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Abstract: Background: Alternative Splicing (AS) is a post-transcriptional process that allows a
single RNA to produce different mRNA variants and, in some cases, multiple proteins. Various
processes, many yet to be discovered, regulate AS. This study focuses on regulation by RNA-binding
proteins (RBPs), which are not only crucial for splicing regulation but also linked to cancer prognosis
and are emerging as therapeutic targets for cancer treatment. CLIP-seq experiments help identify
where RBPs bind on nascent transcripts, potentially revealing changes in splicing status that suggest
causal relationships. Selecting specific RBPs for CLIP-seq experiments is often driven by a priori
hypotheses. Results: We developed an algorithm to detect RBPs likely related to splicing changes
between conditions by integrating several CLIP-seq databases and a differential splicing detection
algorithm. This work refines a previous study by improving splicing event prediction, testing
different enrichment statistics, and performing additional validation experiments. The new method
provides more accurate predictions and is included in the Bioconductor package EventPointer 3.14.
We tested the algorithm in four experiments involving knockdowns of seven different RBPs. The
algorithm accurately assessed the statistical significance of these RBPs using only splicing alterations.
Additionally, we applied the algorithm to study sixteen cancer types from The Cancer Genome Atlas
(TCGA) and three from TARGET. We identified relationships between RBPs and various cancer types,
including alterations in CREBBP and MBNL2 in adenocarcinomas of the lung, liver, prostate, rectum,
stomach, and colon. Some of these findings are validated in the literature, while others are novel.
Conclusions: The developed algorithm enhances the ability to predict and understand RBP-related
splicing changes, offering more accurate predictions and novel insights into cancer-related splicing
alterations. This work highlights the potential of RBPs as therapeutic targets and contributes to the
broader understanding of their roles in cancer biology.

Keywords: alternative splicing; RNA-Seq; TCGA; RBPs

1. Introduction

Splicing is a crucial co- and post-transcriptional process that removes introns and
splices exons to generate mature mRNA from pre-mRNA [1]. Alternative Splicing (AS)
further diversifies gene expression by altering exon inclusion patterns, resulting in the
production of multiple mRNA isoforms from a single gene. These isoforms can encode
different proteins with distinct functions, significantly impacting cellular and organis-
mal biology. Aberrant AS has been implicated in various hallmarks of cancer, such as
angiogenesis, immortality, and immune evasion [1].

The regulation of AS is complex and orchestrated by a network of factors that includes
not only the spliceosome—a dynamic assembly of small nuclear RNAs, proteins, and
polypeptides—but also RNA-binding proteins (RBPs), transcription factors, epigenetic and
epitranscriptomic modifications, and RNA secondary structures. Among these, RBPs play
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a central role by directly interacting with RNA to regulate its metabolism, methylation
(such as m6A modifications), and splicing. Over 1500 RBPs have been identified in humans,
many of which are integral components of the spliceosome. Given the availability of
comprehensive datasets, cross-linking and immunoprecipitation sequencing (CLIP-seq)
has proven invaluable for experimentally validating RBP-mRNA interactions, although it
requires pre-selection of target RBPs.

RBPs are essential in cancer biology, as mutations or dysregulation in their expression
can modify oncogene levels and may present potential therapeutic targets [2]. Therefore,
identifying RBPs that are associated with splicing alterations is critical [3]. In our previous
study [4], we created an algorithm that combines CLIP-seq data with differential splicing
analysis to identify RBPs that may drive these splicing changes. This approach detects the
binding of RBPs near differential splicing sites and assesses their enrichment, using only
RNA-seq data for prediction. Thus, in [4] a Fisher’s test was developed to evaluate the
enrichment of RBPs near differential splicing sites.

While RBPs are the focus of this study due to their pivotal role and the availability
of extensive datasets, we acknowledge that additional factors such as transcriptional
regulation, chromatin accessibility, and RNA secondary structure also play crucial roles
in AS. A comprehensive view of splicing regulation would benefit from integrating these
layers. Nonetheless, our approach represents a crucial step in understanding the RBP-
specific contributions to cancer-associated splicing changes and lays the foundation for
more integrative analyses in the future.

In this study, we have enhanced our previous method by incorporating the newly
released POSTAR3 database [5], which includes 32% more RBP experiments for humans
and mice. We have refined the algorithm for detecting differential splicing events and
introduced several statistical approaches—Hypergeometric, GSEA, Wilcoxon, and Poisson
Binomial—to improve the analysis of RBP enrichment. Validation using real-world data,
where specific RBPs were knocked down, demonstrated consistent improvements over our
earlier algorithm. Thus, the novelties of the algorithm are: (i) increased number of RBPS,
(ii) improved statistics to determine which events are differentially spliced, and (iii) three
new enrichment methods: Poisson Binomial, GSEA, and Wilcoxon test.

Additionally, we expanded our analysis to 19 cancer types by utilizing the TCGA
and TARGET databases to identify cancer-specific RBPs. This analysis uncovered several
established and novel associations, such as alterations in CREBBP and MBNL2 in lung
and liver adenocarcinomas, respectively [6,7]. To promote wider scientific use, we have
integrated our method into the Bioconductor platform and developed a Shiny application.
These tools streamline result analysis and support the scientific community in drawing
meaningful conclusions.

2. Materials and Methods
2.1. Relationship Between RBPs and Splicing Events

In this work, we started with our previously published work on Splicing Factor (SF)
prediction [4]. We collected 937 CLIP-Seq experiments for 244 different RBPs contained
in POSTAR3 [5]. The building of the E × S matrix is identical to the one described in our
previous work [4]. We performed a change in genome version using the liftOver 1.30 R
package [8] to transform different genome versions from human and mouse species e.g.,
Hg19, mm9, mm10, into a human genome hg38. With this process, we increased the sample
size for the human species.

After obtaining all binding sites in hg38, we mapped the binding sites against all
the splicing events from transcriptome GeneCode v.24 calculated using the EventPointer
pipeline [9]. We stored this information in a sparse matrix denoted E × S (Events × Splicing
factors). Each element denotes whether the splicing factor j binds to the event i as follows:
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ExSij =

{
1, i f the RBP j sites overlaps the splicing event i

0, otherwise

We have added some changes to improve the performance of the algorithm and
integrated it into a Bioconductor R package. This version enables us to use the Fisher’s
Exact Test, GSEA, a Wilcoxon test, and a new approach developed by us: the Poisson
Binomial Enrichment.

2.2. Event Statistics

Using E × S it is possible to perform an enrichment analysis on the differentially
spliced events. We implemented EventPointer 3.0 bootstrap statistics for alternative splicing
events detector. The main strength of the pipeline is the fact that it estimates the Ψ
distribution for each event using bootstrap resulting in a very robust pipeline.

2.3. Methodology for RBP Enrichment and Ranking

Our method outputs a ranking with the most likely enriched RBPs. This ranking is
performed using four different enrichment methods. We describe these methods in the
following paragraphs.

2.3.1. Fisher’s Exact Test

Fisher’s Exact Test was already described in [4]. The Fisher test is based on a hyperge-
ometric variable to calculate the probability of seeing an abnormal number of events that
are differentially spliced and bound to an RBP (Equation (1)).

P(X ≥ k) =
K

∑
X=k

(K
x)(

M−K
m−x )

(M
m)

(1)

where,

• M is the total number of events.
• K is the number of selected events.
• m is the number of events regulated by RBPi.
• k is the number of events within K regulated by RBPi.

We include in the current work two different options to select the relevant splicing
events: select the splicing events with a p-value under a threshold (p-value = 0.001) or select
the first 1000 splicing events ranked by p-value. We used the first option in our pipeline.
Additionally, users can use FDR to set the threshold (see https://github.com/JFerrer-B/
SFPointer –URL accessed on 7 November 2024)

2.3.2. Poisson Binomial

From E × S matrix we compute the probability of a specific event being regulated by
a specific RBP. The event-RBP regulation probability was estimated using the methodology
proposed by [10]. This methodology demonstrates that, assuming the independence
between events and RBPs, the probability of an event i being regulated by an RBP j (Pij)
can be written as p_ij = ê(µ_i + λ_j)/(1 + ê(µ_i + λ_j)) (for more details see [10]). Then,
this approach uses a logistic regression as depicted in Equation (2):

L(µ, λ) = ∏
i,j

nij!

yij
(
nij − yij

)
!
p

yij
ij
(
1 − pij

)(nij−yij) (2)

https://github.com/JFerrer-B/SFPointer
https://github.com/JFerrer-B/SFPointer
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where:

• pij is the probability of event i being regulated by RBP j.

• pij can be written as pij =
e(µi+λj)

1+e(µi+λj)
as depicted above.

• nij is the total number of cases: by construction is equal to 1.
• yij is equal to one if event i is regulated by RBP j, i.e., yij = {0,1}.

Then, we calculate the probability of observing an abnormal number of events that
are differentially spliced and regulated by an RBP. This probability is computed with the
Poisson Binomial Distribution (Equation (3)):

Pr(X ≥ k) =
K

∑
x=k

∑
A∈Fx

∏
i∈A

pi ∏
j∈Ac

(
1 − pj

)
(3)

where,

• Fx is the subset of x integers possible. if total number of elements is 3 and x = 2 then
F2 = {{1,2},{1,3},{2,3}}.

• K is the number of selected events.
• pi is the probability of an event i being regulated by a Splicing Factor.
• Pj is the probability of an event j being regulated by a Splicing Factor.

This is solved using Rediscover 0.32 [10], which uses the poibin 1.6 R package to
compute the p-values.

2.3.3. Gene Set Enrichment Analysis (GSEA)

GSEA is a successful enrichment analysis method initially described in [11]. GSEA
is a non-parametric test based on the Kolmogorov–Smirnov statistic that compares the
distributions of a variable (usually a p-value, but other possibilities are also valid) between
the analytes (usually genes) that have a characteristic (usually a GO annotation) and those
that do not have the characteristic. The application of RBP analysis is straightforward. The
variable is the p-value of the splicing event and the characteristic is the presence or absence
of an annotated RBP binding site in the neighborhood of the event.

We have used the R-package fgsea 1.32. It allows us to “quickly and accurately
calculate arbitrarily low GSEA p-values for a collection of gene sets” [12] by using an
adaptive multi-level split Monte Carlo scheme. Despite being the fastest available, it is still
slower than any of the other implemented methods. One of the advantages of GSEA is that
it does not require setting a threshold on the p-value to state which are the significant events.

2.3.4. Wilcoxon’s Test

The Wilcoxon test can also be used to perform an enrichment analysis. A Wilcoxon test
is a non-parametric test that compares the medians of two data sets. In this case, given the
p-values obtained from EventPointer, the distributions to be compared are the p-values of
the event annotated with an RBP binding site with the p-values of the events not annotated
with the same RBP binding site. The final result is the ranking of the RBPs with the lowest
Wilxon’s test p-value.

The Wilcoxon test does not either require setting a threshold on the p-values. Our im-
plementation (which uses sparse matrices and linear algebra) is the fastest of all the methods.

2.4. TCGA and TARGET Analysis

We run the SFpointer pipeline using EventPointer 3.0 and the four enrichment analyses.
For the alternative splicing analysis, we selected the top five differentially spliced events for
each condition and extracted the delta PSI for each event to plot the comparative analysis.
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Regarding the SFpointer enrichment analysis, we extracted the RBPs that were present
in at least five different cancer conditions and clustered them using Kmeans with 10-fold
validation in two different groups. Additionally, we clustered the different cancer sites
into three different groups using Kmeans and 10-fold cross-validation provided by the R
package ComplexHeatmap 2.22 [13].

Finally, with the obtained 22 RBPs present in more than 5 cancer conditions we used
the STRING MCL approach to plot and cluster the network, using STRING database
information [14]. The MCL inflation parameter was set to 3.

3. Results

The primary achievement of this study is the development of SFpointer, a novel
algorithm designed to identify RBPs that are significantly enriched in regions associated
with differential splicing events. This is accomplished by integrating multiple CLIP-seq
databases into a unified resource, enabling comprehensive enrichment analysis of RBPs.
The input is the RNA-seq analysis of several experiments. The output is a prioritized list of
RBPs that are more likely drivers of alterations in splicing patterns across the experiments,
providing valuable insights for further biological validation.

The development of SFpointer involved several key challenges: (1) Limited CLIP-
seq Usage: Given that CLIP-seq is less commonly utilized than RNA-seq, the accuracy
of predicting splicing factor binding motifs is heavily reliant on the availability of CLIP
experiments, necessitating extensive database integration, (2) Statistical Significance: The
reliability of our findings is contingent upon both the quality of splicing event calls and
the statistical methods employed in the enrichment analysis, (3) Validation Requirements:
The results from our statistical pipeline must be validated against experiments with known
ground truth.

We prioritized user-friendliness in the algorithm’s design to ensure accessibility for the
scientific community. By successfully addressing these challenges, we have created a robust
tool that enhances researchers’ ability to explore the role of RBPs in splicing regulation.

3.1. Included RBPs Are Increased by 30% with the Updated Databases

In our updated version, we have integrated POSTAR3, a comprehensive CLIP-seq
database containing 1445 experiments across seven species, covering 348 RBPs. We included
experiments mapped to the human and mouse genomes due to their genetic similarities,
with mouse data converted to human genome coordinates using liftover [8]. This increased
the total number of RBPs included in our analysis to 244, a 25% increase over the previous
version [4].

This integrated database provides genomic loci mapped to the human genome (hg38),
facilitating the identification of potential splicing events. To explore the relationship
between RBP binding sites and splicing events, we constructed an indicator sparse matrix,
termed E × S (Events × Splicing Factors), which indicates whether an RBP binding locus
is within a 400 nt window of a splicing event. A detailed methodology for the construction
of the E × S matrix can be found in our previous publication [4].

3.2. Boosting Sensitivity and Specificity Through a New Statistical Modeling

In our analysis, we observed that accurate identification of altered splicing events
significantly affects the performance of splicing factor (SF) calculations. Careful selection
of differential splicing events improves the accuracy of RBP enrichment. To improve
this aspect, we have adopted a bootstrap-based statistical approach implemented in the
EventPointer 3.14 package (Figure 1B), which increases the sensitivity compared to the
previous version [9].
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resulting in a ranked list of RBPs with enrichment p-values. This method is implemented as a Shiny 
app and in Bioconductor. 

In addition, we have implemented four different statistical enrichment analyses on 
the AS events to predict the differential activity of the RBPs (Figure 2). The four methods 
are: Fisher’s exact test, Poisson Binomial, GSEA, and Wilcoxon test. As mentioned before, 
these algorithms assess which RBP binding motifs are overrepresented in regions with 
altered splicing events. 

Figure 1. SFpointer Pipeline. (A) the E × S matrix is built from POSTAR3 CLIP experiments, where
each entry i, j is 1 if RBP “j” binds near splicing event “i” annotated in the reference transcriptome
and 0 otherwise. (B) the differentially spliced events are detected using a bootstrap version of
EventPointer 3.14. (C) SFpointer uses these events and the E × S matrix to estimate RBP enrichment
by applying one of four methods: Poisson Binomial, Fisher’s Exact Test, GSEA, or Wilcoxon Test,
resulting in a ranked list of RBPs with enrichment p-values. This method is implemented as a Shiny
app and in Bioconductor.

In addition, we have implemented four different statistical enrichment analyses on the
AS events to predict the differential activity of the RBPs (Figure 2). The four methods are:
Fisher’s exact test, Poisson Binomial, GSEA, and Wilcoxon test. As mentioned before, these
algorithms assess which RBP binding motifs are overrepresented in regions with altered
splicing events.
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PSI (ΔΨ) greater than 0.1 and a p-value lower than 1 × 10−3. Significant events with smaller ΔΨ 
changes are shown in blue, and events with large ΔΨ changes but not significant are shown in green. 
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highlighted in bold. NS stands for “not significant”. The numbers shown in red indicate the per-
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PRJEB39343 MBNL1 - 81/244|0.67 9|0.96 4|0.98 21|0.91 22|0.91 
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GSE75491 RBM47 - 7/244|0.97 8|0.97 3|0.99 10|0.96 4|0.98 

The first method (Fisher’s exact test) is based on the hypergeometric distribution. 
This test estimates, using the E × S matrix, the enrichment of the RBPs by setting a thresh-
old on the p-values to state which are the differentially spliced events. This method is 

Figure 2. RBP ranking and volcano plot include all experiments described in Table 1 but KD-TAF15
due to its low impact on alternative splicing. (A) corresponds to the knock-down of FUS, (B) to the
knock-down of RBM47, (C) to the knock-down of MBNL1, (D) to the knock-down of TARDBP, (E) to
the knock-down of PTBP1, and (F) to the knock-down of TDP43. For each condition, the top 8 RBPs
(top 10 in KD-TARDBP) and their enrichment p-values are reported, using the method that optimizes
the RBP’s ranking. Each volcano plot displays in red the AS events with an absolute Delta PSI (∆Ψ)
greater than 0.1 and a p-value lower than 1 × 10−3. Significant events with smaller ∆Ψ changes are
shown in blue, and events with large ∆Ψ changes but not significant are shown in green.

Table 1. This table contrasts the ranking positions obtained using the original version of SFpointer
with the current E × S matrix against those generated with the four new enrichment methods using
the updated EventPointer 3.14 pipeline and E × S. It also considers the database used, comparing
POSTAR3 and its predecessor POSTAR2. The lowest ranking positions for each condition are
highlighted in bold. NS stands for “not significant”. The numbers shown in red indicate the
percentile ranking.

RBP

POSTAR2 POSTAR3
SFPointer Original

(Fisher’s Exact
Test)

SFpointer Original
(Fisher’s Exact

Test)

SFpointer New
(Fisher’s Exact

Test)

SFpointer New
(Poisson

Binomial)

SFpointer New
(GSEA)

SFpointer New
(Wilcoxon Test)

PRJEB39343 PTBP1 - 1/244|0.99 1|0.99 1|0.99 1|0.99 2|0.99

PRJEB39343 MBNL1 - 81/244|0.67 9|0.96 4|0.98 21|0.91 22|0.91

GSE77702 FUS 11/195|0.94 1/244|0.99 2|0.99 4|0.98 2|0.99 2|0.99

GSE77702 TAF15 NS 125/244|0.49 117|0.52 152|0.37 164|0.32 177|0.27

GSE77702 TARDBP 20/195|0.90 68/244|0.72 45|0.81 43|0.82 10|0.96 30|0.88

GSE136366 TDP43 - 1/244|0.99 1|0.99 1|0.99 1|0.99 1|0.99

GSE75491 RBM47 - 7/244|0.97 8|0.97 3|0.99 10|0.96 4|0.98

The first method (Fisher’s exact test) is based on the hypergeometric distribution. This
test estimates, using the E × S matrix, the enrichment of the RBPs by setting a threshold on
the p-values to state which are the differentially spliced events. This method is consistently
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used to perform GO enrichment analysis and was already implemented in the previous
version of the algorithm [4,15,16].

Note that, the data used for enrichment analysis (the E × S matrix) is a potential
source of bias because some RBPs bind to a large proportion of splicing events while others
bind to very few. Furthermore, certain splicing events may have numerous RBP hits while
others have minimal hits. A similar statistical analysis was performed in Discover [17] for
the detection of mutually exclusive mutations and showed that variations in the density
of rows and columns in the input matrix (in our case E × S) can introduce bias in naïve
analyses based on the hypergeometric distribution.

To address this bias, we developed the Poisson Binomial method. For this, we used
Rediscover [10], an R package that implements the Poisson Binomial distribution instead
of the standard hypergeometric distribution.

Importantly, both the hypergeometric and Poisson Binomial methods require the user
to select a threshold to determine when a p-value is considered significant. I.e., neither
of these methods fully exploits the ranking of aberrant AS events; for example, a splicing
event ranked first is treated the same as one ranked last, provided its p-value is below
the threshold. To improve this analysis, we incorporated Gene Set Enrichment Analysis
(GSEA) [11], which is based on the Kolmogorov–Smirnov test and effectively exploits
ranking information, demonstrating strong statistical power in GO enrichment analysis.
Finally, we also included a standard Wilcoxon test, a non-parametric method that similarly
exploits the ranking of events.

3.3. SFpointer Accurately Identifies the RBP Causing Splicing Disruption

We evaluated the proposed pipeline using four RNA-seq experiments with seven
different knocked-down RBPs, which allowed us to assess its accuracy (Figure S1). To
facilitate a fair comparison, we reran these experiments using the previous version of
SFpointer, using the current E × S matrix from our updated algorithm (Table 1). The
primary goal of this comparison was to determine whether the improvements in precision
and sensitivity were due to changes in the selection of affected splicing events, updates
to the enrichment statistics incorporated into the algorithm, and the expanded data set
available from POSTAR3. Detailed results of the enrichment analyses are presented in
Supplementary Tables S3–S8. In all cases, we considered events with a p-value less than
0.001 to be significant (Table S2).

We revisited the analysis presented in reference [4], which evaluated the ability of
the previous algorithm to identify RBPs from the GSE77702 dataset. In this dataset, we
compared three different contrasts: KD-FUS, KD-TARDBP, and KD-TAF15 against scramble
transfection [18]. For the KD-FUS contrast, we observed a significant improvement, with
its ranking advancing from 11th to the top position, highlighting the improvement of
POSTAR3 over POSTAR2. In the case of the KD-TARDBP condition, expression analysis
indicated that the knockdown of TARDBP was incomplete, resulting in an insufficient
reduction in gene expression levels (Figure S2). Conversely, the KD-TAF15 condition was
excluded from the original study because of the minimal effect of TAF15 on alternative
splicing regulation as previously demonstrated [4,5]. In the original results using the
POSTAR2 database, TARDBP ranked 20th, while TAF15 was not identified as a significant
RBP. After re-analysis using POSTAR3 as the reference database, TARDBP was ranked 68th
and TAF15 was ranked 125th. Although the analysis with POSTAR3 changed their rankings,
both remained as non-significant, consistent with the previously mentioned limitations.

We also analyzed three additional datasets: (i) PRJEB39343, in which three RBPs (PTBP1,
ESRP2, and MBNL1) were knocked down in gastric cancer cell lines [19], (ii) GSE136366, in
which TDP43 was knocked down in HeLA cell lines [20], and (iii) GSE75491, in which
RBM47 was knocked down in H358 cell lines [21]. For the PRJEB39343 dataset, we excluded
the KD-ESRP2 condition because ESRP2 is not included in the current E × S.

We compared the new version of SFPointer using Fisher’s exact test (Table 1, third
column) with the previous version, also using Fisher’s exact test (Table 1, second column).
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Notably, the ranking of MBNL1 improved from 81st to 9th. For TAF15 and TARDBP,
no significant improvement was observed, which is to be expected given the conditions
previously discussed. For the other knockdowns, there was little variability and their
rankings remained high. These differences can be attributed to the new SFPointer using
the latest version of EP, which is more accurate in identifying differentially spliced events
between conditions.

In addition to the traditional Fisher method for enrichment analysis, we introduced
three new approaches–GSEA, Wilcoxon, and Poisson Binomial—that improve accuracy in
all scenarios. In experiments where the targeted RBPs (PTBP1, MBNL1, FUS, TDP43, and
RBM47) were effectively knocked down, these RBPs were consistently in the top 10% across
all methods, demonstrating the robust detection capability of SFPointer. In particular, the
Poisson binomial method yielded excellent results, accurately ranking the knocked-down
RBPs within the top 4 out of 244 positions (Table 1). Full results of the enrichment analyses
are provided in Supplementary Tables S3–S8.

As expected, the results are highly dependent on the quality of the experiments. The
alteration in alternative splicing is small, RBP does not achieve a high ranking, as seen with
KD-TAF15 and KD-TARDBP. Interestingly, TARDBP and TDP43 refer to the same gene, but
their ranking results differ significantly between GSE77702 and GSE136366, highlighting the
influence of experimental quality on enrichment results. In GSE77702, TARDBP expression
decreases almost twofold, whereas in GSE136366 it decreases tenfold (Figures S3 and S7).

Finally, for each KD experiment, Figure 2 includes an AS analysis result that illustrates
the specific AS changes for each condition that are likely related to the splicing regula-
tory activity of the RBP. For example, BRWD1 and MALAT-1, which show significant
decreases in Ψ in the KD-FUS condition (Figure 2A), have previously been implicated in
FUS activity [22]. In addition, FLNB in KD-MBNL1 (Figure 2C) has been described as part
of the MBNL1-mediated apoptosis pathway [23], and MAPK kinase genes in KD-PTBP1
(Figure 2E) have been reported as inhibitors of the MAPK/ERK pathway [24].

3.4. Analysis of the ENCODE Database

The application of SFPointer to the ENCODE dataset involved the analysis of 212
experiments related to the knockdown of 106 different RBPs in HEGP2 and K562 cell
lines. Most of these experiments included only two control and two knockdown samples,
with shared control samples utilized across multiple experiments. Specifically, the HEGP2
experiments employed 21 distinct types of control sample sets, while the K562 experiments
used 29 types.

However, the results obtained from SFPointer were suboptimal. This is likely at-
tributed to the presence of other differentially expressed RBPs in addition to the targeted
knockdown RBP (Figure S9). Furthermore, when examining the ∆Ψ values, it became
evident that the experiments clustered more significantly based on the control sample sets
rather than the knockdown effects (Figures S10–S13). This suggests that factors such as the
choice of control samples may account for the observed differences in splicing, rather than
the intended knockdown of the specific RBP.

This analysis highlights the importance of considering experimental design and control
sample selection when interpreting results from RBP knockdown studies, as they can
significantly influence the outcomes and conclusions drawn from the data

3.5. Pan-Cancer Analysis of Splicing Regulators Reveals Three Groups of Tumors with Similar
RBPs Profiles

Several studies have demonstrated the significant role of aberrant splicing in cancer
development [3,15,25]. Using SFPointer, we conducted a comprehensive pan-cancer AS
study to investigate the role of RBPs in driving aberrant aAS across 19 different cancer
types, utilizing data from 9514 patients sourced from the TCGA and TARGET databases
(Figure 3A). The results presented in Figure 3 were obtained using only the Poisson Binomial
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approach. Finally, we clustered the most frequently identified RBPs using STRING [14].
For an analysis of the biological impact of splicing events, see [9].
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Figure 3. (A) Tumor types from TCGA and TARGET included in the study, focusing on those with
sufficient normal samples. (B) Heatmap of pan-cancer alternative splicing analysis, showing the top
five significant splice events per cancer type. The x-axis lists cancer types, the y-axis lists splicing
events, with red indicating negative ∆Ψ and green positive ∆Ψ. (C) Heatmap of 22 RBPs enriched in
over 5 tumor types, clustered into two groups, with enrichment shown in blue; includes bar charts
of RBP abundance and RBP count per tumor type. (D) STRING clustering of RBPs, with colors
indicating clusters, bubbles representing RBPs, and lines showing STRING relationship evidence;
includes a cluster description table.

Figure 3B shows the top five AS events for each cancer type from the TCGA and
TARGET datasets. Notably, several AS events recur across cancer types, while AS events
in childhood cancers are highly specific to each type, with no shared AS events between
these and adult cancers. In contrast, two genes—AGRN (ENSG00000188157) and RER1
(ENSG00000157916)—are recurrently differentially spliced in adult tumors, consistently
appearing in the top five positions.

AS events involving AGRN are present in four out of sixteen adult cancers: ESCA,
KICH, READ, and THCA. AGRN is a gene known for its tissue-specific isoform expression
and has recently been implicated in the Hippo pathway in the tumor microenvironment in
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several cancer types [26,27]. Its aberrant splicing is associated with impaired neuromuscu-
lar junction synaptogenesis [28], although no current studies directly link its splicing to
tumorigenesis.

In the case of RER1, AS events in this gene ranked in the top 5 in 9 out of 16 tumor
types. Interestingly, the RER1 gene has been associated with colon and pancreatic can-
cer [29,30]. Specifically, one of its AS events has been reported to be associated with disease
recurrence in colorectal cancer [30], and its biological function has been reported to induce
carcinogenesis in pancreatic cancer [29].

Furthermore, using the results obtained by SFpointer for each cancer site, we selected
the RBPs that appeared to be significantly enriched in at least five different cancer types.
We performed k-means clustering by RBPs and cancer types with 10-fold cross-validation.
The results are shown in Figure 3C. We clustered these results by both columns (cancer
types) and rows (enriched RBPs). The column clustering shows three different clusters of
cancer types according to the number of RBPs disregulated in each condition. The top bar
graph shows the number of enriched RBPs for each cancer type. The middle cluster shows
that HNSC, STAD, BLCA, BRCA, and ESCA are the tumor types with the highest number
of altered RBPs. They all have in common the enrichment of splicing sites regulated by
DKC1, METTL14, PABPC4, and MKRN1. These RBPs have a strong relationship with
cancer development, e.g., DKC1 is related to the expression of tumor suppressors [31],
METTL14 mediates tumor progression through SOX4 alteration and WTAP [32], PABPC4 is
downregulated in metastatic cells [33], and MKRN1 modulates tumor progression through
the AKT pathway [34].

The second cluster (rightmost group) includes relevant cancer types such as COAD
or READ and shares the enrichment of PABPN1 and NOL12, both of which are related to
tumor progression [35,36]. Finally, the third group (leftmost group) includes the tumors
with the lowest number of dysregulated genes. This group is characterized by the high
presence of altered CELF4 and MOV10 among its samples. Both genes have been implicated
in carcinogenesis [37,38].

Regarding the clustering by rows (RBPs), there are two main clusters: the first one
(mostly related to AS alterations in adult cancer), the bottom cluster in the plot, includes
relevant cancer genes such as MKRN1, DKC1, or PABPC4. The second cluster seems
to modulate AS at more tissue-specific sites (top part of the plot) and includes relevant
oncogenes such as CREBBP [6] or MBNL2 [7].

Finally, these 22 RBPs were clustered the RBPs using STRING MCL methodology [25],
finding 6 clusters shown in Figure 3D and Supplementary Table S9, e.g., cluster 1 includes
LARP4, ATXN2, MKRN1, PABPC1, PABPC4, MOV10, TNRC6C, and MSI2 RBPs; and
cluster 2 contains DKC1, NOL12, GRWD1, and RPS3 RBPs. We observed that 13 out of
19 (about 70%) of the RBPs included in the largest STRING clusters were included in the
same group by our method, suggesting that our approach can find functional relationships
among RBPs.

3.6. Constructing a Pan-Cancer Splicing Regulator Resource

To facilitate the exploration of our findings, we developed a Shiny application that
integrates the results of our pan-cancer RBP enrichment and AS analysis. This application
is accessible at https://biotecnun.unav.es/app/SFPointer (accessed on 7 November 2024)
and allows users to select specific cancer sites while providing a comprehensive ranking of
244 RBPs across 19 different tumor types derived from the TCGA and TARGET databases.

The Shiny app enables users to view the results of alternative splicing analysis for
each of the 16 conditions shown in Figure 2A, along with the ability to visualize specific
splicing events. In addition, it includes enrichment results for each RBP, allowing users
to query the data both at the RBP level—to see which tumors exhibit enrichment—and by
condition, to see all RBPs enriched in a particular tumor type. Users can also download
graphs and tables directly from the app and perform survival analyses based on each RBP

https://biotecnun.unav.es/app/SFPointer
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in relation to tumor types, providing insight into the relevance of each RBP in contributing
to overall survival.

In addition, the underlying code of SFPointer has been integrated into the EventPointer
package already available in the Bioconductor repository. For those interested in the
technical details, the code vignettes and a model of the pipeline can be found at https://
github.com/JFerrer-B/SFPointer (accessed on 7 November 2024). This integration not only
improves accessibility but also supports researchers in further exploring the implications
of our findings in the context of alternative splicing and cancer biology.

4. Discussion

In this study, we have developed and implemented a new method to detect potential
RBP drivers at AS in different biological conditions. Results can be directly inferred from
an RNA-seq experiment allowing us to calculate the disruption of 244 RBPs—avoiding the
need for performing 244 CLIP experiments. Furthermore, SFpointer has been validated
using seven different KD experiments. The results of the validation presented the disrupted
RBP in the top five of predicted ones and outperformed the previous methodology. Finally,
we have applied it to TCGA and TARGET discovering pan-cancer actuation RBPs and new
cancer-specific RBPs that have been made available for consultation by any user through
our SFPointer 1.0 Shiny app.

Our software is a statistical method that is based on co-occurrence, but we are aware
that it does not imply causality. We cannot claim, using the plain results, that the predicted
RBPs are causing the observed splicing changes. It is a method that only states that the
genomic loci where some particular RBPs bind, are especially enriched in places where
there is differential splicing. Henceforth, it provides an educated guess to perform some
type of biological validation of the involved RBPs.

In reference to the above, the method relies for its predictions on the E × S matrix that
relates the genomic loci of the RBPs with the alternative splicing events of the transcriptome.
This matrix was constructed using all the human and mouse experiments from POSTAR3.
It includes CLIP experiments from many different conditions and tissues were stored in
the database. However, apart from translation to GRCh.38, no further normalization was
performed. Thus, SFpointer predicts over a particular tissue experiment using information
from cell lines of other tissues, which is debatable since each tissue has a very different
behavior. However, we have prioritized predictive ability over prediction accuracy, i.e.,
for a certain condition we prefer to have the possibility to give a result than to reduce
the predictive ability to one or two RBPs, because of the scarcity of CLIP experiments
performed on those cell lines. In six out of the seven experiments, this approach proved to
be valid.

Finally, regarding enrichment methods, we have included in our tool most of the
state-of-the-art methods: Fisher’s Exact Test, Poisson Binomial, GSEA, and Wilcoxon. The
first two methods do not consider the rankings of events with alternative splicing, while
the latter does. As expected, the results of the four methods are quite similar, and all of
them perform reasonably well. We noticed that the precision of the RBP prediction strongly
depends on the conditions of the experiment—i.e., TARDBP is predicted in 10th and 1st
position in two different KD-TARDBP experiments being the first a less effective KD of
TARDBP—and in these conditions, the enrichment methods tend to differ in the results
obtained. The robustness of the AS analysis will also considerably affect the result, we
recommend the use of EventPointer as its results are robust and we have been able to
validate them, e.g., by identifying the MEK pathway with PTBP11.

Regarding the validations using seven KD experiments, we applied each of the four
methods and the results demonstrate that the statistical advances presented in this work
improve the results obtained with the previous version of SFpointer. Indeed, we observe
that in the experiments with almost perfect KO of the RBP, the enrichment results place
the RBP in the top five of the ranking of alerted RBPs. Remarkably, the four enrichment
methods provide similar predictions in each condition. Although GSEA enrichment and

https://github.com/JFerrer-B/SFPointer
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Poisson Binomial especially stand out for their performances, the former is one order of
magnitude slower, but both are equally accurate and have obtained the best qualitative
result of the validations.

Despite our efforts to apply SFPointer on the ENCODE dataset, we were not able to
get proper results. There can be several reasons for this. First of all, most of the experiments
only include two control and two knockdown samples, and these control samples are
shared across multiple experiments. We observed that the experiments clustered together
based on the control samples (Supplementary Figures S9 and S11). The correlation be-
tween experiments with the same control is stronger than those with different controls
(Supplementary Figures S10 and S12). This result is completely unexpected since using the
∆Ψ should cancel out the effect of having the same reference, as the ∆Ψ is a relative value.

In addition, the knockout seems to be unspecific: in all instances of the experiment
with the HEPG2 cell line, more than one RBP show exhibited differential expression
(p-value < 0.001). A similar result appears with the K562 cell line with 94/106 experiments
showing differential expression for more than one RBP. We even found that the most under-
expressed RBP was not the knocked out RBP in 56/106 and 38/106 cases for HEPG2 and
the K562 cell lines, respectively. As a result, we have not included these results in the main
manuscript, but in the Supplementary Materials.

A major contribution of this article is the application of the SFpointer pipeline to all
data from both TCGA and TARGET. The results obtained are very promising: we have
achieved the identification of two co-occurring splicing events present across different
tumor types. This fact highlights the relevance of the study of splicing concerning cancer,
and how it could be possible to include splicing events as biomarkers [39,40]. Isoform-
specific data was downloaded from [41], which used GENCODE24 as the reference. This is
the reason why we used a somewhat older version of the transcriptome.

Likewise, we have performed an enrichment in RBPs for the different tumor types,
obtaining three different groups of behavior depending on the number of RBPs in which
they are enriched, having a special variability of splicing in tumors such as BRCA, HNSC,
while pediatric tumors or lung cancer have much less variability in the enrichment of RBPs.
The presence of PABPC4 and MKRN1 has been observed as the most frequently enriched
RBPs in the different types of cancer coherently with the literature [33,34], proving the
relevance of this approach.

In addition, approximately 70% of the RBPs predicted with our methodology cluster
similarly using STRING data and analytics. Interestingly, using completely different
information, we have deduced a qualitatively similar behavior. This gives a glimpse of the
statistical power of the method.

Finally, we have developed a shiny application through which it is possible to consult
the results of the pan-cancer analysis, the events with which a binding site of an RBP
coincides, and the RBPs that have a binding site in a given AS event. This app is available
at https://gitlab.com/Jferrerb/sfpointer_gui (accessed on 7 November 2024). We have also
added code and the corresponding vignettes with their explanation to Bioconductor, where
it is integrated within EventPointer for use by all those researchers who wish to give a first
biological interpretation of the results of their alternative splicing analysis.

While our study provides valuable insights into the role of RBPs in alternative splicing,
we acknowledge a key limitation: the static nature of our computational approach may not
fully capture the context-specific variability of RBP interactions. RBP effects on splicing
are known to vary widely depending on tissue type, cellular state, and specific cancer
context. Consequently, findings derived from general datasets may lack the specificity
needed to fully represent these dynamic roles. We emphasize the importance of integrating
tissue- and condition-specific RBP data in future studies to enhance the applicability of our
findings across diverse cancer types. Expanding this approach to include context-specific
datasets would allow for a more refined analysis, better reflecting the unique regulatory
roles of RBPs in different biological and pathological environments.

https://gitlab.com/Jferrerb/sfpointer_gui
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5. Conclusions

We have improved the algorithm presented in [4] with the following novelties: (i) in-
creased number of RBPS, (ii) improved statistics to determine which events are differentially
spliced and (iii) three new enrichment methods: Poisson Binomial, GSEA, and Wilcoxon
test. We observe that the improvements to the algorithm improve the accuracy compared
to [4]. Among the four enrichment methods, Poisson Binomial and GSEA stand out in
terms of performance.

We applied this method to 19 cancer types from TCGA and TARGET. To make these
results more accessible to the scientific community, we have developed a shiny app.

Finally, this tool is easy to use for anyone who wants to analyze which RBPs are
possible candidates for regulating splicing between different conditions. The algorithm is
available on GitHub at https://github.com/JFerrer-B/SFPointer (accessed on 7 Novem-
ber 2024).

6. Future Lines

Our algorithm represents a foundational step toward identifying RBPs associated with
AS, but we envision several directions to enhance and expand its capabilities. Currently, our
approach relies on existing CLIP-seq datasets, which are constrained by the availability of
RBP binding data across various tissues and conditions. As additional CLIP data becomes
available, we plan to incorporate these expanded datasets to improve the specificity and
applicability of our method, allowing us to capture more accurately the context-dependent
roles of RBPs in splicing regulation.

In the future, we aim to develop tissue-specific E × S matrices to facilitate a more
targeted analysis of RBP interactions within specific biological environments. This tissue-
centered approach will help address some limitations of general datasets, providing insights
into RBP behavior and splicing regulation unique to particular tissue contexts. Such speci-
ficity is essential for advancing our understanding of how RBPs dynamically contribute to
splicing alterations in a tissue-dependent and disease-specific manner.

Additionally, EventPointer, our tool for splicing event detection, is currently undergo-
ing improvements to enable the identification of de novo splicing events. By incorporating
de novo events alongside established splicing alterations, EventPointer will allow for a
more comprehensive study of RBP interactions in a condition- and tissue-specific context.
This advancement could reveal novel splicing mechanisms and enhance our ability to study
the intricate regulation of RBPs in specific pathological states.

Through these future developments, we aim to refine our tools to provide a more
precise and context-sensitive analysis of RBPs, ultimately deepening our understanding of
their roles in the complex landscape of alternative splicing and cancer.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines12112592/s1, Supplementary materials and tables
are in external files. Supplementary Material file contains Supplementary Figures S1–S13 and
more details of the ENCODE analysis. Suplementary tables contains Supplementary Tables S1–S9.
Table S1. Table showing the ranking positions for the 7 KD-RBP conditions. The results compare the
positions in the ranking using the current ExS with only the canonical alterntive splicing events. The
minimum positions in ranking for each condition are highlighted in bold. Table S2. Table showing
for the 7 KD-RBP conditions the number of events considered significant and the corresponding FDR.
Table S3. Detailed results of the GSEA enrichment analyses corresponding to the knock-down of FUS.
Table S4. Detailed results of the GSEA enrichment analyses corresponding to the knock-down of
TARDBP. Table S5. Detailed results of the Poisson-Binomial enrichment analyses corresponding to
the knock-down of PTBP1. Table S6. Detailed results of the Poisson-Binomial enrichment analyses
corresponding to the knock-down of MBNL1. Table S7. Detailed results of the Poisson-Binomial
enrichment analyses corresponding to the knock-down of TDP43. Table S8. Detailed results of
the Poisson-Binomial enrichment analyses corresponding to the knock-down of RBM47. Table S9.
Detailed information from the 6 clusters obtained by clustering the 22 RBPS in Figure 3. This
clustering was done using the STRING MCL methodology. Figure S1. SFpointer validation across
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7 independent KD experiments. Positions of the RBPs for each of their KD using the original version
and four methods included in SFpointer. Fisher, GSEA, Poisson Binomial, and Willcoxon are shown in
pink, purple, black, and orange respectively, and the original version of SFpointer with the previous
pipeline of EventPointer but using the current ExS is shown in red. Each point represents the ranking
position of each RBP for the different statistical approaches. The KD-TAF15 experiment is included
as evidence of the absence of alternative spicing activity. Figure S2. experiment GSE77702. The
second and third samples correspond to the samples in which FUS was knocked down. Figure S3.
Expression of the TARDBP gene throughout the samples of the experiment GSE77702. The seventh
and eighth samples correspond to the samples in which TARDBP was knocked down. Figure S4.
Expression of the TAF15 gene throughout the samples of the experiment GSE77702. The Fifth and
sixth samples correspond to the samples in which TAF15 was knocked down. Figure S5. Expression
of the MBNL1 gene throughout the samples of the experiment PRJEB39343. The first three samples
correspond to the samples in which MBNL1 was knocked down. Figure S6. Expression of the PTBP1
gene throughout the samples of the experiment PRJEB39343. The tenth, the eleventh, and the twelfth
samples correspond to the samples in which PTBP1 was knocked down. Figure S7. Expression of
the TARDBP gene throughout the samples of the experiment GSE136366. The last three samples
correspond to the samples in which TARDBP was knocked down. Figure S8. Expression of the
RBM47 gene throughout the samples of the experiment GSE75491. The last three samples correspond
to the samples in which RBM47was knocked down. Figure S9. A) Number of RBPs differentially
expressed in each knockdown experiment for HEPG2 and K562 cell lines. B) Correlation between the
number of RBPs differentially expressed and the number of statistically significant splicing events.
Figure S10. A heatmap illustrating the correlation of ∆Ψ across HEPG2 experiments. The colors
indicated along the top and left borders of the graph represent the respective sets of control samples
for each experiment. It can be observed that the experiments tend to cluster according to their
control sample sets. Figure S11. Pearson correlation of the ∆Ψ of the samples with the same control
samples in blue and with different control samples in yellow. Figure S12. A heatmap illustrating the
correlation of ∆Ψ across K562 experiments. The colors indicated along the top and left borders of the
graph represent the respective sets of control samples for each experiment. It can be observed that
the experiments tend to cluster according to their control sample sets. Figure S13. Pearson correlation
of the ∆Ψ of the samples with the same control samples in blue and with different control samples
in yellow.
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