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Abstract: When classifying breeds of dogs, the accuracy of classification significantly affects breed
identification and dog research. Using images to classify dog breeds can improve classification
efficiency; however, it is increasingly challenging due to the diversities and similarities among dog
breeds. Traditional image classification methods primarily rely on extracting simple geometric
features, while current convolutional neural networks (CNNs) are capable of learning high-level
semantic features. However, the diversity of dog breeds continues to pose a challenge to classification
accuracy. To address this, we developed a model that integrates multiple CNNs with a machine
learning method, significantly improving the accuracy of dog images classification. We used the
Stanford Dog Dataset, combined image features from four CNN models, filtered the features using
principal component analysis (PCA) and gray wolf optimization algorithm (GWO), and then classified
the features with support vector machine (SVM). The classification accuracy rate reached 95.24% for
120 breeds and 99.34% for 76 selected breeds, respectively, demonstrating a significant improvement
over existing methods using the same Stanford Dog Dataset. It is expected that our proposed
method will further serve as a fundamental framework for the accurate classification of a wider range
of species.

Keywords: dog breed classification; convolutional neural network; support vector machine; multi-
network integration; feature selection; Stanford dog dataset

1. Introduction

Dogs were one of the earliest domestic animals and have a diversity of phenotypes.
Currently, there are more than 400 dog breeds worldwide [1], and 283 breeds of them have
been registered with the AKC (American Kennel Club; https://www.akc.org (accessed on
22 October 2024)). An accurate classification of dog breeds is crucial in various fields, includ-
ing veterinary diagnosis, genetic disease research and pet care [2]. However, it is becoming
increasingly difficult due to the diversities and similarities among dog breeds [3,4], which
rely heavily on expert experiences. Therefore, identifying dog breeds easily, accurately and
cost-effectively is a fascinating challenge for dog breeders, managers or fanciers.

To address the challenge of dog image identification, several methods have been
proposed, which can be categorized into three main groups.

The first group consists of machine learning methods that focus on geometric features.
These methods primarily involve training on geometric features extracted from dog face
images and classifying these features using machine learning techniques such as principal
component analysis (PCA) [5–7]. However, some of these methods were tested on a
limited number of dog breeds (35 breeds) [5,7], while another used a larger number of dog
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breeds but achieved insufficient accuracy (67% for 133 breeds) [6]. PCA is a dimensionality
reduction technique that aims to highlight patterns in data by emphasizing variance
and capturing strong patterns in high-dimensional data. However, PCA’s effectiveness
is predicated on the assumption that the data can be embedded in a globally linear or
approximately linear low-dimensional space. Moreover, PCA focuses on the total variance
in the explanatory variables, which does not fully reflect the amount of information, and
the classification information in the original data is not fully utilized. The compressed data
may even be detrimental to pattern classification.

The second group is based on convolutional neural networks (CNN) [8–13], which
typically employ a single CNN model for the Stanford Dog Dataset, with most achieving an
accuracy rate up to 80%. For instance, VGGNet increases network depth by using multiple
3 × 3 convolutional filters while reducing model parameters. The NIN model combines
MLP and convolution, using more complex micro neural network structures in place of
traditional convolutional layers. These models extract high-level semantic information
to improve classification performance but may overlook contextual information around
convolution and pooling kernels, leading to the loss of some feature information.

The third group combines CNN with machine learning, where several studies focusing
on improving CNN models [14–17] have delivered better accuracy rates (up to 90%) than
single CNN models. However, the classification accuracy is still hindered by the diversity
of dog breeds. When applied to birds, cats and sheep, these models have achieved classifi-
cation rates of 95% [18,19], 80% [20–22] and 85% [23–25], respectively. Notably, when using
the combination of a CNN and Support Vector Machine (SVM) for flower identification, a
satisfactory accuracy rate of 97% [26,27] was achieved. However, whether the accuracy of
classification can be improved in dog image classification remains to be further explored.

To address this issue, we initiated this study to comprehensively research the inte-
gration of multiple CNNs and machine learning methods, with the aim of improving
dog image classification accuracy. Additionally, the model was combined with dimension
reducing and feature selection processing to optimize the exaction and fusion of image
features. The experimental results demonstrate that our proposed model outperforms
existing methods to achieve better identification efficiency.

The key contributions of this paper are given below: We propose a new method to
combine CNN models and a machine learning model for dog image classification; we
increased the accuracy of dog image classification to over 95%; and we used transfer
learning for the CNN model training process which improved the efficiency and accuracy
of this task. The rest of this paper is structured as follows: Section 2 introduces the
materials and methods, including data sources, data preprocessing and model architecture;
Section 3 introduce the experimental setup including parameter details; Section 4 analyzes
the experimental results and discusses the selection of model combination; and finally,
Section 5 discusses the findings and limitations of the study, concludes the research and
explores its significance and potential applications in related fields.

2. Materials and Methods
2.1. Data Acquisition and Preprocessing

We used the Stanford Dogs Dataset [28] to train and evaluate our model, which is
named DataSet1 for convenience. DataSet1 includes 20,580 annotated dog images from
120 breeds, and each breed has about 180 images. Sample images are shown in Figure 1.

The distribution of the number of dogs for each breed is shown in Figure 2. Among
these 120 breeds, Redbone has the lowest number of images with 148 and Maltese has the
largest number of images with 252. To mitigate the effects of uneven data distribution
on accuracy, 120 images were manually filtered for each breed according to image size,
aspect ratio and background ratio to form a new dataset named DataSet2. In addition,
preprocessing operations were performed on the images, including image size resetting,
center cropping, and normalization. The reset image size was set according to requirements
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of different networks. Both datasets are divided into training and testing sets according to
the ratio of 8:2 and trained separately.
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2.2. Proposed Architecture Details

The model we propose is shown in Figure 3, which consists of three main steps
as follows.



Bioengineering 2024, 11, 1157 4 of 14

Bioengineering 2024, 11, x FOR PEER REVIEW 5 of 15 
 

benchmark datasets and can also provide a reasonable baseline performance to focus on 
other aspects of the algorithm. 

 
Figure 3. The architecture of proposed model. Dataset1 and Dataset2 are divided into an 8:2 ratio 
separately, 80% of the data are used for training the model and 20% is used for testing its perfor-
mance. Four CNN models including Inception V3, InceptionResNet V2, NASNet and PNASNet are 
fine-tuned using transfer learning approach and the features before fully connected layer are ex-
tracted, respectively. The numbers 2048, 1536,4032 and 4320 represent the number of extracted fea-
tures before fully connected layer of Inception V3, InceptionResNet V2, NASNet and PNASNet, 
respectively, and then these features are concatenated and flattened. PCA is used to reduce the 

Figure 3. The architecture of proposed model. Dataset1 and Dataset2 are divided into an 8:2 ratio
separately, 80% of the data are used for training the model and 20% is used for testing its performance.
Four CNN models including Inception V3, InceptionResNet V2, NASNet and PNASNet are fine-
tuned using transfer learning approach and the features before fully connected layer are extracted,
respectively. The numbers 2048, 1536, 4032 and 4320 represent the number of extracted features before
fully connected layer of Inception V3, InceptionResNet V2, NASNet and PNASNet, respectively, and
then these features are concatenated and flattened. PCA is used to reduce the feature size and GWO
is used to select the specific features. Finally, SVM is used to perform the classification task.
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2.2.1. Feature Extraction Using Four Known CNN Models

We used Inception V3, InceptionResNet V2, NASNet and PNASNet [29–33], which are
independent fine-tuning models and have a high performance in ImageNet competitions
to extract features before fully connected layers, respectively. Inception V3 is a part of
GoogLeNet, which is a deep neural network model based on the Inception module launched
by Google. Inception is used to assemble multiple convolution or pooling operations
together into a network module [30]. InceptionResNet V2 is an improvement over Inception
V3 by introducing residual connections, which reduces computational costs and speeds up
network training [31]. NASNet is a new architecture proposed by Google in 2018, which
combines features learned in ImageNet classification with the Faster-RCNN framework to
exceed the best predictive performance of previously released COCO object detection task.
The mean accuracy rate (mAP) of the model was 43.1%, which has 4% improvement over the
best results published [33]. PNASNet is an improved model based on NASNet and proposes
a search strategy using Sequential model-based optimization (SMBO). Compared with
NASNet, PNASNet is 5 times more efficient, and significantly reduces the requirements
of computation resources [32]. The size of each input image in this research was set
to 299 × 299 pixels for Inception V3 and InceptionResNet V2, and 331 × 331 pixels for
NASNet and PNASNet.

2.2.2. Feature Fusion and Feature Selection Methods

The features of the above four models extracted were combined together, and then
filtered using feature selection methods including principal component analysis (PCA)
and the gray wolf optimization (GWO) algorithm [34] to obtain specific features. Feature
selection can help to improve the accuracy of classification [35]. PCA is a linear dimen-
sionality reduction method, which can reduce the storage space required and improve the
transmission efficiency. We achieved PCA using Python’s sklearn.decomposition module.
GWO is a meta-heuristic algorithm inspired by gray wolves in nature, which mimics their
leadership hierarchy and hunting process. The GWO algorithm designs four agents for
simulating the leadership hierarchy, which, from high to low, are gray wolf α, β, δ and ω.
Here, we set the population size to 30, the number of iterations to 5 and the search range
from −1 to 1, all these considered as initial parameters of the GWO algorithm, and the
number of rotations was set to 30. In this study, we first used PCA and then used the GWO
algorithm for feature selection.

2.2.3. Classification for Dog Images

Support vector machine (SVM) was adopted to classify the above selected features,
which was originally designed for binary classification problems. When dealing with multi-
class problems, it is necessary to construct a suitable multi-class classifier. At present, there
are two methods available: (1) The direct method, which can directly modify the objective
function and combine the parameter solutions of multiple classification surfaces into an
optimization problem. It is simple but difficult to implement because of its high computa-
tional complexity and is only suitable for small problems. (2) The indirect method, which
mainly realizes multi-classification by combining multiple binary classifiers. Two common
methods are supported, one-against-one and one-against-all [36]. In this study, we used
the one-against-one strategy, which was implemented using Python’s sklearn.svm module,
and we selected the RBF kernel function. In our experiments, the default parameters of the
SVM were used without any hyperparameter tuning to ensure fair and reproducible results.
The default parameters can perform consistently on multiple benchmark datasets and can
also provide a reasonable baseline performance to focus on other aspects of the algorithm.

3. Experimental Setup
3.1. Training and Implementation Details

We integrated the three processes mentioned earlier to develop our proposed model,
successfully combining CNNs with machine learning techniques. The code is implemented
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in Anaconda Python 3.7, and the deep learning framework is PyTorch (https://pytorch.org/
(accessed on 16 November 2024)). The whole leaning procedure is runnable on a Linux
machine which is equipped with an Intel Xeon CPU with 24 GB memory and another Linux
machine equipped with an NVIDIA GV100GL GPU with 32 GB memory.

All CNN models were trained using the transfer learning [37] approach in this study.
The size of each input image was set to 299 × 299 pixels for Inception V3 and InceptionRes-
Net V2, and 331 × 331 pixels for NASNet and PNASNet. These four proposed CNN models
for dog breed classification were trained using a set of carefully selected hyperparameters.
A batch size of 16 was chosen to balance computational efficiency and training stability.
The initial learning rate was set to 1 × 10−3, and this was adjusted dynamically using a
scheduler that reduced the rate by a factor of 0.1 upon detecting a plateau in validation
performance. The Stochastic Gradient Descent (SGD) optimizer, known for its fast con-
vergence and freedom from local optima, was utilized with the momentum of 0.9. The
loss function we used is Cross Entropy for a multi-class classification task. The network
was trained for 50 epochs. The epoch and batch size parameter values were chosen after
our experimental results, and the momentum and learning rate parameter values were
set according to reference [26,27]. The relevant parameters are shown in Table 1. After
employing transfer learning, the features before fully connected layers of Inception V3,
InceptionResNet V2, NASNet and PNASNet were extracted, with dimension of 2048, 1536,
4032 and 4320 respectively. These features were then used for feature fusion, selection and
breed classification.

Table 1. Parameter values of CNN architectures.

Software Used Model Image Size Optimizer Momentum Minibatch Learning Rate

Anaconda Python
3.7 PyTorch v1

Inception V3
299 × 299

SGD 0.9 16 1 × 10−3
InceptionResnet V2

NASNet
331 × 331PNASNet

Data augmentation techniques were employed to enhance model robustness, including
random rotations, flips and intensity variations; here, we used random resized crop, center
crop and random flip. We normalize the input images before training. During training, the
dataset from Stanford Dog Dataset (http://vision.stanford.edu/aditya86/ImageNetDogs/
(accessed on 22 October 2024)) named Dataset1 and images after manual filtering named
Dataset2 were split into training and testing sets in an 80–20 ratio, respectively. Input
images were normalized so that they have a mean of zero and a unit variance.

3.2. Performance Metric

In this study, the evaluation metric used for the analysis of experiments was accuracy.
In the following equation, TP represents True positives, TN represents true-negative, FP
means false-positive and FN means false-negative [27]:

accuracy =
TP + TN

TP + TN + FP + TN
(1)

4. Results

To enhance the model’s performance and the accuracy of the classification of the dog
breeds, we first tried four known CNN models with good classification performances for
dog images. Then, we tried to extract the features before the fully connected layer with
the known CNN models mentioned and implemented classification with SVM, we also
compared the effect of using a single model to extract the features and multiple models
to extract the features and then fusing them on the classification accuracy. After feature
fusion, we also used two feature selection methods, PCA and GWO. For the PCA method,

https://pytorch.org/
http://vision.stanford.edu/aditya86/ImageNetDogs/
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the effects of feature dimension reduction to 5000, 4000, 3000 and 2000 on the results
were compared.

4.1. Comparative Analysis of Single CNN Models

The single CNN model can achieve better accuracy, but not the best. We used four
transfer-learning CNNs to perform the classification, including Inception V3, InceptionRes-
Net V2, NASNet and PNASNet. The results show that NASNet and PNASNet have better
classification accuracies than Inception V3 and InceptionResNet V2 (93.03% and 89.64% vs.
84.33% and 85.97% in DataSet1, 93.96% and 89.27% vs. 86.25% and 84.13% in DataSet2), and
NASNet has the highest accuracy for both datasets. The results from the two datasets are
closely aligned, with DataSet2 (the manually filtered dataset) showing minimal significant
benefits over the other. Table 2 summarizes the classification accuracy of each CNN model.

Table 2. The performance of four different transfer learning CNN models.

Models Test Accuracy (Dataset1) Test Accuracy (Dataset2)

Inception V3 84.33% 86.25%
InceptionResNet V2 85.97% 84.13%

PNASNet 89.64% 89.27%
NASNet 93.03% 93.96%

4.2. The Evaluation of Fusion CNNs and SVM Classification

The combined multiple CNNs and SVM improved the classification accuracy com-
pared with the single model shown above. In our study, fusing the the Inception V3,
InceptionResnet V2, NASNet and PNASNet with SVM separately achieved a better effect
in both datasets. Furthermore, fusing the merged four CNN models with SVM achieved a
higher accuracy of 94.1% for 120 breeds in DataSet1 and the highest accuracy of 94.9% for
120 breeds in DataSet2. Meanwhile, we assembled any two of the CNNs mentioned above
and fused them with SVM; for example, the PNASNet and NASNet (two higher accuracy
models) with SVM has higher accuracy (94.2% in DataSet1 and 94.7% in DataSet2) than the
combination of Inception V3 and InceptionResNet V2 (two lower-accuracy models, with
92.6% accuracy in DataSet1 and 93.5% in DataSet2). The results showed that a combination
with an individual CNN model with a high accuracy overall has a better performance.
Table 3 summarizes the classification accuracy of the different models.

Table 3. Comparative result of CNN and SVM classification.

Methods Num of Features Test Accuracy (Dataset1) Test Accuracy (Dataset2)

Inception V3 + SVM 2048 89.50% 91.30%
InceptionResNet V2 + SVM 1536 92.00% 92.10%

PNASNet + SVM 4320 93.70% 94.30%
NASNet + SVM 4032 93.30% 94.50%

Inception V3 and InceptionResNet V2 + SVM 3584 92.60% 93.50%
NASNet and InceptionResNet V2 + SVM 5568 93.20% 94.60%

PNASNet and InceptionResNet V2 + SVM 5856 93.80% 94.20%
NASNet and Inception V3 + SVM 6080 93.20% 94.50%
Inception V3&PNASNet + SVM 6368 93.80% 94.20%
NASNet and PNASNet + SVM 8352 94.20% 94.70%

Inception V3 and NASNet and PNASNet and
InceptionResNet V2 + SVM 11,936 94.10% 94.90%

Bold means that in both datasets, four CNNs and SVM model have better accuracy than single CNN and SVM.

4.3. Ablation Analysis of Our Model

We conducted a multi-round feature selection experiment using various feature sizes,
such as 5000, 4000, 3000, and 2000, to assess classification accuracy. The experiment first
employed PCA, followed by a combination of PCA and the GWO algorithm. PCA together
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with the GWO feature selection algorithm improved the accuracy on both datasets, which
reached 94.3% on DataSet1 and 95.24% on DataSet2, respectively. Based on the combined
four CNN modules above, we used PCA to reduce the features to 5000, 4000, 3000 and
2000, respectively, then used GWO to select features. To evaluate the effective influence
of PCA or GWO, we validated the combined patterns of different strategies, for example,
without PCA or GWO, and the results indicate that GWO has a greater impact on accuracy
than PCA (Table 4).

Table 4. Ablation result of four CNN and SVM classification with feature selection.

Methods Number of Features
After PCA

Number of Features After GWO Test Accuracy
(Dataset1)

Test Accuracy
(Dataset2)Dataset1 Dataset2

Inception V3 and NASNet
and PNASNet and

InceptionResNet V2 + SVM

5000 - - 94.00% 94.40%
4000 - - 94.00% 94.40%
3000 - - 94.00% 94.40%
2000 - - 94.00% 94.40%

5000 2508 2499 94.30% 95.24% *
4000 2088 2045 94.45% 95.00%
3000 1532 1483 94.23% 95.07%
2000 1038 1004 94.35% 94.97%

- 5991 5974 94.28% 95.03%

* Using only PCA cannot improve the results, but after dimensionality reduction to 5000 using PCA and adding
GWO algorithm, the accuracy was better in both datasets.

The accordingly extracted features of maximum classification accuracy (95.24%) vi-
sualized by the t-SNE method are shown in Figure 4, which clearly shows the different
classifications of 120 breeds, and the corresponding confusion matrix (Figure 5) shows the
same pattern.
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Figure 5. The confusion matrix of maximum classification accuracy (95.24%) for the test data for
120 breeds from the Stanford Dog Database. The y axis shows the actual labels for the dog breeds,
while the x axis shows the predicted labels.

4.4. Summary and Analysis of Results

In total, using the combined method mentioned above for the identification of 120 dog
breeds, the average accuracy of each breed for the best model can be seen in Figure 2 and
the accuracy statistics’ distribution can be seen in Table 5. There are 76 breeds with more
than 95% average classification accuracy, of which 48 breeds can be distinguished perfectly
with an average accuracy of 100%. Three breeds, including the English foxhound, Miniature
poodle and Collie, have the lowest average accuracies, under 70%. We took a closer look
at the English foxhound which has average accuracy of 67%. This breed looks similar to
the Beagle and Walker hound, which are difficult to identify even by eye. In addition,
the Stanford images of this breed are different in dog size, photo pose or distance. For
the Miniature poodle which has average accuracy 66% and the Collie which has average
accuracy 56%, the lower accuracy may be mainly caused by the vast inner differences in
the breed such as coat color. We used the top 76 breeds (average accuracy above 95%) to
evaluate our model, and the accuracy was up to 99.34%.
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Table 5. Statistics of accuracy distribution of each breed.

Accuracy Range Num of Breeds

1 48
0.95~0.99 28
0.90~0.95 28
0.80~0.90 10
0.50~0.75 6

In addition, we developed an online dog image classification tool called DogVC.
This tool integrates the mentioned CNN models, and was integrated into iDog [38] for
NGDC [39], which is a database integrating genome, phenotype, disease and variation in-
formation of Canis lupus familiaris. DogVC is available at https://ngdc.cncb.ac.cn/dogvc/
(accessed on 22 October 2024); users can upload a dog image, and then the prediction result
will be shown.

5. Discussion

The classification of dog breed images is a type of fine-grained image classification.
The proposed model has the advantages of comprehensive feature coverage, high-quality
feature output and complete automatic implementation. One of the most characteristic
features of this study is that we proposed a comprehensive multi-CNNs model architecture
and conducted experiments of the factors that affect accuracy including model combination,
feature size and classification method. We achieved a 95.24% accuracy, which is better than
other reported deep learning methods using the same Stanford Dog Dataset of 120 breeds
regardless of various used hyper parameters (Table 6). Three improvements contribute
to the result: Compared to the existing methods that only use a single CNN model as
backbone model, we combined four CNN models and concatenated the extracted features.
Our results show that the fusion of high-performance CNN models has a higher accuracy
than single CNN model. (2) Existing methods directly use extracted features for classifying,
while we use two feature selection methods, PCA and GWO, to obtain improved features.
Our results show that PCA in combination with GWO shows better improvements in
accuracy than PCA or GWO alone. (3) Most of the existing methods directly use the
SoftMax function to classify dog breeds, while we use SVM. Our results show that the
combination of CNN and SVM can improve accuracy. The whole set of results show the
feasibility and effectiveness of our proposed model. Meanwhile, the number of images
may have no direct effect on breed accuracy (Figure 2).

Table 6. The results of existing studies using Stanford Dog Dataset.

Study Year Model/Method Backbone CNN Hyperparameters Feature
Selection Classification Accuracy

[14] 2016
Fully Convolutional
Attention Networks

(FCANs)
ResNet-50 Initial learning rate: 0.01,

batch size: 512 no SoftMax 88.90%

[15] 2017
Recurrent Attention

Convolutional Neural
Network (RA-CNN)

VGG-16 - no SoftMax 87.30%

[40] 2018 Fine-tuned CNN ResNet-50 - no SoftMax 89.66%

[8] 2018 Fine-tuned CNN Inception-Resnet V2
Initial learning rate: 0.1,

optimizer: Nesterov,
batch size: 64

no SoftMax 90.69%

[13] 2021 Fine-tuned CNN ResNet-50 learning rate:0.0001 no SoftMax 90.12%

https://ngdc.cncb.ac.cn/dogvc/
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Table 6. Cont.

Study Year Model/Method Backbone CNN Hyperparameters Feature
Selection Classification Accuracy

[16] 2019
Weakly Supervised Data
Augmentation Network

(WS-DAN)
Inception V3

Initial learning rate: 0.001,
optimization: SGD,

momentum: 0.9,
batch size: 16

no - 92.20%

[17] 2021 Vision Transformers (ViT) ViT-B/16 - no MLP 93.20%

Proposed
Approach 2022 multi-CNNs and Feature

selection and SVM

Inception V3,
InceptionResnet V2,

NASNet and
PNASNet

learning rate: 0.001,
optimization: SGD,

momentum: 0.9,
batch size: 16

PCA and
GWO SVM 95.24% *

* Compared with other previous methods used on Stanford Dogs Dataset, our approach has better accuracy.

Historically, dog image classification has focused on dog facial geometry features
such as dog face profile or facial local features such as ear shape. Due to complexity of
localized features, classification tasks were only trained on limited dog breeds (35 breeds)
and/or images (less than 1000 images) followed by classical machining learning methods
such as PCA. Since 2012, the deep learning methods show best-in-class performance
in several application tasks, which facilitate the application to dog image classification.
By using the Stanford Dog Dataset, single CNN models can classify 120 breeds with
state-of-the-art accuracy.

6. Conclusions

We started with the image data and manually filtered it based on background size
and dog coat color so that there were the same number of images for each breed of dog
in Dataset2; the model classification was slightly better for Dataset2 than for the raw data.
The performance of multiple CNNs combined with SVM is superior to that of a single
CNN combined with SVM. Two feature selection methods, PCA and GWO, also showed
an improvement in dog breed classification accuracy. Selecting different CNN models for
feature extraction also impacts the results.

Despite these positive outcomes from the study, there are also some limitations to
consider. Firstly, the model’s accuracy may be somewhat compromised by the fact that
some breeds have such subtle differences that even the human eye finds it challenging to
distinguish among them, such as the English foxhound, Beagle and Walker. Secondly, the
model’s accuracy is further affected by breeds with significant internal variations, like the
Collie, which exhibits a diverse range of coat colors. Additionally, the complexity of the
model needs to be addressed in future work.

Future research could be carried out in the following directions. Firstly, we will
continue to monitor and update our proposed model in three aspects: We will incorpo-
rate the Tsinghua Dogs Dataset (https://cg.cs.tsinghua.edu.cn/ThuDogs/ (accessed on
22 October 2024)), which contains 70,428 images of 130 breeds, to increase the variety
and quantity of image data, thereby enhancing the model’s generalization ability and
robustness. (2) We will explore the use of modern architectures, such as autoencoders or
large models in the computer vision field like Vision Transformers (ViT) [17], which can
perform various vision tasks such as image classification, target detection, image segmen-
tation, pose estimation, face recognition and so on by training on large-scale image data.
(3) Extending our model to other animal images, such as cats, sheep and birds, will allow
us to assess its scalability and versatility for classification tasks. Secondly, to facilitate the
download and use of our model, we have developed and released all codes on BioCode
(https://ngdc.cncb.ac.cn/biocode/tool/BT7319 (accessed on 22 October 2024)). And we
plan to establish an email group accompanied by discussion workshops to garner feed-
back and suggestions. At present, our proposed model has been integrated into the iDog
database (https://ngdc.cncb.ac.cn/dogvc/ (accessed on 22 October 2024)) for dog image
classification, and further developing other applications such as a mobile APP will widely

https://cg.cs.tsinghua.edu.cn/ThuDogs/
https://ngdc.cncb.ac.cn/biocode/tool/BT7319
https://ngdc.cncb.ac.cn/dogvc/
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promote the usage of our model. And the model’s explanatory ability also be needed to
improve the effectiveness of our applications. Moreover, we advocate for the collaboration
of the global canine community research including researchers, veterinarians, dog owners,
dog breed experts and data scientists to advance our proposed model. This would include
having dog breed experts validate the image classification results using their domain knowl-
edge, data scientists annotate and outline the images to improve classification accuracy and
dog owners and veterinarians collect images to enlarge the image scale.
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CNN Convolutional Neural Network
PCA Principal Component Analysis
GWO Gray Wolf Optimization
SVM Support Vector Machine
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RBF Radial Basis Function
SGD Stochastic Gradient Descent
TP True Positive
TN True Negative
FP False Positive
FN False Negative
FCANs Fully Convolutional Attention Networks
RA-CNN Recurrent Attention Convolutional Neural Network
WS-DAN Weakly Supervised Data Augmentation Network
ViT Vision Transformers
t-SNE t-distributed stochastic neighbor embedding
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