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Abstract: Early life stress (ELS) significantly increases the risk of chronic cardiovascular diseases
and may cause neuroinflammation. This post hoc study, based on the material available from a
previous study showing elevated “serum brain injury markers” in male control animals, examines
the effect of sex and/or ELS on the cerebral and cardiac expression of the H2S and oxytocin sys-
tems. Following approval by the Regional Council of Tübingen, a randomized controlled study
was conducted on 12 sexually mature, uncastrated German Large White swine of both sexes. The
control animals were separated from their mothers at 28–35 days, while the ELS group was separated
at day 21. At 20–24 weeks, animals underwent anesthesia, ventilation, and surgical instrumenta-
tion. An immunohistochemical analysis of oxytocin, its receptor, and the H2S-producing enzymes
cystathionine-β-synthase and cystathionine-γ-lyase was performed on hypothalamic, prefrontal
cortex, and myocardial tissue samples. Data are expressed as the % of positive tissue staining, and
differences between groups were tested using a two-way ANOVA. The results showed no significant
differences in the oxytocin and H2S systems between groups; however, sex influenced the oxytocin
system, and ELS affected the oxytocin and H2S systems in a sex-specific manner. No immunohisto-
chemical correlate to the elevated “serum brain injury markers” in male controls was identified.

Keywords: oxytocin; oxytocin receptor; cystathionine-β-synthase; cystathionine-γ-lyase; prefrontal
cortex; hypothalamus

1. Introduction

Experiences of early life stress (ELS) are associated with an increased incidence and
severity of chronic diseases, including cardiovascular diseases [1–4]. This effect was re-
ported to be more pronounced in women [5–7], contrasting with the higher overall incidence
of these diseases in the male population [8,9]. The indication of greater vulnerability to
ELS in women is supported by experimental data from a model of early life adversity in
pigs: female subjects of the same age and weight exhibited significantly more pronounced
damage in the gastrointestinal mucosa compared to their male counterparts [10,11].

Oxytocin (OT), a neuropeptide synthesized in the hypothalamus, has been extensively
studied for its involvement in cardiovascular function, social bonding, and stress regulation.
It exerts its effects through the oxytocin receptor (OT-R). OT-R is expressed not only in the
brain but also in other organs, including the heart [12]. It also has cardioprotective prop-
erties by enhancing glucose utilization [13,14], stimulating the nitric oxide system [15,16],
and exerting a negative chronotropic effect [15]. The expression of OT-R can be influenced
by both sex and/or ELS, e.g., female patients with traumatic childhood experiences (“Child-
hood Maltreatment”) exhibited a reduced expression of OT-R in PBMCs [17]. However, the
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available data on a possible impact of sex on the expression of OT-R is inconclusive, with
reports of higher OT-R expression in males compared to females in mice [18], unchanged
OT-R expression in humans [19], or even diminished OT-R binding in males compared to
females in prairie voles [20], suggesting species-specific sex differences in OT-R expression
in the brain [21].

Hydrogen sulfide (H2S) is referred to as an endogenous signaling molecule with im-
plications in cardiovascular and nervous system physiology. It is synthesized by enzymes,
e.g., cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE), and thus plays a
regulatory role in various cellular functions including the vasodilation, neurotransmission,
and modulation of the inflammatory responses [22]. Furthermore, H2S mediates cardio-
protection through its anti-oxidant properties [22] and its effects on cardiac mitochondrial
function [23,24]. The expression of CSE can be affected by ELS in a severity-dependent
way: e.g., “chronically” stressed male mice expressed less myocardial CSE compared
to controls [25]. However, the putative effects of ELS on the expression of CBS, and in
this context, particularly sex-dependent ones on the expression of CSE and CBS, remain
largely unknown.

Both OT-R and CSE are expressed in similar cell types in the cardiovascular system,
i.e., cardiomyocytes and endothelial cells [26,27], and have parallel effects in blood pressure
regulation and the mediation of cardiac contractility, as well as cardioprotective and anti-
oxidant effects [28]. Thus, it is tempting to speculate that the OT/OT-R and H2S systems
interact in response to both physical and psychological trauma [29]. Physical trauma
typically represents a challenge for the cardiovascular system, affecting blood pressure
and fluid balance. The hypothalamus plays a central role in regulating blood and body
fluid volume and osmolality [30]. The paraventricular nuclei (PVN), as the location of
interaction between the H2S and oxytocin systems in maintaining fluid homeostasis, assume
particular importance in this context [31]: in rats, water deprivation increased the sulfide
concentrations in the medial basal hypothalamus, whereas intracerebroventricular injection
of the sulfide-releasing salt Na2S not only had the opposite effect, but also increased plasma
OT concentrations.

In the intervention study underlying this work, the serum levels of the “brain in-
jury markers” MAP-2, GFAP, NSE, and Protein S100β were significantly higher in male
than in female control animals, while no gender-dependent difference in ELS animals
was apparent [32]. These findings suggest a gender-specific difference in porcine brain
biochemistry at baseline, which, moreover, may be differentially affected by ELS. More-
over, systemic cytokine levels had also shown a sex-specific response depending on the
presence/absence of ELS [32]: as reported in the previous publication, TNF-α and IL-10
levels were significantly higher in male control animals than in any of the other groups,
whereas IL-6 was not affected. Hence, cytokine levels dropped in males with ELS, but
were not affected in females. We speculated that biological effects of stress may be more
pronounced in males than females. Together with the effect of ELS on myocardial CSE
and OT-R expression observed in mice [25], the present post hoc study of heart and brain
tissue specimens available from a porcine ELS model investigated the effect of both sex
and/or ELS on the cardiac and cerebral (hypothalamic PVN and prefrontal cortex) H2S
and oxytocin systems using immunohistochemistry. In addition to the PVN, the prefrontal
cortex was investigated because it holds significant importance in cognitive processing,
behavior, and adaptation to the environment and its plasticity is affected by ELS [33,34].

2. Materials and Methods
2.1. Animals

This study is a post hoc analysis of material available from the above-mentioned inter-
ventional study [32]. The experiments had been conducted following approval by both the
University of Ulm Animal Care Committee and the Federal Authorities for Animal Research
(Regierungspräsidium Tübingen; Reg.-Nr. 1559, approval 29 October 2021) and adhering
to the National Institute of Health Guidelines on the Use of Laboratory Animals and the
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European Union “Directive 2010/63/EU on the protection of animals used for scientific
purposes”. The data presented originate from twelve sexually mature German Large White
pigs (median [interquartile range] age 23 [22; 24] weeks, bodyweight 82 [67; 93] kg), evenly
distributed by sex (n = 3 males/females per group) (see Figure 1A). Animals assigned to
the “control” group were weaned between day 28 and 35 after birth, which is consistent
with the standard weaning practices in swine husbandry (see Figure 1B). In contrast, those
subjected to ELS experienced weaning at day 21 after birth. This time point was selected
for several reasons: (i) it aligns with the earliest weaning period for swine as stipulated
in the Federal German regulations on farm animal husbandry; (ii) it has been referred to
comply with animal welfare standards, as assessed in the chapter no. 90 entitled “Influence
of weaning age on piglet behavior” of the report on “Environmentally compatible and
site-specific agriculture” by the Rheinische Friedrich-Wilhelms-University, Bonn, Germany;
and (iii) it aims to circumvent pathological clinical manifestations associated with earlier
weaning (at day 16–18) observed in other ELS models, e.g., diarrhea, weight loss, and/or
dysfunction of the intestinal mucosal barrier [35–38]. In order to mitigate inter-individual
variations pertaining to age and developmental stage, an effort was made to select every
two pairs of control and ELS animals from the same litter.
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2.2. Anesthesia and Surgery 

Figure 1. Animals and experimental protocol. (A) 12 German Large White pigs were distributed
equally into control and early life stress (ELS) with each group containing 3 male non-castrated
and 3 female pigs. (B) Psychological trauma was induced by early weaning (at postnatal day 21
instead of postnatal day 28–35 for controls). Experiments were performed at postnatal day 140–168.
(C) Experimental timeline.

2.2. Anesthesia and Surgery

Anesthesia and surgical procedures have been described in detail in a previously
published study [32]. The experimental timeline is depicted in Figure 1C. On the morning
of the experimental day, pigs received intramuscular pre-medication consisting of 2 mg/kg
of azaperone and 0.5–1 mg/kg of midazolam, followed by the insertion of a peripheral
venous catheter in an ear vein. General anesthesia was then induced using propofol
(1.5–2 mg/kg) and ketamine (1 mg/kg), with subsequent endotracheal intubation and
administration of fentanyl (20 µg/kg). Muscle paralysis was achieved via pancuronium
(0.1 mg/kg). Mechanical ventilation was initiated with the following parameters: tidal
volume set at 8 mL/kg, respiratory rate adjusted to 8–12 breaths/minute to achieve an
arterial PCO2 (PaCO2) of 35–40 mmHg, inspiratory/expiratory ratio (I/E) of 1:1.5, fraction
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of inspiratory oxygen (FiO2) set at 0.3, and positive end-expiratory pressure of 10 cm
H2O to prevent atelectasis formation [32]. Anesthesia was sustained through continuous
intravenous infusion of propofol at a rate of 10 mg/kg/h. To maintain fluid homeostasis, a
balanced electrolyte solution (10 mL/kg/h, Jonosteril 1/1®, Fresenius Kabi, Bad Homburg,
Germany) was administered. A 9F-metal-sheathed catheter (Arrow® International Inc.
(Teleflex), Morrisville, NC, USA) was surgically inserted into the left iliac artery to enable
continuous monitoring of blood pressure and blood sampling. Following the completion
of surgical instrumentation, adjustments were made to the ventilator settings to achieve an
inspiratory/expiratory (I/E) ratio of 1:2, FiO2 set at 0.21, and zero end-expiratory pressure
(0 cmH2O) in order to closely replicate physiological conditions.

2.3. Experimental Protocol

All experiments adhered to a rigorous timeline to mitigate the influence of circa-
dian rhythm. Specifically, intramuscular pre-medication was consistently administered at
06:00 h, induction of general anesthesia commenced at 07:00 h, and subsequent surgical
instrumentation lasted approximately 45 min. As outlined in the prior publication [32],
arterial blood sampling occurred one hour after completion of surgical instrumentation,
immediately preceding euthanization via KCl injection after further deepening of anesthe-
sia. Immediately post-mortem, the heart was excised. Thereafter, the head of the pig was
severed. A midline incision was made on the forehead, and the skin and muscle tissue
covering the skull were dissected away. Using a bone saw and chisel, the top portion of the
skull was removed. Carefully, the dura mater was incised with a scalpel. Subsequently, the
head of the pig was positioned to facilitate the disconnection of cranial nerves, resulting in
the release of the brain from the skull. The brain was then gently collected by hand. Without
delay, brain tissue was immersed in formalin for preservation. Notably, the duration of
individual experiments did not deviate by more than 15 min.

2.4. Immunohistochemistry

Immunohistochemical analysis was employed to assess the myocardial and cerebral
expression levels of OT and its receptor, alongside the principal H2S-producing enzymes
CBS and CSE. Immunohistochemistry was chosen for several reasons: (i) it is widely
acknowledged in the literature that densitometric analysis of colorimetric immunohis-
tochemical staining provides comparable reliability to Western blotting for quantifying
protein levels [39]; (ii) significant correlations have been observed between densitometric
values and those obtained from Western blotting analysis [40]; and (iii) in contrast to West-
ern blotting, immunohistochemical analysis of tissue enables the identification of spatial
distribution and protein expression in specific cell types within the tissue sample.

All brain specimens were subjected to consistent fixation in a 4% formalin solution
for a duration of 6 days. Subsequently, each brain underwent dissection into sequential
coronal sections with a thickness of 4 mm, extending from the frontal to occipital regions.
In instances where the size of the macroscopic section exceeded the dimensions of the
embedding cassette (26 × 3 × 4 mm), it was horizontally aligned and further subdivided
into a maximum of five pieces. This dissection process was meticulously executed to ensure
the preservation of tissue integrity and to facilitate subsequent reconstruction of the entire
section for analytical purposes. For this study, the macroscopic sections, which included
the hypothalamus and the prefrontal cortex, were selected for thorough examination.

Immunohistochemistry of cardiac specimens was conducted following established
procedures [41]. Left ventricular cardiac samples obtained immediately post-mortem were
fixed in formalin (4%) for 6 days.

Brain and myocardial tissue specimens underwent dehydration and were embedded in
paraffin blocks. Sections measuring 3–5 µm in thickness underwent deparaffinization using
xylene, followed by rehydration through a sequential series of ethanol and deionized water.
Immunohistochemistry was performed following the methodology outlined previously [42].
Briefly, after deparaffinization, heat-induced antigen retrieval was conducted in citrate
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solution (pH 6). Subsequently, blocking was carried out using 10% normal goat serum
(Jackson ImmunoResearch Laboratories, Inc., West Grove, PA, UK) prior to incubation
with the following primary antibodies: H2S-producing enzymes anti-CBS (Protein Tech,
Manchester, UK, 14787-1-AP, RRID: AB_2070970), anti-CSE (Protein Tech, 12217-1-AP, RRID:
AB_2087497), anti-OT (Millipore, Taufkirchen, Germany, AB911, RRID: AB_2157629), and
anti-OT-R (Protein Tech, 2304523045-1-AP, RRID: AB_2827435). The optimal dilution for
all primary antibodies was adjusted according to the manufacturer’s recommendations
and titrated to optimal concentrations for the samples at hand (Table 1). Primary antibody
detection was executed utilizing the Dako REAL detection system (anti-mouse, anti-rabbit,
alkaline phosphatase-conjugated). Visualization was achieved using red chromogen (Dako
REAL; Dako, Agilent Technologies, Santa Clara, CA, USA), followed by counterstaining
with hematoxylin (Sigma, St. Louis, MO, USA). The slides were examined using a Zeiss
Axio Imager A1 microscope equipped with a 10× and 40× objective lens. Quantitative
analysis was conducted on 800,000 µm2 sections utilizing the Zen Image Analysis Software
(Zeiss, Oberkochen, Germany). The findings are presented as the percentage of positively
stained area relative to the total area [43].

Table 1. Primary antibodies.

Primary Antibody (Source,
Catalog No., RRID) Host Species Immunogen Sequence Concentration Used for IHC

anti-CBS (Protein Tech,
14787-1-AP, AB_2070970) Rabbit Polyclonal CBS fusion protein Ag6437 1:200

anti-CSE (Protein Tech,
12217-1-AP, AB_2087497) Rabbit Polyclonal Gamma cystathionse fusion

protein Ag2872 1:200

anti-OT (Millipore, Ab911,
AB_2157629) Rabbit Polyclonal CYIQNCPLG (Synthetic oxytocin (Sigma)

conjugated to thyroglobulin) 1:500

anti-OT-R (Protein Tech,
123045-1-AP, AB_2827425) Rabbit Polyclonal Oxytocin Receptor fusion protein Ag19074 1:100

2.5. Statistical Analysis

Due to the very limited data with the early weaning pig model itself and the fact that
we were the first to analyze the effects of early weaning on the pig brain in particular, there
was no basis of preliminary data and/or relevant previous studies to allow for a power
calculation. Thus, the local Animal Care Committee and the Federal Authorities for animal
protection considered this experiment as a pilot study, and, consequently, determined a
maximum n = 12 for that type of study. Statistical analysis was performed using GraphPad
Prism Version 8. Intergroup disparities were evaluated employing a two-way ANOVA.
Given the small number of animals per group, no testing for outliers has been performed.

3. Results

Figure 2 shows representative images (left side) and the quantitative analysis (right
panels) of the myocardial tissue detection of the H2S-producing enzyme CSE (upper
graphs) and OT-R (lower graphs). Neither myocardial CSE expression nor OT-R showed
any significant intergroup differences, regardless of the presence or absence of ELS or sex.
However, there is no overlap in myocardial OT-R expression between the male control and
ELS animals, respectively.

Figures 3 and 4 present representative images (left panels) and the quantitative analysis
(right panels) of the prefrontal cortex staining for the H2S-producing enzyme CBS (Figure 3)
in the gray (upper graphs) and white matter (lower panel) and for OT-R in the white
matter (Figure 4). The expression of OT-R was depicted exclusively in the white matter, as
OT-R expression was nearly absent in the gray matter. Neither CBS in the gray and white
matter, nor OT-R in the white matter, showed any significant intergroup differences. As
in the myocardium (Figure 2), there is no overlap in the expression of OT-R in the PFC
between the male control and ELS animals either. CSE and OT were nearly absent in the
prefrontal cortex.
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Figure 2. H2S-producing enzyme cystathionine-γ-lyase (CSE) (upper panel, n = 12) and oxytocin
receptor (OT-R) (lower panel, n = 12) in the heart (left ventricle). Representative images (left panel),
30× magnified images originating from the black box in the 10× magnified image and quantification
of immunohistochemical staining as positive tissue [pink, %] (right panel). f: female (open circles),
m: male (solid squares), ELS: early life stress (red symbols), control (blue symbols).
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Figure 3. H2S-producing enzyme cystathionine-β-synthase (CBS) in the gray matter (upper panel, 
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Figure 3. H2S-producing enzyme cystathionine-β-synthase (CBS) in the gray matter (upper panel,
n = 12) and white matter (lower panel, n = 12) of the prefrontal cortex. Representative images
(left panel), 30× magnified images originating from the black box in the 10× magnified image and
quantification of immunohistochemical staining as positive tissue [pink, %] (right panel). f: female
(open circles), m: male (solid squares), ELS: early life stress (red symbols), control (blue symbols).
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Figure 4. Oxytocin receptor (OT-R) (n = 12) in the white matter of the prefrontal cortex. Representa-
tive images (left panel), 30× magnified images originating from the black box in the 10× magnified 
image and quantification of immunohistochemical staining as positive tissue [pink, %] (right panel). 
f: female (open circles), m: male (solid squares), ELS: early life stress (red symbols), control (blue 
symbols). 

Representative images (left panels) and the quantitative analysis (right panels) of the 
paraventricular nucleus of the hypothalamus staining for OT (upper graphs), its receptor 
(bottom panels), the H2S-producing enzymes CBS (upper panels), and CSE (bottom 
graphs) are presented in Figures 5 and 6. None of these target proteins exhibited any sig-
nificant intergroup variance, irrespective of sex or the presence or absence of ELS. Never-
theless, male animals exhibited higher OT expression compared to females. Additionally, 
the expression of the OT-R was greater in male controls than in females. 

Figure 4. Oxytocin receptor (OT-R) (n = 12) in the white matter of the prefrontal cortex. Representa-
tive images (left panel), 30× magnified images originating from the black box in the 10× magnified
image and quantification of immunohistochemical staining as positive tissue [pink, %] (right panel).
f: female (open circles), m: male (solid squares), ELS: early life stress (red symbols), control
(blue symbols).

Representative images (left panels) and the quantitative analysis (right panels) of the
paraventricular nucleus of the hypothalamus staining for OT (upper graphs), its receptor
(bottom panels), the H2S-producing enzymes CBS (upper panels), and CSE (bottom graphs)
are presented in Figures 5 and 6. None of these target proteins exhibited any significant
intergroup variance, irrespective of sex or the presence or absence of ELS. Nevertheless,
male animals exhibited higher OT expression compared to females. Additionally, the
expression of the OT-R was greater in male controls than in females.
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Figure 5. Oxytocin (OT) (upper panel, n = 12) and its receptor (OT-R) (lower panel, n = 12) in the
paraventricular nucleus of the hypothalamus. Representative images (left panel) and quantification
of immunohistochemical staining as positive tissue [pink, %] (right panel). f: female (open circles),
m: male (solid squares), ELS: early life stress (red symbols), control (blue symbols).



Biomolecules 2024, 14, 1385 10 of 16Biomolecules 2024, 14, x FOR PEER REVIEW 11 of 17 
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cystathionine-γ-lyase (CSE) (lower panel, n = 12) in the paraventricular nucleus of the 
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Figure 6. H2S-producing enzymes cystathionine-β-synthase (CBS) (upper panel, n = 12) and
cystathionine-γ-lyase (CSE) (lower panel, n = 12) in the paraventricular nucleus of the hypothalamus.
Representative images (left panel) and quantification of immunohistochemical staining as positive
tissue [pink, %] (right panel). f: female (open circles), m: male (solid squares), ELS: early life stress
(red symbols), control (blue symbols).
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4. Discussion

The aim of this investigation was to assess the effects of sex and early weaning as a
model of ELS on the myocardial protein levels of CSE and OT-R, the protein levels of CBS
and OT-R in the prefrontal cortex and of OT, OT-R, CBS, and CSE in the paraventricular
nucleus of the hypothalamus. The main findings of the present study were (i) that none
of these parameters showed any significant differences in expression, (ii) sex influenced
the expression of OT and its receptor, and (iii) stressed males exhibited a trend towards
reduced expression of myocardial CSE, OT-R, and cerebral CBS and OT-R when compared
to control males.

Neither sex nor ELS experiences resulted in significant differences between groups.
However, we observed that the myocardial expression of CSE tended to be lower in the
stressed male animals when compared to the male controls, an effect that was not observed
in the female animals. These results align with findings from a study using a mouse model,
which demonstrated a reduced myocardial CSE expression in male subjects with “chronic”
long-term separation stress when compared to male control mice [25]. In that study, ELS
was also induced by maternal separation. However, unlike in our present study, two
distinct stress protocols were implemented: the “chronic” stress group underwent earlier
and more prolonged maternal separation when compared to the “mild” stress group. Thus,
it was demonstrated that the effects on myocardial CSE expression are markedly influenced
by the type of stress and/or severity. In fact, the aforementioned study showed that
reduced CSE expression occurred exclusively in “chronically” stressed animals, contrasting
with mice subjected to the “mild” stress protocol. Another pivotal distinction is that
only male experimental animals were employed, thus precluding any extrapolation to the
female population.

Given the interaction between the H2S system and the oxytocin system [29], we also
conducted a more detailed analysis of the OT/OT-R expression, and we did not detect
any significant differences in myocardial OT-R expression based on sex or ELS experience.
However, similar to CSE, a markedly reduced myocardial OT-R expression was found in
the male animals suffering from ELS, further supporting sex-specific effects of ELS in our
model. In the above-mentioned murine study, a diminished myocardial OT-R expression
in male subjects with “chronic” long-term separation stress compared to male control mice
was also observed [25]. Thus, we confirmed the previously published data from murine
ELS here in our porcine model. Consistent with these experimental findings, a reduced
expression of OT-R in peripheral blood mononuclear cells (PBMCs) has been observed in
patients who experienced early life stress [44].

In addition to psychological trauma, physical trauma also appears to lead to a reduc-
tion in myocardial OT-R expression. This was demonstrated in mice of both sexes following
exposure to combined cigarette smoke and acute blunt chest trauma [45]. A decreased OT-R
expression in infarcted left ventricular tissue was directly related to worsened myocardial
injury [46], underscoring the detrimental impact of reduced OT-R expression on cardio-
vascular health. Similarly, a lack of CSE is associated with an aggravation of myocardial
fibrosis and heart failure in a murine model [47], suggesting that CSE plays a crucial role
for proper cardiac function. The dysregulation of CSE and OT-R in the myocardium and
associated interference with cardioprotective mechanisms of individuals experiencing ELS
might mediate the higher risk for ELS-associated cardiovascular disease in adults on a
molecular level. In fact, in a porcine resuscitated model of septic shock with underlying
atherosclerosis, we were able to show that atherosclerosis reduced coronary artery [48], and
myocardial CSE expression [49] was associated with reduced cardiac output in response
to sepsis [49], at a similar degree to that observed in human atherosclerotic septic patients
compared to cardiovascularly healthy septic patients [50].

Sex-specific effects of ELS in the expression of OT-R were identified not only in
the myocardium but also in the white matter of the prefrontal cortex. Similar to the
myocardium, stressed males expressed less OT-R compared to control males. Our findings
corroborate the observations from a previously published study in rats [51]. Following
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“Long-Term Neonatal Maternal Separation”, male rats exhibited a decreased expression of
OT-R in the prefrontal cortex when compared to their control counterparts. Sex-specific
differences could not be inferred from this study, as it focused exclusively on male rats.
However, another study involving rats, both sex-specific differences and the impact of ELS
(in this case swim, restraint, and elevated platform stress) were investigated [52]. After
ELS experience, neither male nor female animals exhibited any alteration of the OT-R
expression in the prefrontal cortex [52]. However, a sex-specific difference was evident:
females generally expressed higher levels of OT-R in the prefrontal cortex than males [52].

As previously noted in the context of myocardial expression involving CSE and OT-
R, the interaction between the oxytocin system and the H2S system is also observed in
the white matter of the prefrontal cortex. While the already low expression of CBS in
male control animals further decreased in stressed males and became almost undetectable,
female pigs not only express more CBS, but are also unaffected by ELS experiences. To the
best of our knowledge, there are currently no available data in the literature regarding the
influence of sex or ELS on the protein levels of CBS in the prefrontal cortex, which makes it
difficult to interpret these findings, especially given the lack of significance due to the low
number of animals in our study.

Moreover, the H2S and oxytocin systems have been scrutinized in greater detail
within the paraventricular nucleus of the hypothalamus, a pivotal center influencing
the interaction of these two systems especially under stress conditions [53]. Clearly, no
significant intergroup differences were detected in either the expression of OT or its receptor,
irrespective of sex and/or the absence/presence of ELS experience. Nevertheless, male
animals exhibited higher OT expression than females. Furthermore, the expression of
OT-R tended to be greater in male controls than in females. A sex-specific difference
was also observed, with a notable decrease in OT-R expression in stressed males, while
expression levels remained unchanged in stressed females. Variable effects of stress on
the oxytocin system have been reported in previous studies, inasmuch as decreased [54]
or unchanged [52] OT expression in the male hypothalamus were reported. In rodents,
inadequate maternal care was shown to reduce both hypothalamic and blood plasma
OT and OT-R expression in females [55]. However, maternal separation altered both the
OT expression and OT-R binding in an age- and sex-specific manner [56,57]. These at
least partially divergent findings could be attributed, on the one hand, to the varying
types of stressors employed, and, on the other hand, to the differences in the animal
models utilized. The pig, for example, is considered a highly pertinent translational model
owing to its structural resemblance to the human brain. Features such as gyri and sulci
(gyrencephalic brain), a white matter to gray matter ratio similar to that of humans, and
the presence of a tentorium cerebelli distinguish it from the rodent brain, thereby mirroring
more closely human pathophysiology [58,59]. In this context, our findings of a sex-specific
OT-R expression in the male hypothalamus agree well with previous findings in males [52].
ELS-induced changes in hypothalamic OT/OT-R, CSE, and CBS expression might reflect
the impaired hypothalamic regulatory capacity of blood volume after fluid shifts.

Despite the known interaction between the oxytocin and H2S systems, no significant
intergroup differences in CBS and CSE expression in the hypothalamus were detected,
irrespective of sex and/or ELS experience. Again, to the best of our knowledge, there are no
existing data in the literature that address the impact of sex or ELS on the protein levels of
CBS and/or CSE in the hypothalamus. However, when comparing the results with physical
trauma, notable distinctions emerge. A previously published study has demonstrated
that following traumatic brain injury, the expression of CBS and CSE in the hypothalamus
decreases [60]. In contrast to our study, rats were used, exclusively males, precluding any
sex-specific conclusions.

There are some limitations to this study. Our study is limited by the fact that, for this
pilot experiment, we received approval from the Animal Care Committee of Universität
Ulm and the Federal Authorities for Animal Research (Regierungspräsidium Tübingen) for
only six control and six ELS animals. As a result, conducting a power calculation was not
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possible. The limited number of animals in each group may have resulted in potentially
overlooking significant differences.

The NLRP3 inflammasome is a central effector in neuroinflammation [61,62], which
has not been investigated in the present study. Since it can be inhibited by both OT-
signaling [63] and H2S [64], which might play a role in depression and acute brain injury,
respectively, it is a relevant target for future investigations.

5. Conclusions

In this post hoc analysis, no immunohistochemical correlate to the elevated serum
concentrations of the “brain injury markers” in the male control animals could be identified.
The trends towards lower levels of CSE and OT-R in myocardial tissue of stressed males
support previous data on the effect and interaction of CSE and OT-R in the heart after
physical and psychological stress [25,45] and might represent a molecular correlate for
increased cardiovascular risk in adults with ELS experience.
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