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Abstract: Endometriosis is a chronic, inflammatory, oestrogen-dependent disorder that is defined
by the presence of endometrium-like tissue in the extra-uterine environment. It is estimated to
affect approximately 10% of women of reproductive age, and the cause is still largely unknown.
The heterogenous nature and complex pathophysiology of the disease results in diagnostic and
therapeutic challenges. This review examines the emerging role of host extracellular vesicles (EVs) in
endometriosis development and progression, with a particular focus on bacterial extracellular vesicles
(BEVs). EVs are nano-sized membrane-bound particles that can transport bioactive molecules such as
nucleic acids, proteins, and lipids, and therefore play an essential role in intercellular communication.
Due to their unique cargo composition, EVs can play a dual role, both in the disease pathogenesis and
as biomarkers. Both host and bacterial EVs (HEVs and BEVs) have been implicated in endometriosis,
by modulating inflammatory responses, angiogenesis, tissue remodelling, and cellular proliferation
within the peritoneal microenvironment. Understanding the intricate mechanisms underlying EVs in
endometriosis pathophysiology and modulation of the lesion microenvironment may lead to novel
diagnostic tools and therapeutic targets. Future research should focus on uncovering the specific
cargo, the inter-kingdom cell-to-cell interactions, and the anti-inflammatory and anti-microbial
mechanisms of both HEVs and BEVs in endometriosis in the hope of discovering translational
findings that could improve the diagnosis and treatment of the disease.

Keywords: endometriosis; extracellular vesicles; host extracellular vesicles; bacterial extracellular
vesicles; microbiome; microbiota; inflammation; immunity; biomarkers

Lay Summary

Endometriosis is a chronic condition where uterus-like tissue grows outside the uterus,
causing inflammation and pain. It affects about 10% of women of reproductive age, but
its exact cause is still unclear. The disease is complex, with varying presentations, making
it hard to diagnose and treat. Tiny host cell-derived particles called extracellular vesicles
(HEVs) are involved in the communication between cells and play a role in endometriosis
by affecting inflammation, blood vessel growth, tissue changes, and cell growth. Bacterial
extracellular vesicles (BEVs) are tiny particles released by bacteria that are emerging as key
players in inflammatory conditions. Very little is known about their role in endometriosis.
However, studying these EVs more closely could lead to better ways to diagnose and treat
endometriosis.

1. Introduction

Endometriosis is a chronic, inflammatory, and oestrogen-dependent condition that
is defined by the presence of endometrium-like tissue outside of the uterine cavity [1]. It
is estimated to affect 10% of women of reproductive age and is characterised by painful
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debilitating symptoms and infertility but can also present asymptomatically [2]. The
heterogenous nature of the disease, combined with the lack of non-invasive diagnostic
tools, results in a diagnostic delay on average of 7 years [3]. Endometriosis is often staged
using the American Society for Reproductive Medicine (ASRM) classification system, where
the lowest score, stage 1, corresponds to minimal lesions found and the highest score, stage
4, corresponds to widespread severe lesions and adhesions, often impacting fertility and
bowels [4]. This system helps describe the extent and severity of the disease, although the
stages do not necessarily correlate with symptoms and the impact on the quality of life.
There is currently no known cure, and treatment options such as laparoscopic excision of
lesions and hormonal treatments have limited efficacy and undesirable side effects and are
not guaranteed to prevent symptom recurrence [2]. Ultrasound or MRI imaging is largely
limited to deep infiltrating endometriosis, and a negative scan does not exclude superficial
endometriosis [5].

There are several theories to describe the pathophysiology of endometriosis, such
as retrograde menstruation, genetics, immune dysregulation, hormonal imbalances, and
coelomic metaplasia, yet the cause of the disease remains poorly understood [6]. The
study of extracellular vesicles in endometriosis is an emerging area of research that has
the potential to improve the understanding of endometriosis pathophysiology, while also
providing new avenues for diagnostics and therapeutics [7].

2. Extracellular Vesicles

Extracellular vesicles (EVs) are nano-sized, 20–1000 nm, bilipid enclosed membrane-
bound structures that are released by all cell types, of both eucaryotes and procaryotes,
into their extracellular environment [8,9]. They can carry cargo, which is reflective of
the phenotype of their origin cell at the time of vesiculation [10,11]. EVs can travel to
close or distant sites around the body and regulate cell function [12]. Due to this trait,
their role in intercellular communication, immune response, disease pathogenesis, novel
biomarkers, and drug delivery is increasingly being explored [10,13,14]. EVs play an
important role in intercellular communication as they can effectively transport active
biomolecules such as nucleic acids, proteins, amino acids, and metabolites to target distant
or close cells and induce various physiological responses [15–17]. As such, EV can impact
and regulate physiological processes such as immune responses and angiogenesis [16,17]. In
this review, we refer to human host EVs (HEVs, eucaryotic-origin) and bacterial EVs (BEVs,
procaryotic-origin), and we summarise their distinct characteristics, functions (Table 1),
and implications for disease and therapeutic applications in endometriosis and in selected
inflammatory conditions.

Table 1. Summary of the characteristics of host extracellular vesicles (HEVs), Gram-negative bacterial
extracellular vesicles (BEVs), and Gram-positive BEVs.

Characteristic HEVs Gram-Negative BEVs Gram-Positive BEVs

Types
• Exosomes
• Microvesicles (MVs)
• Apoptotic bodies

• Outer-membrane vesicles
(OMVs)

• Outer–inner-membrane
vesicles (O-IMVs)

• Vesicle chains

• Membrane vesicles (MVs)
• Tube-shaped vesicles (TSVs)
• Cytonemes/nanotubes

Size range

• Exosomes: 30–150 nm
• Microvesicles: 100–1000 nm
• Apoptotic bodies:

500–2000 nm

• OMVs: 20–300 nm
• O-IMVs: varies
• Vesicle chains: varies

• MVs: 20–250 nm
• TSVs: varies
• Cytonemes/nanotubes: varies
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Table 1. Cont.

Characteristic HEVs Gram-Negative BEVs Gram-Positive BEVs

Origin

• Exosomes: derived from
endosomal membranes

• Microvesicles: bud from the
plasma membrane

• Apoptotic bodies: formed
during apoptosis

• OMV: outer membrane of
Gram-negative bacteria

• O-IMV: both outer and inner
membranes

• Vesicle chains: outer membrane
of Gram-negative bacteria

• MVs: cytoplasmic membrane,
must pass through the thick
peptidoglycan layer

• TSVs: formed from the
bacterial membrane under
specific conditions

• Cytonemes/fanotubes:
membrane extensions

Membrane
Composition

• Exosomes: phospholipids,
cholesterol, and membrane
proteins

• Microvesicles: plasma
membrane lipids and
proteins

• Apoptotic bodies: cellular
membrane remnants

• OMVs: lipopolysaccharides
(LPS), outer-membrane
proteins, phospholipids, and
peptidoglycan fragments

• O-IMVs: components from
both outer and inner
membranes

• Vesicle chains: outer membrane
proteins and lipids

• MVs: lipoteichoic acids,
peptidoglycan, membrane
proteins, and cytoplasmic
membrane lipids

• TSVs: similar to MVs but with
tubular structure

• Cytonemes/nanotubes:
membrane lipids and
associated proteins

Contents

• Exosomes: proteins, lipids,
RNA, DNA, and microRNAs

• Microvesicles: plasma
membrane proteins, lipids,
and cytoplasmic content

• Apoptotic bodies: cellular
debris, DNA, and organelles

• OMV: LPS, outer membrane
proteins, periplasmic proteins,
DNA, RNA, and virulence
factors

• O-IMVs: mixed content
including cytoplasmic material

• Vesicle chains: virulence factors,
enzymes, DNA, and RNA

• MV: cytoplasmic membrane
components, enzymes, toxins,
DNA, and RNA

• TSVs: DNA, proteins, and other
molecules

• Cytonemes/nanotubes:
various proteins and signalling
molecules

References • [18–20] • [21–23] • [21,22,24]

3. Endometriosis Pathogenesis

While the cause of endometriosis remains unknown, there are several theories that
have been proposed to explain the pathophysiology of this disease. Such theories include
the coelomic metaplasia theory, the embryonic rest theory, and the theory of retrograde
menstruation [25]. The theory of retrograde menstruation, initially proposed by Sampson
in the 1920s, suggests that there is a backward flow of menstrual fluid and endometrial
tissue via the fallopian tubes into the peritoneal cavity [26]. This theory is attractive due to
the common anatomical distribution of lesions, and the higher prevalence of endometriosis
in women with obstructed menstrual outflow tracts [27]. While this theory explains the
physical presence of endometrial tissue in the peritoneal cavity, it does not elucidate how
lesions are established and develop [27].

The microbiota is the collection of microorganisms living on and within the hu-
man host, contributing to a range of pathophysiological functions implicated in our
health [28,29]. There is emerging evidence that supports the role of microbiota in the
development and progression of endometriosis [30–32]. Firstly, the gut microbiota plays
an essential role in chronic disease by regulating immunity and inflammation in the hu-
man body [33]. Numerous studies have demonstrated the gut microbiota is altered in
endometriosis, and that dysbiosis of the microbiome can result in disrupted immune re-
sponses, oestrogen and hormonal imbalances, and cause chronic inflammation [31,32,34]. It
is therefore suggested that the gut microbiota may impact endometriosis pathophysiology
by contributing to impaired clearance of endometrial fragments, adhesion, invasion, and
angiogenesis [34]. It has been demonstrated in mouse models of endometriosis that certain
gut microbiota and microbiota-derived metabolites promote the growth of lesions, while
antibiotic therapy reduces lesion size as well as inflammatory markers in the peritoneal
fluid [35]. Additionally, some gut microbiota-derived short-chain fatty acids have been
found to be protective against endometriosis progression in mice [36]. The estrobolome
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is defined as the community of microbes with genes encoding oestrogen-metabolising
enzymes and can therefore increase circulating estrogens [37,38]. It is suspected that the
estrobolome is involved in endometriosis due to the oestrogen-dependent nature of the con-
dition [39]. To date, one study has found that faecal samples of patients with endometriosis
had higher levels of oestrogen; however, the reason for this finding is unclear [40].

There is also evidence of the involvement of the urogenital microbiota in endometriosis
pathogenesis. Firstly, the ‘bacterial contamination hypothesis’, proposed by Khan et al. in
2016, suggests that the growth of endometriosis lesions is mediated by the LPS/Toll-like
receptor 4 (TLR4) cascade due to high levels of Escherichia coli and therefore endotoxins
in the menstrual efflux in peritoneal fluid [41]. More recently, it was demonstrated that
Fusobacterium infection of the endometrium has a pathogenic role in the development of
ovarian endometriosis [42]. Briefly, it was shown that infection of endometrial cells led
to the activation of transforming growth factor-β (TGF-β) signalling, causing quiescent
fibroblasts to transform into transgelin (TAGLN)-positive myofibroblasts, giving the cells
the ability to adhere and proliferate in vitro [42]. One flaw of the bacterial contamination
hypothesis is that the vaginal microbiome is largely dominated by Lactobacillus, which is
believed to be protective and prevent invasion of pathogens [43].

4. Endometriosis and Host Extracellular Vesicles (HEVs)

There are three main classifications of HEVs based on their biogenesis, origin, size,
function, and content: exosomes, microvesicles, and apoptotic bodies [44] (Table 1).

HEVs appear as critical mediators in the pathogenesis of endometriosis [45]. They are
involved in cell communication [46], immune modulation though suppression of natural
killer (NK) cell activity [47] and modulation of macrophage activity [48], and prevention of
endometrial lesion clearance by the immune system [47] and promotion of inflammation
and tissue adhesion via proinflammatory cytokine transport. The composition of the cargo
identified from various studies suggest that EVs also play a role in cell proliferation, migra-
tion, fibrosis, and angiogenesis [7,49]. Collectively, these activities promote the survival
and growth of ectopic endometrial tissue and the lesions in endometriosis (Figure 1).

There are differences in EV cargo within the endometrium, plasma, serum, and peri-
toneal fluid of patients with and without endometriosis [7]. EVs isolated from various
biological specimen, including serum, endometrium, and peritoneal fluid, all contained
microRNA, small, non-coding RNA molecules, and cargo related to angiogenesis, cell
proliferation, cell migration, and immunomodulation [7]. In some cases, the levels of serum
exosomes correlated with disease severity within the endometriosis group [50]. Vagina-
derived EVs impact human sperm function and fertility [51]. These vagina-derived EVs
contribute to an imbalance between Th17 cells (promote inflammation) and regulatory T
cells (help control immune responses), potentially worsening inflammation and immune
dysfunction in endometriosiss [51].

Few studies have investigated the cargo of EVs for potential biomarkers of endometrio-
sis [52–54]. Vascular endometrial growth factor (VEGF-C) is one potential biomarker and
was found to be upregulated in the endometrial cells, serum, and peritoneal fluid of pa-
tients with endometriosis [54,55]. VEGF-C was transported by EVs and contributed to
increased lymphangiogenesis, when the lymphatic vessel density is increased within the
endometrium, allowing the lesions to travel ectopically [56].

There is also limited research on the potential therapeutic role of EVs in endometriosis.
Within mouse models, nanovesicles (artificially produced EVs) derived from macrophages
were shown to inhibit the development of endometriosis [57]. Additionally, microRNA-
214 has been shown to play an important role in the fibrotic disease and its expression
is decreased within ectopic endometrial stromal cells. Injecting microRNA-214 enriched
exosomes from endometrial stromal cells into an endometrial mouse model showed a
decrease in the expression of fibrosis-associated proteins [58]. Although preliminary, this
research paves way for emerging therapeutic roles for EVs within endometriosis. Despite
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being in its infancy, the role of EVs as potential diagnostic and therapeutic tools shows
promising outcomes for those affected by endometriosis.
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Figure 1. Extracellular vesicles as targets or tools in endometriosis? Proposed mechanism of extracel-
lular vesicle (EV) and bacterial EV (BEV) involvement in endometriosis. The diagram illustrates how
a dysbiotic gut may facilitate the translocation of BEVs across the gut mucosa into systemic circulation.
These vesicles, along with host EVs, can migrate to the pelvic peritoneal cavity, contributing to the
pathophysiology of endometriosis by promoting angiogenesis, immune evasion by endometrial cells,
tissue remodelling, and adhesion. The associated increase in inflammatory markers (IL-17, TNF-α,
IL-6, etc.) in the peritoneal fluid (PF) and serum is also indicated, highlighting their potential role in
disease progression. ↑ = increased.

5. Bacterial Extracellular Vesicles

EVs derived from bacteria and filled with bioactive bacterial components from the
parent bacteria are referred to bacterial extracellular vesicles (BEVs). BEVs often range
from 20 to 400 nm in diameter and can be categorised as outer-membrane proteins or
membrane vesicles depending on whether they originate from Gram-negative or -positive
bacteria, respectively [59] (Table 2). BEVs not only play an important role in the bacteria-to-
bacteria crosstalk, but also in host-to-bacteria interactions, delivering effector molecules
that modulate pathways. Depending on their origin, BEVs can phenotypically influence
the host both positively and negatively. For example, in a mouse model of inflammatory
bowel disease, Akkermansia muciniphila-derived BEVs were shown to inhibit the production
of interleukin 6, reducing inflammation within the host and preventing colitis [60]. This
bacterium is typically seen as a beneficial bacterium, and hence, its BEVs have a positive
effect on the host [61]. Alternatively, BEVs from Acinetobacter baumanni, a bacterium
typically associated with disease, have been shown to promote inflammation in mice
through the activation of Toll-like receptors, which triggers an inflammatory cascade within
the pulmonary system [62,63].



Biomedicines 2024, 12, 2585 6 of 13

A dysbiotic gut refers to an imbalance of the microbiome to favour bacteria which
promote disease and inflammation [64]. A dysbiotic gut occurs in many diseases such as
obesity, inflammatory bowel disease, and rheumatoid arthritis and alters the gut lumen
creating a ‘leaky gut’ that allows EVs and BEVs to penetrate and enter the circulatory sys-
tem [64] (Figure 2). Here, they can travel to various sites across the body and phenotypically
influence the host, depending on their cargo [65] (Figure 2).
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Table 2. Potential mechanisms by which bacterial extracellular vesicles (BEVs) regulate cytokine
production in endometriosis.

Feature Role in Endometriosis Potential Mechanism of BEVs

↑IL-17

• Elevated in peritoneal fluid and regulates
macrophage recruitment

• Drives macrophage polarisation towards the
M2 phenotype [48]

• E. coli-derived EVs isolated from indoor dust induce chronic
obstructive pulmonary disease in mice via neutrophilic
inflammation mediated by IL-17A [66]

↑TNF
• Elevated in serum [67]
• Elevated in peritoneal fluid [68]

• Airway exposure to E. coli EV increased the production of
proinflammatory cytokines, such as TNF and IL-6 [66]

• OMVs released by Aggregatibacter actinomycetemcomitans
contain exRNAs that promote TNF [69]

• fMVs evoke the release of TNF by THP-1 cells in a
dose-dependent matter. Also, a significant positive
correlation was found between
Actinobacteria/γ-Proteobacteria-derived vesicles and the
release of TNF [70]
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Table 2. Cont.

Feature Role in Endometriosis Potential Mechanism of BEVs

↑IL-6 • Elevated in peritoneal fluid and serum [68,71]

• Airway exposure to E. coli EV increased the production of
proinflammatory cytokines, such as TNF-α and IL-6 [66]

• OMVs derived from pathogenic E. coli induces elevated IL-6
levels in human umbilical vein endothelial cells [72]

↑IL-1β
• IL-1β levels in peritoneal fluid of

endometriosis women were higher than in
controls [73]

• P. gingivalis, T. denticola, and T. forsythia OMVs on monocytes
induced NF-κB activation and increased TNFα, IL-8, and
IL-1β cytokine secretion [74]

↑IL-10
• Serum level of IL-10 in patients with

endometriosis was significantly higher [75]
• P. gingivalis OMVs were also found to induce

anti-inflammatory IL-10 secretion [74]

6. Endometriosis and Bacterial Extracellular Vesicles (BEVs)

It is difficult to determine the role of BEVs in endometriosis due to the limited studies
exploring their role. The outer layer of BEVs enables them to travel over large distances
without being destroyed, and it has been widely demonstrated that EVs are capable of
transporting virulence factors derived from pathogenic bacteria [76]. Therefore, it may
be possible that BEVs contribute to endometriosis pathogenesis by transporting virulence
factors, resulting in an inflammatory pelvic environment.

To date, there is only one study that explores the influence of BEVs on endometrio-
sis [77]. A microbiome analysis was conducted of the peritoneal fluid from women with
and without ovarian endometriosis [78]. The origin of BEVs within the peritoneal fluid
was analysed further and showed that the microbial composition of BEVs was significantly
different between women with stage 3 to 4 endometriosis when compared to that of women
without endometriosis. This highlights BEVs’ potential role in the pathogenesis and pro-
gression of endometriosis (Figure 1). However, the origin of BEVs or the function of the
cargo they contained was not analysed. Therefore, it is difficult to conclude more about
this relationship. It is also important to recognise that controversy exists regarding the
presence of a microbiome within the peritoneal fluid. Regardless, this study highlights a
novel relationship between BEVs and endometriosis as well as a gap in knowledge and a
need to further explore this relationship through further clinical studies.

Another potential mechanism for BEVs to enact their function is via chemokine and
cytokine stimulation (Table 2). It has been established that interleukin-8 (IL-8) expression is
upregulated in endometriosis lesion tissue and is closely related to disease progression [79].
It has also been established that there is a significant increase in myeloid-derived suppressor
cells (MDSCs) in the peritoneal fluid and blood of patients with endometriosis, with
chemokines CXCL1, 2, and 6 acting as the key mediators for the recruitment of these
cells. MDSCs enhance angiogenesis and thus contribute to disease progression [79]. While
investigating atherosclerosis, it was found that Porphyromonas gingivalis-derived vesicles
upregulated the expression of CXCL1, 2, and 8 in human umbilical vein endothelial cells,
and that the vesicles were more potent in inducing an inflammatory response compared
to the bacterial cells themselves. It was also found that the invasive ability of the cells
and vesicles was correlated with an elevated expression of IL-8 [80]. In the context of
cystic fibrosis, it has been demonstrated that IL-8 secretion by lung epithelial cells is
elicited by BEVs derived from Pseudomonas aeruginosa [81]. While the stimulation of an
inflammatory response in endometriosis has not yet been demonstrated, this may be a
potential mechanism through which systemic inflammation is caused.

BEVs may also be involved in endometriosis pathogenesis via macrophage polarisa-
tion. Previous studies have reported that the peritoneal microenvironment in endometriosis
is characterised by a M2 tissue repair predominant macrophage phenotype, which enables
immune evasion and prevents clearance of endometrial tissue from the peritoneal cavity,
thus allowing development of lesions [48,82]. A 2022 study by Liang et al. found that
Clostridium butyricum-derived EVs could regulate macrophage polarisation towards the
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M2 phenotype in a murine model of colitis [83]. Investigating this concept in the context
of endometriosis could provide valuable insights into the mechanisms of endometriosis
pathogenesis.

7. Extracellular Vesicles and Bacterial Extracellular Vesicles in Other Conditions
7.1. Gynaecology

The role of EVs within gynaecological conditions such as polycystic ovarian syndrome,
preeclampsia, and adenomyosis has been explored; however, limited research exists on
the role of BEVs within these gynaecological conditions [84–87]. To our knowledge, one
study explores the relationship between BEVs and gynaecological conditions. Akkermansia
muciniphila was shown to be decreased in patients with preeclampsia. When Akkermansia
muciniphila BEVs were transferred to mice’s gastrointestinal tract, they migrated to the
placenta and decreased preeclamptic symptoms [88]. Additionally, individuals with peri-
odontitis are more inclined to suffer from preeclampsia, and this is linked to the increased
presence of BEVs that travel to remote sites to promote inflammation [89].

7.2. Inflammation

Growing evidence suggests a relationship between BEVs and inflammation within
the host. Recently, an in vivo study demonstrated that BEV derived from Escherichia coli
(E. coli) induced the host release of EVs carrying lipopolysaccharides (LPSs), i.e., large
molecules from outside of E. coli, which enhanced the inflammatory response through
Toll-like-receptor 4 (TLR) signalling [90–92]. A dysbiotic microbiome will often favour
more pathogenic bacteria, and this in turn will produce BEVs that will likely promote
inflammation. BEVs have been shown to play an important role in regulating intestinal
homeostasis, and their role in inflammatory bowel disease pathogenesis is being uncov-
ered [93]. Similarly, Escherichia coli BEVs were shown to upregulate TLR signalling and
induce inflammation [94].

7.3. Cancer

EVs’ ability to package cargo and travel to distant sites allows them to play an impor-
tant role in various cancers [84]. EVs secreted by cancer cells contain functional oncoproteins
and oncogenic RNA that work to mimic the primary tumour traits [95]. There is increasing
evidence suggesting that the microbiome plays a strong role in cancer evolution and im-
munosurveillance. It is theorised that BEVs could play a role in tumour promotion through
invoking tolerogenic immune reprogramming of the tumour’s microenvironment [96]. Mul-
tiple studies have shown that BEVs will accumulate within the tumour’s microenvironment,
suggesting a potential role in cancer progression [97].

8. Conclusions and Future Directions

EVs and BEVs engage in a complex interplay between the microbiome and the immune
system to potentially facilitate the progression of endometriosis and modulate the lesion
microenvironment. EVs can influence both local and systemic environments, while BEVs
promote inflammation and facilitate the growth of endometriosis lesions through protective
mechanisms. EVs and BEVs can be collected and analysed from various biological samples
and may offer a snapshot of the disease stage, which can be particularly powerful for
the development of early diagnostic tools [59]. Their anti-microbial activity and anti-
inflammatory effects can be potentially synergised to dampen the impact of endometriosis.
Further research is warranted to explore the precise mechanisms by which BEVs and EVs
contribute to the onset and/or progression of endometriosis. In addition, longitudinal
studies characterising the dynamic release of these vesicles over the course of their cyclical
flare ups would ascertain their biomarker potential in endometriosis and help with the
development of scalable production for targeted treatments and improve outcomes for
patients, particularly those with inflammation-related pain.
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