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Abstract: The osprey optimization algorithm (OOA) is an effective metaheuristic algorithm. Although
the OOA has the characteristics of strong optimality-seeking ability and fast convergence speed, it
also has the disadvantages of imbalance between global exploration and local exploitation ability,
easily falling into local optima in the later stage, and reduced population diversity and convergence
speed. Therefore, this paper proposes an improved osprey optimization algorithm (IOOA) with multi-
strategy fusion. First, Fuch chaotic mapping is used to initialize the ospreys’ population and increase
the population diversity. Then, an adaptive weighting factor is introduced in the exploration phase of
the algorithm to help the algorithm improve the convergence accuracy. The Cauchy variation strategy
is integrated in the algorithm’s exploitation stage to enhance the diversity of the ospreys’ population
and avoid falling into local optima. Finally, a Warner mechanism for the sparrow search algorithm is
introduced to coordinate the algorithm’s local optimization and global search capabilities. The IOOA
with various optimization algorithms is tested in a simulation for 10 benchmark test functions and
15 CEC2017 test functions, and non-parametric tests are performed on the IOOA. Experimental results
show that the IOOA achieves improved accuracy and stability. The application of the IOOA to the
three-bar truss engineering design problem further verifies its superiority in dealing with practical
optimization problems.

Keywords: osprey optimization algorithm; Fuch chaotic mapping; adaptive weighting factor;
Cauchy’s variation

1. Introduction

Due to their simplicity, flexibility, and efficiency, swarm intelligence algorithms have
been widely used in recent years in engineering fields such as cluster task planning [1,2],
workshop scheduling [3,4], power system optimization [5,6], and path planning [7,8]. The
osprey optimization algorithm (OOA) [9], first proposed in 2023 by Mohammad Dehghani
and Pavel Trojovský, is a novel bio-heuristic optimization algorithm that simulates the
hunting–predatory behavior of ospreys in nature. Based on the simulation of ospreys’
hunting process, the OOA establishes a mathematical model of the two phases of ospreys’
exploration and exploitation. The algorithm has the advantages of simple structure, a
robust global search capability, and fast convergence. However, it inevitably encounters
common problems arising from metaheuristic algorithms, such as reduced convergence
speed of algorithm iterations, a tendency to fall into local optimality, etc.

In order to improve the convergence speed of algorithms and enhance the ability of
algorithms to leap out of local extremes, many scholars have conducted extensive research
in this field. The study in Yu et al. [10] improved the gray wolf optimization algorithm
by using the good point-set method to initialize the population to increase the population
diversity and introducing a beetle tentacle search mechanism to prevent the algorithm from
falling into local optima. The study in [11] proposed an ADFPSO algorithm by using a
fitness-based driver to improve the development capability of the PSO algorithm and a
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novelty-based driver to enhance the exploration capability of the PSO algorithm and by
introducing an adaptive weighting factor to coordinate the weights of the two drivers at
different stages of the optimization search. The study in [12] proposed a improved gorilla
troops optimizer based on lens opposition-based learning and adaptive hill climbing for
global optimization, using reverse convex lens imaging learning to expand the search range
and avoid falling into local optima and introducing an adaptive hill climbing algorithm
in combination with GTO to improve the solution accuracy. The study in [13] proposed a
whale optimization algorithm based on the siege mechanism, which combines the siege
mechanism of the Harris hawk optimization algorithm to improve the global exploration
and local optimization-seeking ability of the whale optimization algorithm. The study
in [14] solved the problem of low solution accuracy and the poor stability of the Marine
Predator Algorithm (MPA) by introducing an elite reverse learning strategy and a golden
sine strategy. The study in [15] proposed an improved grasshopper optimization algo-
rithm (IWGOA) that introduced the weed algorithm and random wandering strategy into
the locust algorithm to improve the convergence accuracy. The study in [16] introduced
time delay and sorting parameters based on the artificial bee colony algorithm and used
chaotic systems to solve the multidimensionalization problem of parameter estimation to
prevent the execution process from falling into local optima. The study in [17] proposed
a chaotic chimp optimization algorithm based on adaptive tuning, which employs a Sin
operator for population initialization to enhance the population richness and also im-
proves the convergence factor (f) and dynamically adjusts the number of chimp precedence
echelons, which enhances the algorithm’s global search and local exploitation abilities.
The study in [18] improved the osprey optimization algorithm by using Sobol sequences
for population initialization, introducing a step factor based on the Weibull distribution
to balance the algorithm’s local and global optimality-seeking ability and incorporating
firefly perturbations to prevent the algorithm from falling into a local optimum. The
study in [19] proposed an attack–defense strategy-assisted osprey optimization algorithm
(ADSOOA), which integrates an attack–defense strategy to improve convergence perfor-
mance and prevent the algorithm from falling into local optima, and applied it to PEMFC
parameter identification.

The improvements proposed above for the swarm intelligence algorithm reduce the
possibility of the algorithm falling into local extremes to a certain extent, but there are
still problems, such as low convergence accuracy and limited improvement in algorithm
performance. To better improve the optimization performance and application capability of
the osprey optimization algorithm, this paper proposes an improved osprey optimization
algorithm (IOOA) with multi-strategy fusion. The algorithm uses Fuch chaotic mapping to
make the initialized population more evenly distributed and increase population diversity.
The introduction of adaptive weighting factors in the exploration phase of the algorithm
improves the convergence speed of the algorithm. Incorporating the Cauchy variation
operator during the algorithm’s exploration phase enhances the diversity of the ospreys’
population while improving the algorithm’s ability to leapfrog local extremes. A Warner
mechanism is introduced for the sparrow search algorithm to balance the algorithm’s ability
to explore globally and develop locally.

2. OOA

The OOA is a heuristic algorithm that models the foraging process of osprey popu-
lations and consists of the following two parts: an exploration phase and an exploitation
phase. First, the osprey population is initialized in the search space with the expression
shown in Equation (1).

Xi,j = lbj + ri,j · (ubj − lbj), i = 1, 2, . . . , N; j = 1, 2, . . . , D (1)

where Xi,j is the initial position of the ith osprey in the jth dimension; lbj and ubj are the
upper and lower bounds of the jth problem variable, respectively; ri,j is a random number
in the range of [0,1]; N is the osprey population size; and D is the dimension of the problem.
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Equation (2) shows the function to calculate the fitness value.

Fi = F(Xi), i = 1, 2, . . . , N (2)

where Fi is the fitness value of the ith osprey and Xi is the position of the ith osprey. In this
paper, we need to solve for the minimum value of Fi . The smaller the value, the better it is
for the location of the osprey.

After population initialization, the osprey enters the exploration phase, which is also
the global exploration phase. Other ospreys’ position with better fitness values in the search
space were considered as fish positions. Equation (3) expresses the location of the school of
fish for each osprey.

FPi = {Xk|k ∈ {1, 2, . . . , N} ∩ Fk < Fi} ∪ {Xbest}, i = 1, 2, . . . , N (3)

where FPi is the set of fish locations of the ith osprey and Xbest is the location of the osprey
with the best fitness value.

In the search space, the osprey randomly selects a fish and attacks it. During the simu-
lation of the movement of the osprey towards the fish, this paper uses Equations (4) and (5)
to calculate the new osprey’s position.

XP1
i,j = Xi,j + ri,j ·

(
SFi,j − Ii,j · Xi,j

)
, i = 1, 2, . . . , N; j = 1, 2, . . . , D (4)

XP1
i,j =


XP1

i,j , lbj ≤ XP1
i,j ≤ ubj

lbj, XP1
i,j < lbj

ubj, XP1
i,j > ubj

(5)

where XP1
i is the new position of the ith osprey in first stage in the jth dimension; SFi,j is

the fish selected by the ith osprey in the jth dimension; ri,j is a random number in the range
[0, 1]; and Ii,j is a random integer, either 1 or 2.

If the new position’s fitness value is better, then the new position replaces the original
position; otherwise, it does not. Equation (6) shows the process.

Xi =

{
XP1

i , FP1
i < Fi

Xi, FP1
i ≥ Fi

(6)

where XP1
i is the new position of the ith osprey after the first stage update and FP1

i is the
new position’s fitness value of the ith osprey after the first stage update.

After hunting a fish in nature, the osprey will take it to a safe place and feed on it. In
this process, this paper uses Equations (7) and (8) to calculate a new random position as
the feeding position.

XP2
i,j = Xi,j +

lbj + ri,j ·
(
ubj − lbj

)
t

, i = 1, 2, . . . , N; j = 1, 2, . . . , D; t = 1, 2, . . . , T (7)

XP2
i,j =


XP2

i,j , lbj ≤ XP2
i,j ≤ ubj

lbj, XP2
i,j < lbj

ubj, XP2
i,j > ubj

(8)

where XP2
i,j is the new position of the ith osprey in the jth dimension in the second stage; ri,j

is a random number in the range [0, 1]; t is the current number of iterations; and T is the
maximum number of iterations.

If the new position’s fitness value is better, then the new position replaces the original
position; otherwise, it does not. Equation (9) shows the process.
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Xi =

{
XP2

i , FP2
i < Fi

Xi, FP2
i ≥ Fi

(9)

where XP2
i is the new position of the ith osprey after the second stage update and FP2

i is the
new position’s fitness value of the ith osprey after the second stage update.

3. IOOA
3.1. Fuch Chaotic Mapping

The OOA initializes the population using random initialization, which makes the
population initialization unevenly distributed and leads to a reduction in the initialized
population diversity. Chaotic mapping has the advantages of randomness, ergodicity and
regularity, which can enrich the population initialization diversity, enhance the global
search ability, and improve the algorithm solution’s effectiveness. Therefore, this paper
introduces Fuch chaotic mapping [20] to initialize the ospreys’ population, which is a kind
of infinitely collapsible chaotic mapping, showing advantages such as stronger chaotic
properties and more balanced traversal than the traditional chaotic mapping, and its chaotic
sequence is shown in Figure 1. Equation (10) shows the mathematical expression of Fuch
chaotic mapping.

yi+1 = cos
(

1
y2

i

)
, yi ∈

(
−1, 1

)
, yi ̸= 0, i ∈ Z+ (10)

This paper use Equation (10) to generate chaotic variables, and the initialization formula
after adding chaotic variables is shown in Equation (11).

Xi,j = lbj + yi · (ubj − lbj), i = 1, 2, . . . , N; j = 1, 2, . . . , D (11)

where Figure 1a shows the distribution of Fuch chaotic sequences and Figure 1b shows the
histogram of the distribution of chaotic sequences.
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Figure 1. Fuch chaotic distribution.

3.2. Adaptive Weighting Factor

The global search ability and local optimization ability of coordinated metaheuristic
algorithms are important factors that affect the algorithms’ optimization accuracy and
speed. In the first stage of osprey position update, this paper introduces an adaptive weight
factor to dynamically regulate the algorithm’s local exploitation and global exploration
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capabilities, and to improve the algorithm’s optimization accuracy and convergence speed.
Equation (12) shows the adaptive weighting factor.

w =
e

t
T − 1
e − 1

(12)

At the beginning of the algorithm iterations, the value is small, and the osprey individual
focuses more on exploring other locations at this time, which facilitates better global explo-
ration. The w-value increases adaptively in the later iterations, and the osprey individual
gradually switches from exploring other locations to exploiting its own neighborhood
locations, improving the algorithm’s local exploitation capability. Equation (13) shows the
improved osprey position update formula.

XP1
i,j = w · Xi,j + ri,j ·

(
SFi,j − Ii,j · Xi,j

)
, i = 1, 2, . . . , N; j = 1, 2, . . . , D (13)

3.3. Cauchy Variation Strategy

In order to improve the individuals’ quality, increase population diversity, and pre-
vent the algorithms from falling into local optima, this paper incorporates the Cauchy
variation strategy in the second stage of the osprey population position update. The one-
dimensional standard Cauchy distribution probability density function expression is shown
in Equation (14).

f (x) =
1
π

(
1

x2 + 1

)
, −∞ < x < ∞ (14)

Figure 2 shows the probability density curves of the Gaussian and Cauchy distributions.
From Figure 2, the Cauchy distribution peak value is smaller than the one-dimensional
Gaussian distribution peak value at the origin. The Cauchy distribution ends are flatter and
slower than the Gaussian distribution as they approach zero. Thus, the Cauchy distribution
can generate larger perturbations. In this paper, the algorithm’s position update formula
introduces the Cauchy variation, which enhances the ospreys’ population diversity and
improves the algorithm’s global optimization capability.

-10 -5 0 5 10
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0.05

0.1
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0.2
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Figure 2. One-dimensional standard Cauchy and Gaussian distribution probability density curves.

In the second phase of the IOOA’s population position update, each iteration compares
the magnitude of the current osprey’s fitness value in relation to the population average fit-
ness value. When the osprey’s fitness value is lower than the population mean fitness value,
it indicates that the current osprey is aggregated. At this point, the perturbation power of
the Cauchy operator is exploited to increase the ospreys’ population diversity. When the
osprey’s fitness value is higher than the population average fitness value, the OOA position
update method is used. Equation (15) shows the improved position update formula.
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XP2
i,j =

{
Xbest + Xbest · cauchy(0, 1), Fi < Faνg

Xi,j +
lbj+ri,j ·(ubj−lbj)

t , Fi ≥ Faνg
(15)

where cauchy(0, 1) denotes denotes the generation of numbers that follow the standard
Cauchy distribution, and Faνg denotes the population average fitness value.

3.4. Integration of the Sparrow Search Algorithm Warner Mechanism

In order to better balance the OOA’s global exploration and local exploitation capabili-
ties, the second stage position update for the ospreys’ population uses the Sparrow Search
Algorithm [21] Warner mechanism. Equation (16) shows the improved osprey position
update formula.

XP2
i,j =


Xbest + β ·

∣∣Xi,j − Xbest
∣∣, Fi > Fg

Xi,j + K ·
∣∣∣∣ |Xi,j−Xworst|

(Fi−Fw)+ε

∣∣∣∣, Fi = Fg

(16)

where Fi is the current osprey’s fitness value; Fg and Fw are the current global optimal and
worst fitness values; Xworst is the current global worst position; β is a random number that
satisfies a normal distribution, K is a uniform random number in the range [−1, 1]; and ε is
the smallest constant. When Fi > Fg, it indicates that the osprey is located at the population
edge; this position is not suitable for the osprey to feed and it is easily be attacked by its
natural enemies. When Fi = Fg, it indicates that the osprey of the population center senses
danger and needs to move closer to other ospreys to reduce the risk of being attacked.

3.5. Overall Flow of the IOOA

Step 1: Set the population size N; maximum iterations T; problem dimension D; and
boundary condition lbj and ubj.

Step 2: Use Fuch mapping to initialize the osprey population and calculate the osprey
population fitness values.

Step 3: Calculate the first stage position according to Equation (12).
Step 4: Update Xi according to Equation (6).
Step 5: Calculate the second stage position according to Equation (14).
Step 6: Update Xi according to Equation (9) and calculate the worst fitness value and

its corresponding position.
Step 7: Calculate the second stage position according to Equation (15).
Step 8: Update Xi according to Equation (9).
Step 9: Judge whether it reaches the maximum iterations; if so, proceed to the next

step, and otherwise, skip to step 2.
Step 10: The procedure ends with the output of the optimal solution.

3.6. Time Complexity Analysis

The time complexity is an important metric for evaluating its solution speed. This
paper performs time complexity analysis of the IOOA. This paper sets the ospreys’ popula-
tion size to N, the maximum iterations to T, and the problem dimension to D. In the OOA,
each iteration of population initialization takes O(N × D), and both phases of the position
update process take O(N × D × T), with the total time complexity of O(N × D × (1 + 2T)) For
the IOOA, the time complexity of population initialization is O(N×D), and both phases of
the position update process for introducing the update strategy take O(N × D × T), giving
the total time complexity of O(N × D × (1+2T)). Thus, the IOOA is equal to the OOA in
time complexity; it does not increase the complexity overall and it does not increase the
computational burden.
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4. Simulation Experiments and Result Analysis
4.1. Experimental Environment and Test Functions

The simulation environment of this paper is Windows 11 (64-bit) operating system,
with an Intel(R) Core(TM) i5-12500H CPU (Intel, Santa Clara, CA, USA) with 3.10 GHz
main frequency and 16 GB RAM, and the program is implemented with MatlabR2022a
programming. This paper selects 10 benchmark test functions and 15 functions of the
CEC2017 test set for optimization-seeking tests. Table 1 shows the benchmark test functions,
where F1–F7 are single-peak functions and F8–F10 are multi-peak functions, and Table 2
shows the CEC2017 test functions. To verify the superior performance of the IOOA, Golden
Jackal Optimization (GJO) [22], Subtraction-Average-Based Optimizer (SABO) [23], Sand
Cat Swarm Optimization (SCSO) [24], Pelican Optimization Algorithm (POA) [25], Sine
Cosine Algorithm (SCA) [26] and Osprey Optimization Algorithm (OOA) [9] are compared
with the IOOA. Table 3 demonstrates each algorithm’s parameter settings.

Table 1. Benchmark functions.

Function Range Min

F1(Sphere) [−100, 100] 0
F2(Schwefel 2.22) [−10, 10] 0
F3(Schwefel 1.2) [−100, 100] 0

F4(Schwefel 2.21) [−100, 100] 0
F5(Rosenbrock) [−30, 30] 0

F6(Step) [−100, 100] 0
F7(Quartic) [−1.28, 1.28] 0
F8(Ackley) [−32, 32] 0

F9(Penalized 1.1) [−50, 50] 0
F10(Penalized 1.2) [−50, 50] 0

Table 2. CEC2017 test functions.

Function Range Min

F11(CEC-1) [−100, 100] 100
F12(CEC-3) [−100, 100] 300
F13(CEC-4) [−100, 100] 400
F14(CEC-8) [−100, 100] 800
F15(CEC-11) [−100, 100] 1100
F16(CEC-12) [−100, 100] 1200
F17(CEC-13) [−100, 100] 1300
F18(CEC-15) [−100, 100] 1500
F19(CEC-19) [−100, 100] 1900
F20(CEC-22) [−100, 100] 2200
F21(CEC-25) [−100, 100] 2500
F22(CEC-26) [−100, 100] 2600
F23(CEC-28) [−100, 100] 2800
F24(CEC-29) [−100, 100] 2900
F25(CEC-30) [−100, 100] 3000

Table 3. Parameter settings.

Algorithm Parameters

IOOA r ∈
[
0, 1
]
, I = 1 or 2, w ∈

[
0, 1
]

GJO c1 = 1.5, r ∈
[
0, 1
]
, µ ∈ [0, 1], v ∈

[
0, 1
]
, β = 1.5

SABO v = 1 or 2, r ∈
[
0, 1
]

SCSO sM = 2
POA I = 1 or 2, R = 0.2
SCA a = 2, r2 ∈ [0, 2π], r3 ∈

[
0, 2
]
, r4 ∈

[
0, 1
]

OOA r ∈
[
0, 1
]
, I = 1 or 2
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4.2. Convergence Curve Comparison Analysis

The convergence curves clearly show the convergence accuracy and speed of each
algorithm and the algorithms’ performance in jumping out of the local extremes. In order to
ensure the experimental fairness, the algorithms’ population size is set to 30, the maximum
iterations is 1000, the dimension is 30, and each algorithm is run independently 30 times
in order to avoid chance. Figure 3 gives the 10 convergence curves of the IOOA with
the other six optimization algorithms corresponding to the test functions F1−F10. In the
figure, the horizontal coordinate represents iterations, the vertical coordinate represents the
functions’ average fitness value, and the convergence curve represents the average fitness
value searched by the algorithm at the current iterations.
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Figure 3. Benchmark test function convergence curves.

From Figure 3a–g, it can be seen that the IOOA has better optimization accuracy and
convergence speed compared to the other six algorithms for single-peaked functions. When
solving F1−F4, the IOOA improves the optimization accuracy by about 260 magnitude
orders compared to the SCA, and by about 200 magnitude orders compared to the GJO.
When solving F1 and F3, the IOOA’s optimization accuracy is improved by about 100
magnitude orders compared to the SCSO and POA, and the optimal value is found in about
120 iterations. When solving F2 and F4, the IOOA’s optimization accuracy is improved
by about 200 orders of magnitude compared to SCSO and POA, and the optimal value
can be found in about 250 iterations. For F1−F4, although the optimization accuracy of
the IOOA is the same as the OOA, the convergence speed of the IOOA is faster than the
OOA, which is a significant advantage. When solving F5 and F6, the IOOA has the ability
to significantly leap out of the local optima, and the IOOA’s optimization accuracy is better
compared to the other six algorithms.

From Figure 3h–j, for F8, the IOOA converges faster compared to the SABO and SCSO,
and has higher optimization accuracy compared to the GJO, POA, SCA and OOA. For F9,
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the IOOA has significantly better optimization accuracy than the other six algorithms and
is less likely to fall into local optima. For F10, the IOOA has a significant advantage in
terms of higher search accuracy and faster convergence.

In summary, the IOOA has better convergence speed and optimization accuracy when
solving the benchmark test functions. It can effectively prevent falling into local optima,
and the optimization performance improves significantly, which illustrates the IOOA’s
effectiveness and superiority.

4.3. Optimization Accuracy Comparison

In this section, the IOOA is selected to be tested against the other six comparison
algorithms for optimization of the 10 benchmark functions in Table 1 when the dimensions
are 30 or 50 or 100. Each algorithm’s population size is set to 30, the maximum number
of iterations is 1000, and each algorithm is run independently 30 times. This paper selects
the mean and standard deviation of the algorithm optimization as the evaluation metrics.
The mean value reflects the algorithm optimization accuracy, and the standard deviation
reflects the algorithm optimization stability. At the same time, this paper performs the
Friedman test. Each algorithm’s results are ranked and algorithms with the same result are
given an average ranking. In Tables 4–6, Rank-Count is the sum rankings, Ave-Rank is the
average rankings, and Overall-Rank is the final ranking on the benchmark function.

Table 4. Benchmark function optimization results (D = 30).

Function Index GJO SABO SCSO POA SCA OOA IOOA

F1
Mean 2.51 × 10−111 0 4.52 × 10−229 2.98 × 10−207 1.81 × 10−2 0 0

Std 1.21 × 10−110 0 0 0 6.91 × 10−2 0 0
Rank 6 2 4 5 7 2 2

F2
Mean 1.52 × 10−65 6.44 × 10−224 7.29 × 10−119 2.52 × 10−108 9.54 × 10−6 0 0

Std 3.87 × 10−65 0 3.97 × 10−118 1.11 × 10−107 1.42 × 10−5 0 0
Rank 6 3 4 5 7 1.5 1.5

F3
Mean 1.45 × 10−37 3.62 × 10−87 2.21 × 10−197 1.21 × 10−211 3.77 × 103 0 0

Std 5.98 × 10−37 1.80 × 10−86 0 0 2.63 × 103 0 0
Rank 6 5 4 3 7 1.5 1.5

F4
Mean 4.21 × 10−33 1.61 × 10−155 2.28 × 10−101 5.38 × 10−105 2.38 × 101 0 0

Std 1.11 × 10−32 2.93 × 10−155 6.06 × 10−101 2.91 × 10−104 1.12 × 101 0 0
Rank 6 3 5 4 7 1.5 1.5

F5
Mean 2.78 × 101 2.82 × 101 2.80 × 101 2.76 × 101 9.38 × 10−2 7.18 × 10−3 2.53 × 10−10

Std 7.46 × 10−1 5.54 × 10−1 6.99 × 10−1 9.49 × 10−1 3.52 × 103 2.37 × 10−2 7.74 × 10−10

Rank 4 6 5 3 7 2 1

F6
Mean 2.62 1.97 1.64 2.59 4.55 7.00 × 10−8 2.89 × 10−14

Std 4.81 × 10−1 5.22 × 10−1 5.38 × 10−1 5.41 × 10−1 4.92 × 10−1 2.24 × 10−7 7.38 × 10−14

Rank 5 4 3 6 7 2 1

F7
Mean 2.37 × 10−4 6.33 × 10−5 4.80 × 10−5 1.01 × 10−4 3.11 × 10−2 2.80 × 10−5 2.65 × 10−5

Std 1.37 × 10−4 4.88 × 10−5 5.28 × 10−5 6.72 × 10−5 3.15 × 10−2 2.31 × 10−5 2.12 × 10−5

Rank 6 4 3 5 7 2 1

F8
Mean 4.23 × 10−15 4.44 × 10−16 4.44 × 10−16 3.05 × 103 1.08 × 101 4.00 × 10−15 4.44 × 10−16

Std 9.01 × 10−16 0 0 1.60 × 10−15 9.57 0 0
Rank 6 2 2 4 7 5 2

F9
Mean 2.18 × 10−1 1.31 × 10−1 7.53 × 10−2 1.70 × 10−1 2.31 1.26 × 10−13 1.49 × 10−14

Std 1.19 × 10−1 5.20 × 10−2 4.13 × 10−2 5.51 × 10−2 2.65 3.36 × 10−13 7.61 × 10−14

Rank 6 4 3 5 7 1 2

F10
Mean 1.66 2.76 2.31 2.74 1.50 × 103 7.33 × 10−4 2.00 × 10−11

Std 2.41 × 10−1 4.83 × 10−1 3.87 × 10−1 3.57 × 10−1 7.70 × 103 2.79 × 10−3 8.89 × 10−11

Rank 3 6 4 5 7 2 1
Rank-Count 54 39 37 45 70 20.5 14.5

Ave-Rank 5.4 3.9 3.7 4.5 7.0 2.05 1.45
Overall-Rank 6 4 3 5 7 2 1
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Table 4 represents the test results for dimension 30, where the IOOA achieves the
theoretically optimal solution when solving F1−F4, and the mean and standard deviation
are both 0. Although the theoretical optimal solution is not achieved for F5−F10, the
results are better than other algorithms, with the smallest mean and standard deviation,
which indicates that the IOOA has good optimization accuracy and stability. Meanwhile, in
Table 4, the Friedman test results show that the IOOA has the highest Ave-Rank and ranks
first in Overall-Rank.

From Tables 5 and 6, at dimension 50, the optimization accuracy of the IOOA for
F6 and F9 is reduced compared to 30 dimensions, but it is still optimal compared with
other algorithms. When solving other functions, it has almost no degradation in the
optimization accuracy. At dimension 100,the IOOA’s optimization accuracy decreases for
F5, F6 and F9, but it is still the best result, and on the rest of the functions, there is almost
no change in the optimization accuracy compared to 30 dimensions. The Friedman test
results in Tables 5 and 6 show that the IOOA is still ranked first. As the dimension increases,
the IOOA’s optimization performance does not degrade and the IOOA can solve some
multidimensionalization problems.

In summary, compared with the other six algorithms, the IOOA has better optimiza-
tion ability and stability when solving the benchmark test functions, and has obvious
advantages.

Table 5. Benchmark function optimization results (D = 50).

Function Index GJO SABO SCSO POA SCA OOA IOOA

F1
Mean 7.35 × 10−84 0 4.64 × 10−221 3.80 × 10−208 1.27 × 102 0 0

Std 2.31 × 10−83 0 0 0 3.27 × 102 0 0
Rank 6 2 4 5 7 2 2

F2
Mean 8.76 × 10−51 5.04 × 10−227 8.24 × 10−118 7.32 × 10−104 1.83 × 10−2 0 0

Std 2.96 × 10−50 0 2.24 × 10−117 4.01 × 10−103 6.62 × 10−2 0 0
Rank 6 3 4 5 7 1.5 1.5

F3
Mean 2.27 × 10−22 3.69 × 10−42 8.35 × 10−188 1.23 × 10−207 3.75 × 104 0 0

Std 1.15 × 10−21 2.02 × 10−41 0 0 1.26 × 104 0 0
Rank 6 5 4 3 7 1.5 1.5

F4
Mean 9.01 × 10−16 2.47 × 10−152 3.88 × 10−99 5.41 × 10−104 6.14 × 101 0 0

Std 4.93 × 10−15 5.36 × 10−152 2.02 × 10−98 2.83 × 10−103 7.05 0 0
Rank 6 3 5 4 7 1.5 1.5

F5
Mean 4.77 × 101 4.83 × 101 4.83 × 101 4.81 × 101 1.39 × 106 7.49 × 10−3 3.65 × 10−10

Std 8.02 × 10−1 4.54 × 10−1 5.94 × 10−1 6.91 × 10−1 1.99 × 106 1.94 × 10−2 1.95 × 10−9

Rank 3 5 6 4 7 2 1

F6
Mean 6.02 5.32 4.80 5.32 1.22 × 102 3.80 × 10−7 9.21 × 10−9

Std 6.71 × 10−1 6.25 × 10−1 9.31 × 10−1 8.00 × 10−1 3.48 × 102 6.76 × 10−7 2.39 × 10−8

Rank 6 4 3 5 7 2 1

F7
Mean 4.15 × 10−4 7.75 × 10−5 1.07 × 10−4 1.01 × 10−4 5.40 × 10−1 3.45 × 10−5 2.30 × 10−5

Std 5.57 × 10−4 5.95 × 10−5 1.04 × 10−4 6.65 × 10−5 7.46 × 10−1 2.91 × 10−5 1.98 × 10−5

Rank 6 3 4 5 7 2 1

F8
Mean 6.84 × 10−15 4.44 × 10−16 4.44 × 10−16 3.52 × 10−15 1.66 × 101 4.00 × 10−15 4.44 × 10−16

Std 1.45 × 10−15 0 0 1.23 × 10−15 7.26 0 0
Rank 6 2 2 4 7 5 2

F9
Mean 3.97 × 10−1 2.74 × 10−1 1.74 × 10−1 2.46 × 10−1 2.90 × 106 2.21 × 10−8 6.38 × 10−12

Std 8.69 × 10−2 6.44 × 10−2 7.45 × 10−2 5.77 × 10−2 5.50 × 106 5.08 × 10−8 1.74 × 10−11

Rank 6 5 3 4 7 2 1

F10
Mean 3.49 4.97 4.62 4.91 3.76 × 106 4.01 × 10−3 1.54 × 10−11

Std 2.27 × 10−1 2.94 × 10−2 1.64 × 10−1 2.28 × 10−1 6.55 × 106 1.61 × 10−2 6.77 × 10−11

Rank 3 6 4 5 7 2 1
Rank-Count 54 38 39 44 70 21.5 13.5

Ave-Rank 5.4 3.8 3.9 4.4 70 2.15 1.35
Overall-Rank 6 3 4 5 7 2 1
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Table 6. Benchmark function optimization results (D = 100).

Function Index GJO SABO SCSO POA SCA OOA IOOA

F1
Mean 3.27 × 10−60 0 1.66 × 10−213 1.33 × 10−208 5.42 × 103 0 0

Std 5.18 × 10−60 0 0 0 3.72 × 103 0 0
Rank 6 2 4 5 7 2 2

F2
Mean 4.55 × 10−37 1.83 × 10−231 4.06 × 10−106 2.53 × 10−111 2.43 0 0

Std 4.25 × 10−37 0 1.91 × 10−105 1.16 × 10−110 3.11 0 0
Rank 6 3 5 4 7 1.5 1.5

F3
Mean 2.63 × 10−4 1.17 × 10−17 2.39 × 10−183 1.00 × 10−204 2.12 × 105 0 0

Std 1.42 × 10−3 6.33 × 10−17 0 0 4.35 × 104 0 0
Rank 6 5 4 3 7 1.5 1.5

F4
Mean 1.22 7.42 × 10−148 1.76 × 10−97 1.94 × 10−105 8.55 × 101 0 0

Std 4.26 3.67 × 10−147 6.42 × 10−97 6.44 × 10−105 2.97 0 0
Rank 6 3 5 4 7 1.5 1.5

F5
Mean 9.80 × 101 9.85 × 101 9.85 × 101 9.83 × 101 6.34 × 107 2.42 × 10−1 8.46 × 10−9

Std 7.40 × 10−1 2.34 × 10−1 3.48 × 10−1 5.12 × 10−1 4.07 × 107 9.00 × 10−1 2.39 × 10−8

Rank 4 5 6 3 7 2 1

F6
Mean 1.71 × 101 1.47 × 101 1.31 × 101 1.37 × 101 5.20 × 103 1.10 × 10−4 6.64 × 10−8

Std 8.06 × 10−1 9.81 × 10−1 1.47 1.15 3.6 × 103 2.67 × 10−4 1.87 × 10−7

Rank 6 5 3 4 7 2 1

F7
Mean 4.63 × 10−4 7.21 × 10−5 9.12 × 10−5 9.19 × 10−5 6.50 × 101 3.68 × 10−5 2.51 × 10−5

Std 2.99 × 10−4 5.51 × 10−5 9.41 × 10−5 5.67 × 10−5 4.38 × 101 2.81 × 10−5 2.66 × 10−5

Rank 6 3 4 5 7 2 1

F8
Mean 9.21 × 10−15 4.44 × 10−16 4.44 × 10−16 3.17 × 10−15 1.97 × 101 4.00 × 10−15 4.44 × 10−16

Std 2.91 × 10−15 0 0 1.53 × 10−15 3.28 0 0
Rank 6 2 2 4 7 5 2

F9 Mean 5.96 × 10−1 4.43 × 10−1 2.96 × 10−1 3.86 × 10−1 1.49 × 108 1.15 × 10−6 2.43 × 10−12

Std 5.14 × 10−2 8.76 × 10−2 5.84 × 10−2 5.69 × 10−2 1.02 × 108 1.42 × 10−6 1.03 × 10−11

Rank 6 5 3 4 7 2 1

F10
Mean 8.54 9.95 9.66 9.95 2.82 × 108 1.15 × 10−3 1.31 × 10−11

Std 2.78 × 10−1 7.07 × 10−3 9.90 × 10−2 6.18 × 10−3 1.98 × 108 3.38 × 10−3 4.05 × 10−11

Rank 3 6 4 5 7 2 1
Rank-Count 55 39 40 41 70 21.5 13.5

Ave-Rank 5.5 3.9 4.0 4.1 7.0 2.15 1.35
Overall-Rank 6 3 4 5 7 2 1

4.4. Wilcoxon Rank-Sum Test

In order to comprehensively assess the IOOA’s reliability and superiority, this paper
selects the Wilcoxon rank-sum test to further validate the significant difference in each
algorithm’s experimental results. This paper selects the IOOA’s results running on the
benchmark functions on three different dimensions. The IOOA performs the Wilcoxon
rank-sum test with six other algorithms and calculates the test results. The significance
level is 5%; when the p-value is less than 5%, it means that the difference between two
algorithms is significant, and otherwise, it is not. The experiment results are shown in
Table 7, where “NAN” shows that the algorithm has the same results as the IOOA, and
“+”, “−” and “=” indicate that the IOOA’s performance is superior, inferior and equal to
the comparison algorithms.

From Table 7, there is a significant difference between the IOOA and GJO, POA, SCA
for F1–F10 at dimensions 30, 50 and 100. For F1–F4, the difference between the IOOA and
OOA was not significant. For F1 and F8, the difference between the IOOA and SABO was
not significant. For F8, the variability between the IOOA and SCSO is not significant. In
general, the IOOA has significant advantages over other algorithms, further confirming
statistically the IOOA’s validity and reliability.
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Table 7. Wilcoxon rank-sum test results.

dim Function GJO SABO SCSO POA SCA OOA

D = 30

F1 1.21 × 10−12 NAN 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 NAN
F2 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 NAN
F3 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 NAN
F4 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 NAN
F5 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 1.96 × 10−11

F6 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.25 × 10−6

F7 2.61 × 10−10 3.37 × 10−4 1.91 × 10−3 1.86 × 10−6 3.02 × 10−11 7.62 × 10−3

F8 4.16 × 10−14 NAN NAN 5.36 × 10−9 1.21 × 10−12 1.69 × 10−14

F9 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.21 × 10−3

F10 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 7.41 × 10−4

+/=/− 10/0/0 8/2/0 9/1/0 10/0/0 10/0/0 6/4/0

D = 50

F1 1.21 × 10−12 NAN 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 NAN
F2 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 NAN
F3 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 NAN
F4 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 NAN
F5 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 2.80 × 10−11

F6 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 2.56 × 10−8

F7 4.50 × 10−11 4.74 × 10−6 7.22 × 10−6 5.09 × 10−8 3.02 × 10−11 8.24 × 10−2

F8 1.55 × 10−13 NAN NAN 1.97 × 10−11 1.21 × 10−12 1.69 × 10−14

F9 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 7.38 × 10−11

F10 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 5.38 × 10−11

+/=/− 10/0/0 8/2/0 9/1/0 10/0/0 10/0/0 6/4/0

D = 100

F1 1.21 × 10−12 NAN 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 NAN
F2 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 NAN
F3 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 NAN
F4 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 NAN
F5 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 2.80 × 10−11

F6 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.22 × 10−11

F7 4.50 × 10−11 4.86 × 10−3 3.51 × 10−2 2.28 × 10−5 3.02 × 10−11 3.92 × 10−2

F8 2.54 × 10−13 NAN NAN 1.47 × 10−9 1.21 × 10−12 1.69 × 10−14

F9 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 2.92 × 10−11

F10 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 2.40 × 10−11

+/=/− 10/0/0 8/2/0 9/1/0 10/0/0 10/0/0 6/4/0

4.5. The IOOA Solves CEC2017 Test Functions

In order to further verify the IOOA’s superiority and robustness and improve the
test results’ reliability, the IOOA is tested with the GJO, SABO, SCSO, POA, SCA and
OOA for optimization searching for the 15 CEC2017 test functions selected in Table 2.
The experimental parameters set the population size to 30, the maximum iterations to
1000, the dimension to 30, and each algorithm is run independently 30 times. The specific
optimization results are shown in Table 8.

The high complexity of the IEEE CEC2017 test functions makes it difficult to search for
the objective functions’ optimal value, which can only be compared with other algorithms
to find the relative optimal value. From Table 8, the IOOA achieves the relative optimal
average for F11, F13–F25, and for F12, although it is inferior to the POA, it achieves the
optimal results except the POA, and has the best overall optimization-seeking effect, which
is more advantageous compared with other algorithms, showing that the IOOA has a
better optimization-seeking ability. This further verifies the IOOA’s superiority. The IOOA
achieved the minimum standard deviation for F11–F13 and F15–F25, which is slightly
smaller than the SCA for F14, and two algorithms have a small difference in numerical
results. Overall, the IOOA achieved the optimal standard deviation for most of the functions
with good overall stability, which further indicates that the IOOA has good robustness.
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Meanwhile, the Friedman test results in Table 8 shows that the IOOA has the highest
Ave-Rank and ranks first in Overall-Rank.

Table 8. CEC2017 test function optimization results.

Function Index GJO SABO SCSO POA SCA OOA IOOA

F11
Mean 1.23 × 1010 9.84 × 109 8.33 × 109 1.48 × 1010 1.88 × 1010 5.77 × 1010 4.51 × 103

Std 3.71 × 109 3.41 × 109 3.65 × 109 5.65 × 109 2.81 × 109 8.54 × 109 4.97 × 103

Rank 4 3 2 5 6 7 1

F12
Mean 5.59 × 104 5.45 × 104 5.05 × 104 3.28 × 104 7.30 × 104 9.01 × 104 3.58 × 104

Std 1.05 × 104 1.02 × 104 1.10 × 104 8.77 × 103 1.40 × 104 7.84 × 103 7.08 × 103

Rank 5 4 3 1 6 7 2

F13
Mean 1.26 × 103 1.75 × 103 9.93 × 102 1.93 × 103 2.45 × 103 1.52 × 104 4.93 × 102

Std 5.85 × 102 1.27 × 103 4.91 × 102 1.20 × 103 7.26 × 102 3.70 × 103 2.39 × 101

Rank 3 4 2 5 6 7 1

F14
Mean 9.75 × 102 1.08 × 103 9.97 × 102 9.87 × 102 1.09 × 103 1.14 × 103 9.66 × 102

Std 4.39 × 101 3.33 × 101 2.87 × 101 2.24 × 101 2.08 × 101 2.55 × 101 2.09 × 101

Rank 2 5 4 3 6 7 1

F15
Mean 3.05 × 103 4.88 × 103 2.72 × 103 2.07 × 103 3.12 × 103 9.08 × 103 1.27 × 103

Std 1.46 × 103 1.47 × 103 1.57 × 103 6.98 × 103 7.10 × 102 2.20 × 103 7.51 × 101

Rank 4 6 3 2 5 7 1

F16
Mean 1.09 × 109 5.87 × 108 1.92 × 108 1.34 × 109 2.13 × 109 1.26 × 1010 2.81 × 106

Std 9.31 × 108 4.48 × 108 3.29 × 108 1.28 × 109 6.06 × 108 3.60 × 109 4.53 × 106

Rank 4 3 2 5 6 7 1

F17
Mean 3.31 × 108 6.14 × 107 7.62 × 107 1.32 × 107 8.33 × 108 9.69 × 109 2.68 × 104

Std 7.49 × 108 1.31 × 108 1.50 × 108 3.39 × 107 4.26 × 108 4.45 × 109 1.85 × 104

Rank 5 4 3 2 6 7 1

F18
Mean 6.79 × 106 6.44 × 105 9.91 × 105 4.11 × 104 4.56 × 107 6.40 × 108 5.36 × 103

Std 1.36 × 107 9.01 × 105 3.63 × 106 2.42 × 104 2.62 × 107 6.56 × 108 4.69 × 103

Rank 5 4 3 2 6 7 1

F19
Mean 2.43 × 107 5.57 × 106 7.41 × 106 1.35 × 106 7.57 × 107 7.63 × 108 8.49 × 103

Std 4.30 × 107 6.98 × 106 2.66 × 107 1.79 × 106 3.28 × 107 5.72 × 108 6.78 × 103

Rank 5 4 3 2 6 7 1

F20
Mean 5.62 × 103 3.82 × 103 4.46 × 103 4.89 × 103 9.45 × 103 9.43 × 103 2.81 × 103

Std 2.39 × 103 1.55 × 103 1.79 × 103 1.65 × 103 1.70 × 103 9.31 × 102 6.74 × 102

Rank 5 2 3 4 7 6 1

F21
Mean 3.23 × 103 3.27 × 103 3.13 × 103 3.30 × 103 3.46 × 103 5.02 × 103 2.90 × 103

Std 1.52 × 102 1.37 × 102 1.04 × 102 1.86 × 102 1.78 × 102 4.53 × 102 1.64 × 101

Rank 3 5 2 4 6 7 1

F22
Mean 6.01 × 103 8.05 × 103 6.66 × 103 7.03 × 103 7.49 × 103 1.17 × 104 4.18 × 103

Std 6.70 × 102 8.29 × 102 1.00 × 103 1.52 × 103 1.92 × 103 1.05 × 103 3.33 × 102

Rank 2 6 3 4 5 7 1

F23
Mean 3.93 × 103 4.03 × 103 3.62 × 103 4.05 × 103 4.17 × 103 7.48 × 103 3.22 × 103

Std 3.30 × 102 3.72 × 102 1.75 × 102 4.00 × 102 2.41 × 102 8.04 × 102 1.93 × 101

Rank 3 5 2 4 6 7 1

F24
Mean 4.26 × 103 5.69 × 103 4.51 × 103 4.51 × 103 5.13 × 103 9.05 × 103 4.03 × 103

Std 2.61 × 102 5.74 × 102 3.60 × 102 3.17 × 102 2.53 × 102 3.59 × 103 2.45 × 102

Rank 2 6 4 3 5 7 1

F25
Mean 3.59 × 107 2.71 × 107 1.60 × 107 1.21 × 107 1.55 × 108 1.70 × 109 3.52 × 105

Std 2.84 × 107 2.36 × 107 1.45 × 107 7.33 × 106 7.10 × 107 1.26 × 109 8.52 × 105

Rank 5 4 3 2 6 7 1
Rank-Count 57 65 42 48 88 104 16

Ave-Rank 3.80 4.33 2.80 3.20 5.87 6.93 1.07
Overall-Rank 4 5 2 3 6 7 1

5. Engineering Design Problem

In order to further validate the IOOA’s feasibility and effectiveness, this paper selects
the engineering optimization problem of three-bar truss design and compares the IOOA
with the other six optimization algorithms in Section 5 for validation.
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The purpose of the three-bar truss design problem is to minimize the volume of
the three-rod truss by adjusting the cross-sectional area (x1, x2) and to make the bearing
capacity of each truss (σ) satisfy the constraint conditions. Its structural design is shown in
Figure 4. Equation (17) shows a mathematical model of the problem.

min f (x) =
(

2
√

2x1 + x2

)
· L

g1(x) =
√

2x1 + x2√
2x2

1 + 2x1x2
P − σ ≤ 0

g2(x) =
x2√

2x2
1 + 2x1x2

P − σ ≤ 0

g3(x) =
1√

2x2 + x1
P − σ ≤ 0

0 ≤ x1, x2 ≤ 1

L = 100 cm, P = 2 kN/cm2, σ = 2 kN/cm2

(17)

L L

P P

L x1 x2 x3

x1=x3

Figure 4. A schematic model of three-bar truss.

Table 9 shows the results of solving the three-bar truss design problem. From Table 9,
the IOOA obtains the optimal value of 263.895849, and the volume of the three-bar truss
is minimized when the cross-sectional areas are 0.788764 and 0.407998, respectively. It
indicates that the IOOA has better optimization-seeking performance in solving the three-
bar truss design problem and has some advantages.

Table 9. Experimental results of different algorithms for solving the three-bar truss design problem.

Algorithm
Parameters

Best
x1 x2

GJO 0.792652 0.397171 263.913033
SABO 0.782390 0.427893 264.082722
SCSO 0.784455 0.420320 263.909287
POA 0.411249 0.411249 263.896682
SCA 0.796310 0.391495 264.379949
OOA 0.747933 0.537742 265.321646
IOOA 0.788764 0.407998 263.895849

6. Conclusions

Based on the OOA, this paper proposes an improved osprey optimization algorithm
(IOOA) with multi-strategy fusion.The IOOA introduces Fuch chaotic mapping to increase
the population diversity at the early stage of algorithm iteration; introduces an adaptive
weighting factor to improve the convergence speed and accuracy at the exploration stage
of the algorithm; incorporates Cauchy’s variational operator to prevent osprey individuals



Biomimetics 2024, 9, 670 15 of 16

from falling into the local optima at the algorithm’s exploitation stage; and finally incorpo-
rates the Warner mechanism of the sparrow search algorithm to coordinate the algorithm’s
local exploration and global search capability. The IOOA is verified to have better opti-
mization performance and stronger robustness by 10 benchmark test functions, Friedman
ranking test and Wilcoxon rank-sum test. Then, the IOOA’s superiority is further verified
by solving 15 CEC2017 test functions. Finally, the IOOA is applied to the three-bar truss
design problem to verify its applicability and reliability in solving practical engineering
problems. In the future, the IOOA can be further applied to other fields.
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9. Dehghani, M.; Trojovskỳ, P. Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering

optimization problems. Front. Mech. Eng. 2023, 8, 1126450. [CrossRef]
10. Yu, X.W.; Huang, L.P.; Liu, Y.; Zhang, K.; Li, P.; Li, Y. WSN node location based on beetle antennae search to improve the gray

wolf algorithm. Wirel. Netw. 2022, 28, 539–549. [CrossRef]
11. Yu, F.; Tong, L.; Xia, X.W. Adjustable driving force based particle swarm optimization algorithm. Inf. Sci. 2022, 609, 60–78.

[CrossRef]
12. Xiao, Y.N.; Sun, X.; Guo, Y.L.; Li, S.P.; Zhang, Y.P.; Wang, Y.W. An Improved Gorilla Troops Optimizer Based on Lens Opposition-

Based Learning and Adaptive β-Hill Climbing for Global Optimization. CMES-Comput. Model. Eng. Sci. 2022, 131, 815–850 .
[CrossRef]

13. Wang, Y.F.; Liao, R.H.; Liang, E.H.; Sun, J.W. Improved whale optimization algorithm based on siege mechanism. Control. Decis.
Mak. 2023, 38, 2773–2782.

14. Zhang, L.; Liu, S.; Gao, W.X.; Guo, Y.X. Elite Inverse Golden Sine Ocean Predator Algorithm. Comput. Eng. Sci. 2023, 45, 355–362.
15. Yue, X.F.; Zhang, H.B.; Yu, H.Y. A hybrid grasshopper optimization algorithm with invasive weed for global optimization. IEEE

Access 2020, 8, 5928–5960. [CrossRef]
16. Gu, W.J.; Yu, Y.G.; Hu, W. Artificial bee colony algorithmbased parameter estimation of fractional-order chaotic system with time

delay. IEEE/CAA J. Autom. Sin. 2017, 4, 107–113. [CrossRef]

http://doi.org/10.3390/app10145000
http://dx.doi.org/10.2112/JCR-SI107-056.1
http://dx.doi.org/10.35940/ijitee.A4809.119119
http://dx.doi.org/10.1007/s11227-022-04998-z
http://dx.doi.org/10.3389/fmech.2022.1126450
http://dx.doi.org/10.1007/s11276-021-02875-w
http://dx.doi.org/10.1016/j.ins.2022.07.067
http://dx.doi.org/10.32604/cmes.2022.019198
http://dx.doi.org/10.1109/ACCESS.2019.2963679
http://dx.doi.org/10.1109/JAS.2017.7510340


Biomimetics 2024, 9, 670 16 of 16

17. Lei, W.L.; Jia, K.; Zhang, X.; Lei, Y. Research on Chaotic Chimp Optimization Algorithm Based on Adaptive Tuning and Its
Optimization for Engineering Application. J. Sens. 2023, 2023, 5567629. [CrossRef]

18. Zhang, Y.; Liu, P.T. Research on reactive power optimization based on hybrid osprey optimization algorithm. Energies 2023,
16, 7101. [CrossRef]

19. Yuan, Y.L.; Yang, Q.K.; Ren, J.J.; Mu, X.K.; Wang, Z.X.; Shen, Q.L.; Zhao, W. Attack-defense strategy assisted osprey optimization
algorithm for PEMFC parameters identification. Renew. Energy 2024, 225, 120211. [CrossRef]

20. Chen, X.Y.; Zhang, M.J.; Wang, D.G. Improved Moby Dick Optimization Algorithm Based on Fuch Mapping and Applications.
Comput. Eng. Sci. 2024,46, 1482–1492 .

21. Xue, J.K.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control. Eng. 2020,
8, 22–34. [CrossRef]

22. Chopra, N.; Ansari, M.M. Golden jackal optimization: A novel nature-inspired optimizer for engineering applications. Expert
Syst. Appl. 2022, 198, 116924. [CrossRef]
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