ROC AUC performance of both signatures across each cancer. Numbers
indicate average AUC (or 1-AUC) for up- and down-regulated signatures, respectively, while dashes
inside each bean highlight AUC of individual miRNAs. (B) miRNA target network and GO analysis
for the up-regulated signature. Red squares represent individual miRNAs. Blue and magenta nodes
highlight targets involved in mammary neoplastic and cell cycle-related processes, respectively. Dot
plots highlight the top 10 most significant KEGG pathways or diseases that are enriched for the
miRNA targets. (C) Same as (B) for the down-regulated miRNA signature. Green nodes correspond
to the selected down-regulated miRNAs.

With regards to the down-regulated miRNA panel, the multi-cancer expression anal-
ysis revealed a consistently strong down-regulation in BRCA tumors compared to the
remaining forms of the disease. The average fold change (log2FC = −1.96) of this miRNA
panel in the BRCA cohort was the lowest compared to all other cancer types, highlight-
ing its specificity for normal mammary epithelium. This collective down-regulation was
tightly observed also for the individual miRNAs, with hsa-mir-5683 demonstrating the
strongest reduction in tumor expression levels (log2FC = −2.35) and hsa-mir-1262 the
weakest (log2FC = −1.38) in BRCA tumors (Figure 4A). In contrast to the up-regulated
miRNAs, we did not detect a uniform trend of down-regulation in the remaining cancer
types of the female reproductive organs, except for hsa-mir-10b and hsa-mir-99a, the ex-
pression of which was equally reduced across BRCA, CESC, and UCEC tumors. Of note,
statistical comparison of the fold expression change for this miRNA signature against the
control miRNAs did not reveal any significant effects apart from BRCA or the reproductive
primaries, indicating a strong discriminating preference for the female reproductive tumors.

Moving beyond differential expression, we also calculated the diagnostic power of
both signatures across all tumors (Figure 4A). This analysis revealed exceptionally high
AUC (or low 1- AUC) values for the up- or down-regulated miRNAs, respectively, in breast,
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cervical, and uterus tumors compared to their normal counterparts. Importantly, the spread
in average AUC performance between the up- and down-regulated miRNAs in all other
tumors was dramatically reduced, suggesting that the combined use of both miRNA panels
in female reproductive tumors outperforms their diagnostic power in all other cancer types.
For example, our up-regulated miRNAs were associated with high AUC values in other
tumor types (e.g., colorectal), but the down-regulated miRNAs failed to accurately detect
the corresponding paracancerous biopsies in the same cancers. The exact opposite was
observed in kidney tumors (Figure 4A). Taken together, the results from the multi-cancer
expression analysis suggest that although both miRNA panels can be individually used
for detecting other forms of the disease, their combination dramatically specializes the
diagnostic power for breast and/or female reproductive cancers.

3.5. Network and Gene GO Analysis of miRNA Targets

Functional insights not only underline the deregulated expression of candidate tran-
scripts but strengthen their role as putative biomarkers for disease onset. Moreover, changes
in miRNA expression frequently dictate post-transcriptional degradation of target genes,
the function of which governs normal homeostasis or pathological manifestations. To
better understand the functional role of our miRNA panels in breast cancer, we subjected
both signatures to target mRNA prediction coupled with network and Gene Ontology
(GO) analysis.

With regards to the up-regulated miRNAs, hsa-mir-183 was predicted to affect the
largest number of target transcripts (351), followed by hsa-mir-429 (151), hsa-mir-3610
(118), and hsa-mir-190b (62) (Figure 4B). Interestingly, hsa-mir-429 shared some of its
target genes with the remaining miRNAs that constituted the up-regulated panel, pre-
dominantly with hsa-mir-183. Concerning molecular function through mRNA targeting,
GO analysis, summarized in the form of KEGG pathways or enriched diseases, revealed
extensive enrichment for cancer-associated cellular processes such as cell cycle, apopto-
sis, p53-mediated regulation, and ErbB signaling (Supplementary Table S9). Importantly,
functional enrichment was observed for pathways associated with female reproductive
neoplastic functions (e.g., mammary, uterine, cervical, endometrial) and interestingly also
for intestinal forms of the disease. This observation is in agreement with the results of the
multi-cancer expression analysis according to which several of the selected up-regulated
miRNAs were differentially expressed in gastrointestinal-related tumors and not only in
BRCA or reproductive neoplasms. It should be noted that several of the commonly targeted
mRNAs from multiple miRNAs of the network were also involved in cancer-related pro-
cesses, indicating that these miRNAs are up-regulated early during disease progression to
collectively regulate downstream target genes that in turn control critical processes during
malignant transformation.

Focusing on the down-regulated panel, hsa-mir-10b had the largest number of pre-
dicted target transcripts (323), followed by hsa-mir-1262 (165), hsa-mir-99a (133), hsa-mir-
5683 (100), and finally hsa-mir-337 (81) (Figure 4C). Similar to what was observed for the
up-regulated panel, we again observed several common targets among the down-regulated
miRNA signature, especially between hsa-mir-10b and hsa-mir-1262 or between hsa-mir-
1262 and the remaining four miRNAs. Moreover, these miRNAs were predicted to regulate
downstream target transcripts with cancer-related functions, including but not limited to
cell cycle arrest, DNA damage, and integrity checkpoints, as well as regulation of cellular
migration (Supplementary Table S10). In terms of KEGG or disease pathway, we observed
the enrichment of targets involved in various cancers or cancer-related signaling processes
such as Wnt, VEGF, ErbB signaling, mammary neoplasm, and endometrial cancer, among
others. In conclusion, this analysis revealed that altered expression of the selected miRNA
signatures affects cancer-related processes through downstream target regulation, provid-
ing a functional basis for their elevated and specialized diagnostic/prognostic properties
for breast cancer.
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4. Discussion

Breast cancer is a major health issue worldwide. Despite recent developments in
patient treatment, breast tumors are responsible for approximately 16% of cancer-related
deaths globally, mainly due to metastatic onset. The number of new breast cancer cases
is rising rapidly, highlighting the urgency of implementing alternative strategies for early
diagnosis. So far, X-ray mammography is considered the golden standard for BRCA
diagnosis. However, as previously mentioned, its sensitivity and specificity performance
are far from perfect [11]. Ultrasonography (US) and magnetic resonance imaging (MRI)
can be used as auxiliary methods but are not suitable for small mass or atypical tissue or
wide-scale screening and breast cancer staging, respectively [32]. Thus, to improve clinical
outcomes and prolong the overall survival of BRCA patients, research should focus on the
identification of molecular biomarkers with elevated diagnostic and prognostic potential,
which can be easily and accurately detected in tissues or body liquids.

Early diagnosis is crucial for effectively categorizing individuals for treatment and for
decreasing mortality rates. Serum biomarkers such as CA 15-3 and CA 27-29 have been
approved by the FDA; however, due to their low diagnostic performance (with ROC AUC
ranging between 0.60–0.87 for CA27.29 and 0.56–0.85 for CA15.3 [33]), they are mainly used
for monitoring breast cancer [34]. Elevated CA-27-29 levels in serum may indicate disease
progression or a high tumor load, but specificity is low as well [35,36]. In a more recent
clinical study, the authors measured the velocity of CA 15-3 and CEA change over time.
They showed that if the velocity of both markers exceeded certain cut-off point values,
disease recurrence could be predicted with sensitivity, specificity, negative predictive value,
and positive predictive value of 94.0%, 73.1%, 92.5%, and 77.8%, respectively [37]. Contrast-
enhanced mammography (CEM) with the aid of computer analysis can classify patients
with breast cancer with an ROC curve of about 0.848, while the combination of digital
breast tomosynthesis (DBT) with computational analysis is associated with an ROC AUC
performance of 0.841 to 0.850 (95% CI, −0.012 to 0.030) [38,39]. Taken together, both of
our miRNA signatures outperform these classical diagnostic approaches based on ROC
AUC analysis in solid biopsies. In addition, they show better performance as prognostic
biomarkers in terms of specificity, compared to the CA 15-3 and CEA velocity change
study [37].

In terms of liquid biopsy, a growing body of evidence has demonstrated the diagnostic,
prognostic, and predictive significance of miRNAs in breast cancer. However, a commer-
cially accessible miRNA panel is currently unavailable. A recent study extracted data from
TCGA and analyzed the miRNA profile of 755 BRCA tissues and 86 paracancerous tissue
samples. In this study, 28 differentially expressed (nine up- and nineteen down-regulated)
miRNAs were identified in breast cancer tissues versus non-cancerous samples. ROC
analysis was performed to evaluate the diagnostic impact of these miRNAs. The AUC
values for all 28 miRNAs ranged from 0.83 to 0.99. The combination of the top five miRNAs
(hsa-miR-139, hsa-mir-21, hsa-miR-96, hsa-miR-183, and hsa-miR-10b) showed high sensi-
tivity and specificity (96.95% and 100%, respectively) with an AUC value of 0.98, suggesting
high diagnostic potential of this miRNA signature [40]. It is worth noting that in our study,
we also included hsa-miR-183 and hsa-miR-10b as miRNAs with high diagnostic power,
confirming the previously reported results. In both studies, hsa-miR-183 and hsa-miR-10b
as miRNAs are up- and down-regulated, respectively, and their expression levels remain
unaffected throughout different stages. The differences in AUC values could be due to
the different number of samples analyzed or the different algorithms for ROC analysis. It
should be noted however that our strategy further expands the previous reports since it is
not focused only on breast cancer diagnosis, demonstrating that our proposed up-regulated
signature has strong prognostic potential and is associated with an increased specialization
for female reproductive cancer types based on a multi-cancer analysis.

A recent study demonstrated that hsa-miR-21 and hsa-miR-10b can serve as early diag-
nostic biomarkers in the Egyptian female population. In their study, serum miRNA levels
were elevated in patients versus controls. ROC analysis revealed an AUC of 0.991 with
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97.1% sensitivity and 100% specificity for hsa-miR10b and an AUC of 0.965 with 95.7% sen-
sitivity and 85% specificity for hsa-miR21. However, no other analyses were performed [41].
In a separate study, plasma samples of 226 BRCA patients and 146 healthy individuals were
investigated for miRNA diagnostic biomarkers. ROC analysis was performed revealing
AUC values ranging between 0.809 and 0.962, which were validated for each one of the
nine selected miRNAs. The combination of hsa-miR-1246, hsa-miR-206, hsa-miR-24, and
hsa-miR-373 yielded an AUC of 0.992 with an accuracy of 97%, specificity of 96%, and
sensitivity of 98% in the validation set, supporting a high diagnostic value for breast cancer
detection [42], confirming our strategy for combining miRNAs into molecular signatures.

In another study published in 2021, the diagnostic utility of hsa-miR-25-3p, hsa-
miR-29a-5p, hsa-miR-105-3p, hsa-miR-181b1-5p, hsa-miR-335-5p, and hsa-miR-339-5p was
examined in 50 paired (cancerous, non-cancerous) BRCA samples. The calculated AUC
performance ranged from 0.77 to 0.84 for all miRNAs analyzed (all p-values < 0.0001; 95%
of CI), suggesting that each of them could serve as a biomarker for breast cancer diagnosis
with high sensitivity and specificity [43]. In the same year, analysis of blood samples
from 20 females with breast cancer and 20 healthy individuals showed that three miRNA
molecules (hsa-miR-21, hsa-miR-155, and hsa-miR-R125) with AUC values of 0.699, 0.856,
and 0.846, respectively, could serve as diagnostic biomarkers with an average sensitivity
and specificity of 79.6% and 70.6%, respectively [44]. The low sensitivity and specificity
values in this study could be explained by the small number of examined cases.

Shimomura et al. (2016) analyzed more than 1280 serum samples from breast cancer
patients extracted from the National Cancer Center Biobank in Japan, and more than
2800 females with no cancer (controls). They presented a five-miRNA signature (hsa-
miR-1246, hsa-miR-1307-3p, hsa-miR-4634, hsa-miR-6861-5p, and hsa-miR-6875-5p) that
could detect breast cancer with an AUC value of 0.971 (accuracy 89.7%, sensitivity 97.3%,
and specificity 82.9%) [45]. Their reported diagnostic performance is superior to ours;
however, our proposed panel consists of two versatile and highly performing miRNA
signatures, suitable for independent detection of breast neoplastic and normal epithelium,
providing a binary diagnostic platform that we further challenged across multiple cancer
types. Several other miRNAs are also suggested in additional studies; however, their
diagnostic/prognostic power was not calculated [46].

In a recent review report, several studies describing a variety of miRNAs with diag-
nostic, prognostic, and therapeutic potential were included [47]. Eight studies focus on
the diagnostic and/or prognostic impact of miRNA signatures, although AUC values and
sensitivity plus specificity percentages are calculated and presented in only six of them. It
is worth noting that all studies except one are performed on blood samples and not tissue
samples. A case-control study conducted by Orange and Motovali-Bashi on tissue samples
from female breast cancer patients and controls showed that hsa-miR-9 and hsa-miR-34a
could serve as diagnostic biomarkers with AUC values of 0.71 and 0.72 (sensitivity 83.33%
and 72%, specificity 70.37% and 76%, respectively) [48]. Neither miRNA was selected in
our panels since we set a relatively high AUC threshold for both of our miRNA panels. In
the remaining studies performed primarily on blood samples, various miRNA signatures
were suggested. In these studies, AUC values ranged from 0.71, the lowest, to 0.941, a per-
formance that broadly agrees with our observations. Sensitivity and specificity percentages
ranged from 81.1% to 92.65% and from 74% to 92.31%, respectively [49–53].

In an up-to-date case-control study conducted by Miranda et al. (2024), serum expres-
sion levels of the miRNAs hsa-miR-210, hsa-miR-195, hsa-miR-34a, hsa-miR-16, hsa-miR-21,
hsa-miR-10b, and hsa-miR-1 were evaluated for diagnostic purposes. All miRNAs exam-
ined were downregulated in the serum of BRCA patients against controls. The diagnostic
value of this miRNA signature was assessed via ROC analysis. Four miRNAs (hsa-miR-195,
hsa-miR-210, hsa-miR-21, and hsa-miR-16) had the best diagnostic performance with a
combined AUC value of 0.898 (0.765–0.970), sensitivity of 71.4%, and specificity of 100.0%.
Combinations of two or three miRNAs were also tested, revealing collectively higher AUC
values compared to individual miRNA performance, again in agreement with our obser-
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vations. However, the prognostic value of this miRNA signature, along with functional
analysis or multi-cancer expression performance, was not performed [54].

Our data reveal a strong diagnostic and/or prognostic potential for both of our sug-
gested miRNA signatures. In 2020, Sang et al. identified a three-miRNA panel with
prognostic potential. They extracted raw data and clinical information for 1062 breast
cancer samples and 104 non-cancerous samples (TCGA website), resulting in 67 up- and
17 down-regulated miRNA molecules. Nevertheless, three of them, miRNAs hsa-miR-105-1,
hsa-miR-301b, and hsa-miR-1258 were linked to overall survival (OS). More specifically, all
were correlated with ER and PR hormonal receptors, hsa-miR-105-1 was correlated with
hormonal receptors ER and PR, while hsa-miR-301b and hsa-miR-1258 were also linked to
age, stage, and/or metastasis [55]. Our analysis confirmed the differential expression of
these miRNAs, yet we did not prioritize any of them for our selected signature panels due
to their ROC AUC performance.

Another computational study performed by Tian et al. (2021) focused on the prognostic
and predictive role of a TCGA-validated signature consisting of five miRNAs in 962 breast
cancer patients. Based on Cox regression analysis, the optimum miRNA panel for disease-
specific survival (DSS) and OS was the combination of hsa-miR-574, hsa-miR-30b, hsa-miR-
224, hsa-miR-210, and hsa-miR-130a molecules. ROC analysis was performed to assess
the predictive power of this miRNA panel, with an AUC performance not exceeding 0.679
(95% CI 0.574–0.783) in the validation set [56]. Additionally, in the study of Davarinejad
et al. (2022), an analysis of almost 7000 breast cancer patients’ data (GEO, TCGA, patients)
revealed a six-miRNA signature (hsa-miR-151a-5p, hsa-miR-34a-5p, hsa-miR-1307-3p, hsa-
miR-450b-5p, hsa-miR-501-3p, and hsa-miR-532-5p) with a diagnostic and predictive role.
AUC values for diagnostic strength ranged from 0.67 for hsa-miR-34a-5p) to 1.00 for hsa-
miR-1307-3p (available as a preprint at https://doi.org/10.21203/rs.3.rs-1551331/v1).

Our study lacks clinical confirmation, yet some of our identified miRNAs have been
individually detected in tissue and plasma specimens from patients with breast cancer.
In a recent study, 196 matched tissue samples were evaluated and hsa-miR190b was also
overexpressed in breast tumors and correlated to ER+ status [57]. Previous studies also
support the overexpression of hsa-mir-183 in breast cancer patients. hsa-mir-183 is a
component of the miR-183/182/96 cluster, which was upregulated in breast cancer tissue
clinical specimens against normal tissue specimens. This cluster was also correlated to
TNM stage, distal metastasis, and poor clinical outcomes, supporting a potential role in
breast tumorigenesis [58]. Up-regulation of the miR-183/182/96 cluster is also supported
in another study performed by Li et al. (2014) and seems to be linked with cell proliferation
and migration of breast cancer cells [59]. Cava C et al., in their study (2020) using ten
samples of HER2+ BC human tissue and corresponding non-cancerous samples, showed
that hsa-mir-429 was upregulated in tumor samples, supporting a diagnostic role, especially
for HER2-positive BC patients [60]. We did not find any study that performed in clinical
breast cancer samples for hsa-mir-3610.

Some of the down-regulated miRNAs proposed in our study have also been solely
detected in clinical samples. In a recent study by Turkoglu F. et al. (2024), serum specimens
of 35 breast cancer females and 35 healthy individuals were examined for several miRNAs,
including miR10b and hsa-miR99a. In this study, hsa-miR-99a levels were decreased in
patients’ serum samples compared to healthy individuals, supporting a potential protective
role of hsa-miR-99a in breast cancer [61]. However, hsa-miR10b showed similar expression
levels between the two groups. Yet, in a different study conducted by Khalighfard et al.
(2018), plasma expression levels of hsa-miR10b were decreased after the operation, chemo-
and radiotherapy, in agreement with our observations [62]. Another study showed that
hsa-miR-99a-5p expression levels were downregulated in breast cancer tissues compared
to normal breast samples, again in alignment with our analysis in solid biopsies; however,
plasma levels were upregulated in breast cancer patients [63]. Finally, another study
by Kong et al. (2021) showed that hsa-miR-337-3p shows lower expression levels in
breast cancer tissues and acts as a tumor suppressor in this type of cancer [64]. So far,
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there are no validation studies on clinical specimens, tissue, or plasma samples, for the
remaining miRNAs supported in our signatures. Taken together, these data reinforce the
presence of our selected miRNAs in clinical samples (tissues and/or body fluids) of breast
cancer patients.

Target prediction coupled with functional analysis revealed that among the up-
regulated miRNAs in our study, hsa-mir-183 affects the largest number of target tran-
scripts, followed by hsa-mir-429, hsa-mir-3610, and hsa-mir-190b. In the down-regulated
miRNAs, hsa-mir-10b had the largest number of predicted target transcripts, followed
by hsa-mir-1262, hsa-mir-99a, hsa-mir-5683, and hsa-mir-337. Common target genes are
mainly shared between hsa-mir-10b and hsa-mir-1262. Importantly, the target genes from
both signatures are involved in cancer-related processes such as cell cycle, apoptosis, p53
and DNA damage pathways, ErbB signaling, and cellular migration, providing functional
insights that support the observed diagnostic and prognostic performance of our miRNA
panels and confirming the selection criteria of our analytical strategy.

Previous studies highlight the functional implications of several miRNAs in cancer
metastasis and treatment. With regards to the tumor-expressed panel, hsa-mir-183 regulates
the PI3K/AKT signaling pathway, exerting its oncogenic activity through PTEN inhibition,
interfering with the cell cycle, BRCA cell proliferation, and migration. It also seems to
play a role in breast cancer anti-miR-mediated treatment [65,66]. A systematic review
and meta-analysis studying 188 miRNAs showed that upregulation of hsa-miR-183-5p
and downregulation of hsa-miR-10b-5p could confer chemoresistance against doxorubicin,
an anthracycline antibiotic drug that is used for treatment in metastatic breast tumors,
while upregulation of hsa-miR-429 is linked to chemosensitivity [67]. In combination with
hsa-mir-182 and hsa-mir-96, hsa-mir-183 also serves as a potential prognostic factor for
progression-free survival (PFS) and OS [58]. Furthermore, hsa-miR-429 is overexpressed
in HER2-positive breast tumors and promotes the proliferation and migration of cancer
cells [68]. A recent study performed by Li T et al. (2021), focusing on exosomal hsa-miR-429
in ovarian cancer, showed that this specific miRNA molecule confers resistance to cisplatin
via CASR/STAT3 pathway regulation [69].

Upregulation of hsa-mir-190b and hsa-mir-429 have been described to inhibit apopto-
sis, promoting proliferation and migration in breast cancer cell lines [70]. Previous studies
reported that hsa-mir-190b is linked to estrogen-positive breast cancer, correlating with
resistance against endocrine therapy [71,72]. hsa-miR-190 was found to target SMAD2
(Mothers against decapentaplegic homolog 2) and suppress metastasis in breast cancer
via regulation of TGF-β induced EMT [73]. Yu Y et al. (2019) showed that hsa-miR-190
inhibits the Wnt/β-catenin signaling pathway by targeting the SOX9 transcription factor.
This inhibition enhances the sensitivity of endocrine therapy in vivo and in vitro. On
the other hand, ZEB1 transcriptionally regulates hsa-miR-190 through promoter binding
and competes with ERa signaling, resulting in endocrine therapy resistance [74]. Finally,
elevated expression of hsa-mir-3610 has been linked to poor survival in triple-negative
breast carcinomas [75]. Collectively, these reports align well with our functional analysis,
underlying the importance of our up-regulated signature for breast carcinogenesis.

Focusing on the down-regulated signature, hsa-miR-99a acts as a tumor suppressor, the
low expression levels of which are linked to poor outcomes in BRCAs [76]. Elevated levels
of hsa-miR-99a reduce the proliferation, migration, and invasion of breast cancer cells. It
also targets the FGFR3 gene, which is involved in mitogenesis and differentiation processes.
Downregulation of hsa-miR-99a, as shown in our study, leads to abnormal expression of the
FGFR3 gene, resulting in the activation of PI3K-AKT and RAS/RAF/MEK/MAPK signaling
pathways involved in tumor progression [77–79]. hsa-miR-337 acts as a tumor suppressor
gene in various cancer types. Previous studies have shown that it inhibits proliferation
and invasion in cervical cancer by targeting specificity protein 1 (Sp1) and also inhibits
colorectal cancer production by interacting with the KRAS/AKT/ERK pathway [80]. hsa-
miR-337-3p is a functional product of hsa-miR-337. It was found to target the ESRP1 gene
in breast cancer cells, leading to suppression of migration and invasion. ESRP1 gene is
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implicated in cell proliferation and metastasis; thus, down-regulated levels of hsa-miR-337-
3p are linked to breast tumor progression [81]. According to a recent study, hsa-miR-1262
acts as an antitumor miRNA that can modulate the expression levels of the low-density
lipoprotein receptor (LDLR)-related protein 8 (LRP8), affecting cellular processes such
as proliferation, invasion, and migration of breast cancer cells [82]. The aforementioned
cellular processes are also modulated in colon cancer cells via NF-κB/miR-1262/FGFR1
interactions [83]. Of note, independent studies reported that hsa-miR-5683 suppresses
glycolysis and proliferation in gastric carcinomas [84]. It was also reported that in colon
adenocarcinoma patients, the same transcript in combination with five other miRNA
molecules could predict overall survival [85].

Last but not least, hsa-miR-10b was shown to be involved in EMT induction. It has
been proposed that hsa-miR-10b confers drug resistance to tamoxifen in ER-driven breast
tumors by inducing the EMT process and the growth and proliferation of cancer stem cells
(CSCs) in vitro and in vivo [86]. Raval et al. (2022) proposed that hsa-miR-10b can predict
tumor aggressiveness as it does not correlate to ER/PR status but shows a strong correlation
to HER2 status [87]. A research study focusing on miRNAs as potential biomarkers in
Lebanese breast cancer patients showed that hsa-miR-10b is downregulated in ER/PR—
tumors compared to ER/PR positive tumors [88]. Additionally, hsa-miR-10b is considered
a metastamiR and has been demonstrated to be linked to the metastasis process [87]. Taken
together, the above reports support our GO results regarding the functions of our selected
differentially expressed miRNAs.

5. Conclusions and Future Perspectives

In our study, we provide compelling evidence for two miRNA signatures consisting
of four up- and five down-regulated miRNAs with strong diagnostic and prognostic
efficacy. Moreover, we complement their elevated performance in breast tumors with
a multi-cancer analysis across nineteen cancer forms, revealing that both up and down-
regulated signatures had a strong preference for breast and other tumors of the female
reproductive system.

One limitation of our study refers to the absence of an in vitro or in vivo validation
scheme. Another important limitation is the lack of evidence regarding miRNA perfor-
mance in circulating patient fluids. We are currently working on both research directions,
and we plan to independently address both limitations in the near future. Despite these
limitations, we believe that our integrated miRNA signatures significantly expand the
molecular toolbox of breast cancer detection, representing a well-rounded strategy for
assessing miRNAs as diagnostic and prognostic biomarkers. We therefore propose that
upon proper clinical validation, both miRNA panels can serve as a functionally validated
platform for early detection of breast cancer in a self-confirming, binary fashion (analysis of
both signatures in the same sample), with potential extension beyond breast cancer based
on the results of our multi-cancer panel analysis.
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