
Citation: Guerrisi, A.; Seri, E.;

Dolcetti, V.; Miseo, L.; Elia, F.; Lo

Conte, G.; Del Gaudio, G.; Pacini, P.;

Barbato, A.; David, E.; et al. A

Machine Learning Model Based

on Thyroid US Radiomics to

Discriminate Between Benign and

Malignant Nodules. Cancers 2024, 16,

3775. https://doi.org/10.3390/

cancers16223775

Academic Editor: Sam Payabvash

Received: 7 October 2024

Revised: 30 October 2024

Accepted: 6 November 2024

Published: 8 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A Machine Learning Model Based on Thyroid US Radiomics to
Discriminate Between Benign and Malignant Nodules
Antonino Guerrisi 1, Elena Seri 2, Vincenzo Dolcetti 2 , Ludovica Miseo 1,*, Fulvia Elia 1, Gianmarco Lo Conte 2 ,
Giovanni Del Gaudio 2, Patrizia Pacini 2, Angelo Barbato 3, Emanuele David 2,4 and Vito Cantisani 2

1 Radiology and Diagnostic Imaging Unit, Department of Clinical and Dermatological Research, San Gallicano
Dermatological Institute IRCCS, Via Elio Chianesi 53, 00144 Rome, Italy; antonino.guerrisi@ifo.it (A.G.);
fulvia.elia@ifo.it (F.E.)

2 Department of Radiological, Anatomo-Pathological Sciences, “Sapienza” University of Rome, Viale Regina
Elena 324, 00161 Rome, Italy; seri.1901960@studenti.uniroma1.it (E.S.); vincenzodolcetti@gmail.com (V.D.);
gianmarco.loconte@uniroma1.it (G.L.C.); g.d.gaudio@gmail.com (G.D.G.); patry.shepsut91@gmail.com (P.P.);
emanuele.david@unict.it (E.D.); vito.cantisani@uniroma1.it (V.C.)

3 Local Health Authority of Rieti, Via del Terminillo 42, 02100 Rieti, Italy; a.barbato@asl.rieti.it
4 Radiology Unit 1, Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”,

University Hospital “Policlinico G. Rodolico”, University of Catania, 95123 Catania, Italy
* Correspondence: ludovica.miseo@gmail.com; Tel.: +39-346-304-9565

Simple Summary: Thyroid nodules must be accurately classified as benign or malignant. The aim
of this study is to develop a machine learning model based on thyroid ultrasound images in order
to classify nodules into the two classes. Ultrasound (US) images were collected from 142 patients
for training, validation and internal testing of three models, plus 21 images to externally test the
best performing model. The random forest classifier model could perform the classification task,
identifying all the malignant nodes and most of the benign.

Abstract: Background/Objectives: Thyroid nodules are a very common finding, mostly benign but
sometimes malignant, and thus require accurate diagnosis. Ultrasound and fine needle biopsy are
the most widely used and reliable diagnostic methods to date, but they are sometimes limited in
addressing benign from malignant nodules, mainly with regard to ultrasound, by the operator’s
experience. Radiomics, quantitative feature extraction from medical images and machine learning
offer promising avenues to improve diagnosis. The aim of this work was to develop a machine
learning model based on thyroid ultrasound images to classify nodules into benign and malignant
classes. Methods: For this purpose, images of ultrasonography from 142 subjects were collected.
Among these subjects, 40 patients (28.2%) belonged to the class “malignant” and 102 patients (71.8%)
belonged to the class “benign”, according to histological diagnosis from fine-needle aspiration. This
image set was used for the training, cross-validation and internal testing of three different machine
learning models. A robust radiomic approach was applied, under the hypothesis that the radiomic
feature could capture the disease heterogeneity among the two groups. Three models consisting
of four ensembles of machine learning classifiers (random forests, support vector machines and
k-nearest neighbor classifiers) were developed for the binary classification task of interest. The
best performing model was then externally tested on a cohort of 21 new patients. Results: The
best model (ensemble of random forest) showed Receiver Operating Characteristic-Area Under the
Curve (ROC-AUC) (%) of 85 (majority vote), 83.7 ** (mean) [80.2–87.2], accuracy (%) of 83, 81.2 **
[77.1–85.2], sensitivity (%) of 70, 67.5 ** [64.3–70.7], specificity (%) of 88, 86.5 ** [82–91], positive
predictive value (PPV) (%) of 70, 66.5 ** [57.9–75.1] and negative predictive value (NPV) (%) of
88, 87.1 ** [85.5–88.8] (* p < 0.05, ** p < 0.005) in the internal test cohort. It achieved an accuracy
of 90.5%, a sensitivity of 100%, a specificity of 86.7%, a PPV of 75% and an NPV of 100% in the
external testing cohort. Conclusions: The model constituted of four ensembles of random forest
classifiers could identify all the malignant nodes and the consistent majority of benign in the external
testing cohort.
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1. Introduction

Thyroid nodules are a common clinical finding, with prevalence increasing with age
and exposure to risk factors such as radiation. While most thyroid nodules are benign, a
small percentage are malignant, necessitating accurate diagnostic methods to distinguish
between benign and malignant lesions and guide appropriate clinical management [1].

The primary diagnostic tools for evaluating thyroid nodules include ultrasound (US),
fine-needle aspiration (FNA) biopsy and cytological examination [2]. Ultrasound is the
most widely used imaging modality used at the initial diagnostic phase for the nodule
characterization due to its non-invasiveness, accessibility and ability to provide detailed in-
formation about the nodule’s size, composition and vascularity. However, ultrasound alone
has limitations in accurately distinguishing benign from malignant nodules, often leading
to many false positive nodules and, consequently, to unnecessary biopsies and surgeries.

FNA biopsy, often guided by ultrasound, is the gold standard for cytological eval-
uation of thyroid nodules [2]. Despite its high accuracy, FNA can yield indeterminate
results in a significant number of cases, leading to diagnostic uncertainty and potential
overtreatment. Thus, there is a pressing need for more precise, non-invasive diagnostic
methods to improve the management of thyroid nodules [3].

In May 2014, the new classification method of thyroid cytology was published [4],
which updated the previous classification with respect to literature data, making it compa-
rable with the most used classifications (the American one, known as “Bethesda” [5,6], and
the English one, of the Royal College of Pathologists of the United Kingdom (UKRCP) [7])
and providing a tool for endocrinologists and cytopathologists of immediate use for clinical
practice. The scheme presents five categories, associated with the respective expected
risk of malignancy and suggestion for clinical action (from TIR1 to TIR5). In this study,
malignancy was associated with a TIR3B category and above, while benign nodules were
identified as those with a TIR1-TIR3A stratification. As for imaging diagnostics, specifically
ultrasound, there are many ultrasound parameters that can guide one’s steps towards a
malignant or benign diagnosis, but they are not always univocal and there is no effective
model that can distinguish between the two classes.

Radiomics could help in this endeavor, involving the extraction of a large number of
quantitative features from medical images, capturing information about the texture, shape
and intensity of the tissues that are not easily discernible and/or quantifiable qualitatively
to the naked eye. These features can reflect the underlying pathophysiology of the tissues
and have been shown to have potential in distinguishing benign from malignant lesions in
various types of cancer [1].

Machine learning, particularly when combined with radiomic analysis, offers pow-
erful tools to analyze complex and high-dimensional data. By training algorithms on
labeled datasets, machine learning models can learn to recognize patterns associated with
malignancy and predict the nature of new, unseen nodules with high accuracy [8].

This study aims to develop and validate a machine learning model based on ra-
diomic features extracted from ultrasound images to classify thyroid nodules as benign
or malignant, in order to avoid useless nodule biopsies. In ultrasound radiomics, image
segmentation is used to obtain regions of interest (ROIs) for feature extraction. These ROIs
may not necessarily be limited to thyroid nodules or tumors but can also encompass sur-
rounding normal tissue. Information within these ROIs is leveraged to develop diagnostic,
predictive or prognostic models [9]. The integration of radiomic analysis with machine
learning has the potential to significantly enhance diagnostic accuracy, reduce the need for
invasive procedures and improve patient outcomes [10]. In certain instances, in addition
to improving diagnostic accuracy, a diverse array of radiomics features has even demon-
strated the ability to correlate ultrasound data with anatomopathological data, allowing
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correlations with histological types of neoplasia with good precision; this is the case of the
paper by Zhao et al., which evidenced the capability to effectively differentiate between
medullary thyroid carcinoma (MTC) and papillary thyroid carcinoma (PTC) nodules of
varying sizes [11]. By leveraging an ensemble of random forest classifiers, this study seeks
to identify a robust and reliable model that can be applied in clinical settings.

Understanding the background and significance of this research underscores the
potential impact of advanced diagnostic tools in thyroid nodule management, paving the
way for more accurate, non-invasive and personalized patient care.

2. Materials and Methods
2.1. Patients and Image Acquisition

To train, validate and internally test the model, ultrasonography images were retro-
spectively collected from 142 Policlinico Umberto I patients that presented thyroid nodules.
Among these subjects, 40 patients (28.2%) belonged to the “malignant” class (TIR 3B, 4 and
5) and 102 patients (71.8%) belonged to the “benign” one (TIR 1, 2 and 3A), according to
histological diagnosis from fine-needle aspiration. This image set was used for the training,
cross-validation and internal testing of 3 machine learning models based on different archi-
tectures. To externally test the model, an additional cohort of 21 patients from the same
facility with suspicious thyroid nodules was enrolled in this study.

Only patients whose thyroid ultrasound images were free from annotation (clean from
markers and needles) were chosen, to avoid fake density discontinuities.

2.2. Radiomic-Based Machine Learning Modelling

In agreement with the Image Biomarker Standardization Initiative (IBSI) guidelines [12],
the radiomic methodology to collect, segment and analyze images was carried out by
the IFO-San Gallicano institute, through the Trace4Research© radiomic software v. 1.0
component that allows one to obtain the whole IBSI-compliant radiomic workflow in a
fully-automatic way and to generate the machine learning model for the thyroid nod-
ule classification.

The IBSI-compliant radiomic workflow included the following: (i) a first step of
segmentation of the Region Of Interest (ROI) for each ultrasound image, (ii) preprocessing
of the segmented ROI (that is a requirement to compute features), (iii) feature extraction and
selection and finally (iv) using those features to train, validate and internally and externally
test different classifiers in the task of discriminating benign and malignant nodules in
thyroid, thus comparing different machine learning models and choosing the best one on
the basis of the best performance.

In this paper, The ROI segmentation was performed manually by two expert physi-
cians in consensus (both with 15 years of experience), through the Trace4Research segmen-
tation tool. The step of image intensities’ preprocessing within the segmented ROI included
the resampling to isotropic pixel spacing, taking advantage of a down-sampling scheme
built on the ROI greatest dimension (it caps the mask size at ten million pixels for the com-
putation of texture features and at one million for other features). The Radiomics features,
derived from the segmented ROI, belonged to seven different families: Intensity-based
Statistics, Intensity Histogram, Gray-Level Co-occurrence Matrix (GLCM), Gray-Level Run
Length Matrix (GLRLM), Gray-Level Size Zone Matrix (GLSZM), Neighborhood Gray Tone
Difference Matrix (NGTDM), Neighboring Gray Level Dependence Matrix (NGLDM) and
their definition, computation and nomenclature are compliant with the IBSI guidelines. It
is worthwhile to specify that intensity histogram features were computed after an intensity
discretization of the ROI, using a fixed number of 64 bins, that was also necessary for
textural features computation (GLCM, GLRLM, GLSZM, NGTDM, NGLDM).

The features were then selected removing the ones that presented a low variance
(<0.1) and high mutual information with the class label by a mutual information analysis
(in which the mutual information threshold was 0.19). In this way, the resulting selected
features are the most informative, non-redundant and reported according to IBSI standards.
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Finally, three different models of machine learning classifiers were trained, validated
and internally/externally tested, for the binary classification of malignant nodules vs.
benign ones (based on supervised learning), using histological diagnosis from fine-needle
aspiration as the reference standard. For each one of the models, a nested 4-fold cross
validation method was used (two folds employed for training, one for validation and one
for internal testing of each ensemble) and oversampling technique for the minority class (the
malignant one) was applied through the adaptive synthetic sampling method (ADASYN).

Model 1 consisted of 4 ensembles of 16 random forest classifiers, combined with the
Gini index with majority vote rule.

Model 2 was formed by 4 ensembles of 16 support vector machines combined with
principal components analysis and the Fisher Discriminant Ratio with majority vote rule.

Model 3 consisted of 4 ensembles of 16 k-nearest neighbor classifiers combined with
principal component analysis and the Fisher Discriminant Ratio with majority vote rule.

The performances of the 3 models were evaluated across all the folds in terms of
majority vote and mean Area Under the Receiver Operating Characteristic Curve (ROC-
AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive
value (NPV) and their corresponding 95% confidence intervals (CIs).

The p-value for one-sided Wilcoxon signed rank test was measured to assess statistical
significance, with respect to chance/random classification (null hypothesis of 50% for
ROC-AUC, accuracy, sensitivity and specificity; the percentage of the benign subjects over
the whole dataset −72% for PPV; and the percentage of the malignant subjects over the
whole dataset −28% for NPV).

The model with the best performance, according to the ROC-AUC index, was chosen
as the best classification model for the binary classification in malignant or benign nodules.

The best model was then externally tested with an additional cohort of 21 patients
with thyroid nodules.

2.3. Statistical Analysis

Statistical analysis was conducted with embedded tools of the Trace4Research platform
for the training, validation and internal testing, while the external testing evaluation was
performed using SPSS software, v. 26. To describe the distribution of each of the most
relevant features in the “malignant” and “benign” classes, their medians with 95% CI were
calculated and presented using graphical violin and box plots for easier visualization and
interpretation. A non-parametric univariate Wilcoxon rank-sum test (Mann–Whitney U
test) was performed for each of the relevant radiomic predictors to verify its significance in
discriminating the two “malignant” and “benign” classes. To take into account multiple
comparisons, the p-values were adjusted using the Bonferroni–Holm method and the
significance levels were set at 0.05 (*) and 0.005 (**).

3. Results
3.1. Radiomic-Based Machine Learning Modelling

From each segmented ROI of every image involved in this study, 777 IBSI-compliant
radiomic features were extracted. For the classification task of interest (102 images from the
class “benign” vs. 40 images from the class “malignant”), these features were used to train,
cross-validate and internally test (nested 4-fold cross validation) the three aforementioned
different models of machine learning classifiers.

Table 1 1-2-3 show the values for ROC-AUC, accuracy, sensitivity (identifying the
benign class), specificity (identifying malignant class), positive predictive value (PPV) and
negative predictive value (NPV) as obtained from the training, cross-validation and internal
testing of models 1, 2 and 3, which all consisted of four ensembles of machine learning
classifiers. Furthermore, for each model, ROC curves for the four ensembles are plotted in
Figure 1A–C.



Cancers 2024, 16, 3775 5 of 11

Table 1. Model 1, 2 and 3 performances. Classification performance in terms of AUC, accuracy,
sensitivity, specificity, PPV, NPV, corresponding 95% confidence interval and statistical significance
with respect to chance/random classification (p-value). Performances are reported for training,
validation and internal testing.

Model Metric Training Validation Internal Testing
(Mean)

Internal Testing
(Majority Vote)

1

ROC-AUC (%) (95% CI) 100 1 [99,100] 83 2 [81–84] 84 2 [80–87] 85
Accuracy (%) (95% CI) 100 1 [99,100] 79 2 [79,80] 81 2 [77–85] 83
Sensitivity (%) (95% CI) 100 1 [99,100] 67 2 [81–84] 68 2 [64–71] 70
Specificity (%) (95% CI) 100 1 [99,100] 84 2 [83–85] 87 2 [82–91] 88

PPV (%) (95% CI) 100 1 [99,100] 63 2 [60–66] 66 2 [58–75] 70
NPV (%) (95% CI) 100 1 [99,100] 87 2 [86–89] 87 2 [86–89] 88

2

ROC-AUC (%) (95% CI) 84 2 [83–86] 81 2 [79–83] 79 2 [76–83] 80
Accuracy (%) (95% CI) 77 2 [76–78] 73 2 [71–76] 75 2 [72–77] 75
Sensitivity (%) (95% CI) 78 2 [78,79] 74 2 [72–77] 76 2 [69–83] 78
Specificity (%) (95% CI) 76 2 [74–78] 73 2 [70–76] 74 2 [71–77] 75

PPV (%) (95% CI) 77 2 [76–78] 53 2 [49–57] 54 2 [51–56] 54
NPV (%) (95% CI) 77 2 [77,78] 88 2 [87–89] 89 2 [86–92] 89

3

ROC-AUC (%) (95% CI) 95 2 [94–96] 62 2 [60–64] 77 2 [73–81] 79
Accuracy (%) (95% CI) 87 2 [85–88] 58 2 [56–61] 71 2 [67–74] 75
Sensitivity (%) (95% CI) 96 2 [95–98] 57 2 [47–68] 71 2 [60–82] 73
Specificity (%) (95% CI) 77 2 [74–79] 59 2 [53–64] 71 2 [66–76] 75

PPV (%) (95% CI) 81 2 [79–83] 36 2 [35–37] 49 2 [45–53] 54
NPV (%) (95% CI) 96 2 [94–97] 79 2 [75–82] 86 2 [82–90] 88

1 p-value < 0.05/2 p-value < 0.005.
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3; orange: ensemble 4.
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Based on ROC-AUC values for internal testing, the model formed by random forest
classifiers (model 1) turned out to be the best model to discriminate malignant from
benign nodules.

External testing was also performed on the first and best classification model, consist-
ing of 4 ensembles of 16 random forest classifiers. Images from a cohort of 21 patients were
used for this task (29% in the malignant and 71% in the benign class), and the performance
in terms of accuracy, sensitivity, specificity, PPV and NPV metrics is described in Table 2.

Table 2. Model 1 external testing evaluation.

Metric External Testing of Model 1

Accuracy (%)
(95% CI) 90 [77–100]

Sensitivity (%)
(95% CI) 87 [73–100]

Specificity (%)
(95% CI) 100 [100]

PPV (%)
(95% CI) 100 [100]

NPV (%)
(95% CI) 75 [54–96]

3.2. Radiomic Predictors

The 11 selected radiomic predictors are listed in Table 3, complete with their IBSI
feature family and feature nomenclature. Those predictors are ranked according to their sta-
tistical significance, and to their frequencies among the most relevant ones in the ensemble
of model 1, the one constituted by random forest classifiers. Median values, 95% CIs [13]
and results from univariate statistical sum rank tests are also reported with adjusted p-
values for each feature. The violin plot and boxplot of the radiomic predictors are shown in
Figure 2.
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Table 3. Ensemble of random forest classifiers: the 11 predictors sorted in descending order according to their statistical significance and relevance.

# Feature Family Feature Nomenclature Median in the Benign Class
(95% CI)

Median in the Malignant
Class (95% CI) Uncorrected p-Value Corrected p-Value

1
Neighbouring Grey Level

Dependence
Matrix

US_gradient_dependence
Count Energy

1.63 × 10−2

[1.56 × 10−2–1.69 × 10−2]
1.87 × 10−2

[1.83 × 10−2–1.91 × 10−2]
<0.005 <0.005

2 Neighbourhood Grey Tone
Difference Matrix US_square_complexity 1189.3 [1082.33–1296.26] 1641.68 [1552.62–1730.75] <0.005 <0.005

3 Grey-Level Co-Occurrence
Matrix US_LoG_autocorrelation 1542.46 [1433.46–1651.45] 1289.97 [1224.34–1355.59] <0.005 <0.005

4 Neighbouring Grey Level
Dependence Matrix

US_LoG_high Grey Level
Count Emphasis 1544.4 [1437.37–1651.44] 1292.93 [1227.6–1358.26] <0.005 <0.005

5 Grey-Level Run Length
Matrix

US_LoG_High Grey Level
Run Emphasis 1525.45 [1419.45–1631.44] 1289.15 [1225–1353.3] <0.005 <0.005

6 Grey-Level Co-Occurrence
Matrix US_LoG_sum Average 77.19 [74.38–79.99] 70.51 [68.64–72.38] <0.005 <0.005

7 Grey-Level Co-Occurrence
Matrix US_LoG_joint Average 38.59 [37.19–40] 35.25 [34.32–36.19] <0.005 <0.005

8 Intensity Histogram US_LoG_mean 38.58 [37.18–39.98] 35.24 [34.31–36.17] <0.005 <0.005

9 Intensity-Based Statistics US_LoG_Quartile
Coefficient 4.48 [3.47–5.48] 9.96 [7.75–12.16] <0.005 <0.005

10 Neighbourhood Grey Tone
Difference Matrix US_square_coarseness 1.73 × 10−3

[1.40 × 10−3–2.06 × 10−3]
8.66 × 10−4

[7.35 × 10−4–9.96 × 10−4]
<0.005 <0.005

11 Neighbouring Grey Level
Dependence Matrix

US_squareroot_dependence
Count Variance 2.88 [2.62–3.14] 2.32 [2.19–2.45] <0.005 <0.05
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The eleven listed features were all very significative, with a corrected p-value lower
than 0.005. In Figure 2, violin and box plots for these features and for the first model are
shown, differentiated for the two classes.

Model 1 performed very accurately in both internal and external testing, and the
11 features that it used as predictors were all correlated with the classification task at hand.

4. Discussion

In this paper, the possibility of classifying benign and malignant thyroid nodules from
ultrasound imaging by radiomic analysis combined with machine learning is evaluated.
Radiomic analysis, being a feature-based tool capable of detecting sometimes impossible to
see differences and nuances and discerning repetitive and/or characteristic patterns and
measures in the region of interest, limits interobserver variability by providing an objective
metric for the classification task [14], and, given there is sometimes tumor heterogeneity, it
helps address biopsy results that come from only one tissue sample [15].

In the realm of thyroid cancer diagnosis via ultrasonography, several recent papers
have explored the utility and accuracy of radiomics and machine learning approaches,
which provides a foundation for placing our findings in a broader context. Zhao and Ma’s
study [11] compared the radiomics features between different sizes of medullary thyroid
carcinoma (MTC) and papillary thyroid carcinoma (PTC) tumors. Their analysis yielded
significant insights into the differentiating features for these tumor types, emphasizing
that a combination of features outperformed individual features in discriminating between
MTC and PTC macronodules and micronodules. This highlighted the increased diagnos-
tic accuracy when combining multiple radiomic features, akin to our ensemble model’s
superior performance over single classifier models.

Chang et al. (2016) [15] developed a computer-aided diagnosis (CAD) system using
ultrasound images to differentiate between benign and malignant thyroid nodules. Their
system utilized various imaging features and a support vector machine (SVM) classifier,
achieving a maximum accuracy of 98.3% with leave-one-out cross-validation. These findings
underline the high potential of CAD systems to match or even surpass radiologist accuracy,
as our best ensemble model also demonstrated (ROC-AUC of 85). Our approach aligns with
their achievements by employing machine learning to enhance diagnostic accuracy.

Lambin et al. [16] provide a broader perspective on radiomics as a bridge to person-
alized medicine, emphasizing the need for standardized evaluation in radiomics investi-
gations. Their paper stresses the importance of rigorous validation which resonates with
our methodological approach, ensuring our ensemble models were not only optimized but
subjected to rigorous cross-validation and an external test cohort.

Liang et al. [17] compared their developed radiomics score against the 2017 ACR
TI-RADS scoring criteria, showcasing a superior performance of their radiomics-derived
model. Our ensemble approach similarly demonstrated that machine learning models,
specifically ensembles of classifiers, can outperform traditional scoring systems like TI-
RADS evaluated by less experienced radiologists, reinforcing the potential of automated
systems in improving diagnostic precision.

Zhou et al. [10] proposed deep learning radiomics (DLRT) models for differentiating
benign from malignant thyroid nodules. Their results, showing high AUC values across
training, internal and external validation cohorts, corroborate the efficacy of advanced
deep learning models over traditional assessment methods. Our study, albeit using clas-
sical machine learning techniques rather than deep learning, reflects similar trends in
achieving high diagnostic performance, highlighting the versatility and effectiveness of
these approaches.

Finally, Gild et al. [18] focused on the risk stratification of indeterminate thyroid
nodules using ultrasound and machine learning algorithms. Their use of both TI-RADS
and deep learning models resulted in promising predictive values, particularly for certain
patient subsets. Our study’s consistent performance metrics in both internal and exter-
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nal validation support the viability of machine learning models in refining preoperative
diagnostics and reducing unnecessary surgeries.

In conclusion, our findings are corroborated by the literature’s progressive under-
standing that combining advanced radiomic features with machine learning techniques
can significantly enhance the accuracy of thyroid nodule classification. These studies col-
lectively underscore the pivotal role of machine learning and radiomics in modernizing
and improving the diagnostic process for thyroid cancer.

In the present study, the performances of three different machine learning classifiers
are evaluated that employed radiomic features extracted from ultrasound images of thyroid
nodules. First, the three models were trained, validated and internally tested on 142 nodule
images, divided into malignant (28.2%) and benign (71.8%) thanks to information brought
by fine-needle aspiration. The three models were composed of four ensembles of random
forest, support vector machine and k nearest neighbor classifiers, respectively.

The best performing model turned out to be the first one, and metrics were evaluated
for each stage of the classification process: in training, it achieved 100% for all metrics,
while in validation the performances gave an 84% ROC-AUC value, an 81% accuracy
value, a 67% sensitivity value, an 84% specificity value, a 63% PPV and an 87% NPV. The
first testing of the models was internal, and the top performer is again the one formed
by four ensembles of sixteen random forests, with metrics expressed both in mean values
(that were always significative with a p-value < 0.005) and in majority vote (that corre-
sponded to a 50% threshold), achieving good results, in line with the ones obtained in the
aforementioned studies.

This promising model was finally tested on an external cohort of 21 patients, suffering
from one nodule each, belonging to both malignant and benign classes. External testing
evaluation was performed, resulting in 90.5% accuracy, 100% sensitivity, 86.7% specificity,
75% PPV and 100% NPV: these metrics values confirm the high performances of the random
forest model in discriminating the two nodule classes investigated in this paper, correctly
classifying all of the malignant nodules and the majority of benign.

The eleven features which were most relevant in the classification task were all sig-
nificant to the univariate statistical sum rank analysis, reporting a Bonferroni-corrected
p-value inferior to 0.005. Three of these radiomic predictors belong to the Neighboring Grey
Level Dependence Matrix family that identifies how many times the same value occurs in
neighboring pixels, two to the Neighborhood Grey Tone Difference Matrix family, three to
the Grey-Level Co-Occurrence family, one to the Grey-Level Run Length Matrix family, one
to the Intensity Histogram family and one to the Intensity Based Statistics family. The violin
box plots shown in Figure 2 represent how the cases are categorized for each radiomic
feature, and their statistical distribution: in this way, the difference in values for the two
classes is made immediately noticeable.

The most statistically relevant features are denominated “US gradient dependence
count energy” and “US square complexity”: in the former, the gradient filter enhances
sudden intensity changes and the energy gives information on the image pattern uniformity:
a high value indicates that the contrast variation in the images is distributed in a more
homogeneous way and with similar variations. In the latter, the square filter enhances
the image contrast, and the complexity is a feature again related to the sudden variability
in intensity values. In this specific case, the values indicate that the malignant nodules
are characterized by a more random pattern in terms of contrast variation (hypo- and
hyper-echogenic areas do not have a repetitive scheme), presenting a lower value that
indicates that tumor heterogeneity plays an important role in discerning between the two
classes. In the third to ninth feature, the Laplacian of Gaussian filter is implicated, which
makes “edge detection” possible: from the data, it seems that malignant nodules have
bigger homogeneous areas associated with fewer sudden changes in intensity, and that
they present a higher count of small and concentrated hypo-echogenic areas with high
contrast. Summing up, confirmation is found that, in a more homogeneous and echogenic
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background, malignant nodules present a higher variability in terms of pixel intensity
distributions due to many small darker areas.

By comparing the results obtained from the models with the evaluations carried out
by the operator who performed the ultrasound scans using the ACR TI-RADS classification
system (an expert operator with more than twenty years of experience in the field), placed
in turn to compare with the result of the cyto-histological examination, good agreement was
observed (diagnostic accuracy 90%, sensitivity 88%, specificity 92%, PPV 86%, NPV 93%).

However, these values tend to deviate when the evaluation is carried out by operators
with less experience but also using different TI-RADS classification systems, which use
different evaluation criteria and above all are affected by the subjective evaluation of the
operator (such as echogenicity and appearance of the margins). The combination of these
factors tends to increase the degree of inter-operator variability, complicating the diagnostic
process and the possible surgical evaluation of the patient, aspects on which ML models
can have a positive impact by using qualitative and quantitative features for the evaluation
of the nodules that are more objective and reproducible [19].

There are some limitations to this study: first, ultrasound is an imaging technique
which strongly depends on the operator’s expertise; second, the segmentation of the
lesion was performed manually and could be influenced by the same specific experience
of the operator who acquired the images: however, this problem is partially addressed
by the Trace4Research software v. 1.0 that automatically performs slightly different re-
segmentations in the image pre-processing phase to mimic the work of distinct physicians,
thus selecting robust features for the model. In the opinion of the authors, this limitation is,
however, secondary compared to the evaluation of standard parameters that are used in
the clinical setting. Furthermore, given the small cohort available for this study, additional
external tests should be performed, with images from different ultrasound machines and
different healthcare centers to increase the variability of the target population.

5. Conclusions

The goal of this work was to develop a machine learning model to classify malignant
and benign thyroid nodules only from ultrasound imaging. Three different models were
trained, and the best model was found to be the one constituted of four ensembles of
random forest classifiers that, through 11 radiomic features with high statistical significance,
could successfully identify all the malignant nodes and the consistent majority of benign in
the external testing cohort.

Being able to determine malignant from benign nodules without the need for fine-
needle biopsy would shorten diagnosis timing and thus bring forward therapy initiation,
while being a totally non-invasive procedure. Further investigations could be conducted
by testing the model with images of nodules from different centers.
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