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Abstract: Classifying and segmenting skin cancer represent pivotal objectives for automated diag-
nostic systems that utilize dermoscopy images. However, these tasks present significant challenges
due to the diverse shape variations of skin lesions and the inherently fuzzy nature of dermoscopy
images, including low contrast and the presence of artifacts. Given the robust correlation between
the classification of skin lesions and their segmentation, we propose that employing a combined
learning method holds the promise of considerably enhancing the performance of both tasks. In this
paper, we present a unified multi-task learning strategy that concurrently classifies abnormalities of
skin lesions and allows for the joint segmentation of lesion boundaries. This approach integrates an
optimization technique known as joint reverse learning, which fosters mutual enhancement through
extracting shared features and limiting task dominance across the two tasks. The effectiveness of
the proposed method was assessed using two publicly available datasets, ISIC 2016 and PH2, which
included melanoma and benign skin cancers. In contrast to the single-task learning strategy, which
solely focuses on either classification or segmentation, the experimental findings demonstrated that
the proposed network improves the diagnostic capability of skin tumor screening and analysis.
The proposed method achieves a significant segmentation performance on skin lesion boundaries,
with Dice Similarity Coefficients (DSC) of 89.48% and 88.81% on the ISIC 2016 and PH2 datasets,
respectively. Additionally, our multi-task learning approach enhances classification, increasing the F1
score from 78.26% (baseline ResNet50) to 82.07% on ISIC 2016 and from 82.38% to 85.50% on PH2.
This work showcases its potential applicability across varied clinical scenarios.

Keywords: skin cancer; segmentation; classification; multi-task learning; joint reverse optimization

1. Introduction

Skin cancer is one of the most commonly diagnosed malignancies in the world.
Melanoma is a type of malignant skin tumor that develops when melanocyte cells ex-
pand out of control. Malignant melanoma is the most aggressive and deadliest type of skin
tumor because it is more likely to invade adjacent tissues and has a higher mortality rate [1].
In dermatology, dermoscopy is commonly preferred over visual examination for assessing
suspicious skin areas, as it provides a non-invasive, magnified (10–20×) view that enhances
diagnostic accuracy. This imaging tool reveals deeper structures, such as vascular and
hemorrhagic areas, aiding in the early and precise identification of skin abnormalities. In
addition, dermatologists use diagnostic frameworks like the ABCDE rule [2,3] (Asymmetry,
Border irregularity, Color variation, Diameter, and Evolution), which is critical for guiding
melanoma detection.

Early detection and diagnosis of skin cancer is highly remediable and could reduce
the mortality rate. However, the field of medical imaging faces challenges in accurately
predicting diseases within the same organ due to the redundancy of surrounding tissue
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for different disease types (e.g., skin cancer). Due to the high visual similarity among
various types of skin lesions, a health examination may result in an inaccurate diagnosis [1].
In practice, dermatologists still face difficulties in improving skin cancer diagnosis. This
is due to the fact that manual assessment of dermoscopy images by experts is typically
difficult, error-prone, time-consuming, and subjective (i.e., various diagnostic conclusions
may result) [4,5]. As a result, the development of an automated and trustworthy computer-
aided diagnosis (CAD) system for detecting and diagnosing skin cancer has become an
important evaluation tool that offers dermatologists a second opinion, helping them make
better judgments with better reliability. In the CAD system, the segmentation of skin
tumor borders and the classification of skin malignancies are two crucial tasks. The lesions
segmentation task is usually utilized to detect the precise location of the skin cancer, while
the disease prediction task aims to distinguish the disease types. However, segmentation
algorithms face challenges due to the complex nature of dermoscopy images, which exhibit
large variations in size, shape, texture, and color. Additionally, artifacts such as hair,
air bubbles, blood vessels, illumination issues, and ruler, sign, or ink markers further
complicate the segmentation process.

Although the recent advancements in deep learning are attracting considerable atten-
tion in the field of skin lesion prediction, the current approaches still have limitations. For
example, in a general approach proceeded as a single stage, the input dermoscopy images
are passed directly into the classification methods such as convolutional neural networks
(CNN), which may lead to less-than-optimal diagnosis [6,7]. As the decision-making pro-
cess for cancer categorization relies solely on the regions of skin lesions, the inclusion of
adjacent healthy tissues introduces redundant details and representations from various
skin lesion types, leading to a negative impact on the diagnosis performance. To address
this challenge, a prior lesion boundary segmentation stage is needed to improve abnormal-
ity recognition. Therefore, the most recent studies have been accomplished through two
distinct stages that involve the segmentation of skin lesions and the classification of cancer
types [5,8]. Despite that, such approaches still suffer from limitations. The learning of these
two processes (segmentation and classification) is conducted independently, which could
cause a loss of information due to the non-precise lesion segmentation. Also, there will be
difficulties in integrating the two-stage approaches into a unified clinical process because
they are implemented on disparate platforms. In recent investigations, there has been an
exploration into the multi-task learning concept, in which two tasks are simultaneously
learned within a single model [9,10]. However, such approaches are subject to certain
limitations. In practice, training both tasks of distinct objectives without incorporating any
regularization can lead to the dominance of one task over the other. This can result in a
degradation of the overall performance of the model.

To address these problems, this work presents a multi-task deep learning method
capable of jointly segmenting boundaries of skin lesions and differentiating between their
anomalies. The proposed approach facilitates mutual enhancement between the tasks of
segmentation and classification by developing a single multi-task learning strategy that
effectively regulates and optimizes their shared and distinct features. The results show
that the proposed approach has decreased inference time, reduced training duration, and
enhanced predictive accuracy. The proposed multi-task CAD system demonstrates reliable
results for skin lesion analysis and presents a second opinion that aids clinicians in their
decision-making process. Furthermore, the proposed joint multi-task approach is expected
to be feasible and applicable in clinical practices and can potentially be generalized to
different domains.

The main contributions of this study are three-fold. Firstly, this paper introduces a
unified multi-task learning method capable of jointly distinguishing between benign and
malignant skin cancers and segmenting boundaries of skin lesions. Secondly, we propose
a new optimization technique called joint reverse learning that facilitates mutual benefit
across the two tasks by incorporating their common features and preventing one task from
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dominating the other. Thirdly, this study validates the feasibility and generalizability of our
proposed joint multi-task learning method by testing it on an additional unseen dataset.

The goal of this research is to develop an integrated multi-task deep learning frame-
work capable of accurately performing both skin lesion segmentation and classification
within a single model, enhancing diagnostic precision and efficiency. Specifically, this
study aims to overcome segmentation and classification limitations in traditional CAD
systems through a joint reverse optimization technique and to validate the generalizability
capability of the proposed multi-task approach.

2. Related Works

Following the enormous success of using machine learning to solve a variety of
classification and clustering tasks in various fields, the past decade has witnessed many
developments of artificial intelligence (AI)-based methods for the diagnosis of different
medical diseases. We summarize the current skin lesion segmentation and diagnosis
methods in the following subsections and in Table 1.

2.1. AI-Based Segmentation Methods

In recent years, AI-driven segmentation techniques [11–13] have demonstrated signifi-
cant promise in assisting clinicians with the identification and diagnosis of skin tumors.
For instance, fully convolutional networks (FCNs) were widely employed for the segmen-
tation of skin lesions. For example, Yuan et al. [4] proposed a fully automatic framework
based on deep CNN, which utilized the Jaccard distance-based loss function to mitigate
the imbalance between the number of foreground and background pixels. Li et al. [14]
introduce a dense model for skin lesion segmentation, which leverages residual learning,
featuring dense deconvolutional layers, chained residual pooling, and hierarchical supervi-
sion. This architecture prioritizes dimension preservation, contextual feature fusion, and
refined predictions through an end-to-end training approach, eliminating the need for
prior knowledge or complex postprocessing. Al-masni et al. [15] proposed a full-resolution
convolutional network that learned the full-resolution features of each pixel, leading to
an improvement in the segmentation performance. Several researchers embedded the
attention mechanism into a fully convolutional network to make the network focus on
lesion areas. For instance, Xie et al. [16] proposed a CNN method configured to produce
high-resolution feature maps that effectively preserve spatial details. The incorporation of
spatial and channel-wise attention mechanisms in the model served to enhance represen-
tative features while mitigating the impact of noise. Similarly, Sun et al. [17] proposed a
Multi-Scale Contextual Attention Network (MSCA-Net), which could learn the multi-scale
contextual information for accurate skin lesion segmentation. Wu et al. [18] proposed an
adaptive dual attention module that integrated global context modeling with multi-scale
resolution fusion and spatial information weighting. The aim was to capture the continuity
of lesion boundaries, reduce redundancies, and enhance segmentation performance. Other
researchers studied skin lesion segmentation from different perspectives. For example,
Cao et al. [19] introduced an approach that incorporates a pyramid transformer inter-pixel
correlations module and a local neighborhood metric learning module within an encoder-
decoder network. Likewise, the study presented in [20] introduced a contextual multi-scale
network, which consistently integrates pyramid pooling and dilated convolution at each
resolution level of the encoder. This research also explored the impact of incorporating
test-time augmentation, named the inversion recovery scheme, during the evaluation phase.
Wu et al. [21] proposed a feature adaptive transformer network, which captured long-range
dependencies and global context information by employing an extra transformer encoder
branch. An interesting work conducted by Tschandl et al. [22] demonstrated transferring
encoder weights from a pre-trained network used for a classification task on images of
the same domain to be further trained for a binary segmentation task. This study ob-
served that the distinct sharing of the encoder may potentially contain useful information
for segmentation.
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In 2024, Zhu et al. [23] introduced a U-Net that integrated a Multilayer Perceptron
(MLP), referred to as double-spatial-shift MLP, to enhance connectivity between different
spatial locations for skin lesion segmentation. They appended an extra module to the top of
the encoder, named lighter external attention, with the aim of expanding the local receptive
field and capturing the boundary continuity of skin lesions. Li et al. [24] addressed the
challenges of blurred boundaries and the substantial semantic gap between the decoder and
encoder through the introduction of a dual aggregation transformer with dual attention.
The dual aggregation module is developed to establish a connection between the local
feature details of CNN and the long-range modeling ability of the transformer, aiming to
reduce the loss of semantic information. Additionally, the spatial attention mechanism is
employed to alleviate blurred boundaries by establishing pixel-level feature relations across
transformer blocks. Another study [25] also utilized a U-Net-based transformer for enhanc-
ing lesion edges. This was accomplished by incorporating an edge detection operator into
the difference convolution, a multi-scale local attention block, and a global transformer
block. Recently, other approaches for skin lesion segmentation have emerged, employing
semi-supervised learning with Generative Adversarial Networks (GAN) [26] and unsuper-
vised learning using an uncertainty self-learning network [27]. The latter method involved
generating Class Activation Maps (CAMs) as saliency maps, encompassing foreground
(skin lesion), background (normal tissue), and regions of uncertainty.

2.2. AI-Based Classification Methods

Machine learning-based skin lesion classification methods require extensive feature
extraction and selection to achieve robust performance. The selected features are used
as inputs to machine learning models, such as the support vector machine (SVM) [28]
and K-nearest neighbor (k-NN) [29], in order to classify skin diseases. Researchers have
widely used machine learning methods for skin lesion classification. For example, Hameed
et al. [30] employed two approaches for categorizing skin dermoscopy images. The first
approach involved a three-category classification task, distinguishing between healthy
skin and inflammatory and non-inflammatory diseases. The second approach expanded
the classification to six categories, including healthy skin, acne, eczema, psoriasis, benign
conditions, and malignant conditions. Various classifiers, namely decision tree (DT), SVM,
k-NN, and ensemble classifiers with different kernels, were utilized for both classification
tasks. The findings revealed that as the number of categories increased, the classification
accuracy decreased for all classifiers. Interestingly, the quadratic SVM outperformed
other classifiers, exhibiting the highest accuracy in both classification tasks. Furthermore,
Hameed et al. [31] developed a multi-class multi-level (MCML) model for the classification
of skin diseases into multiple categories. The MCML algorithm was implemented using two
different approaches: the conventional machine learning approach and the deep learning
approach. Notably, the MCML model demonstrated superior accuracy in classifying skin
diseases. Xie et al. [32] proposed a network ensemble model for a skin lesion classification.
The model integrated back propagation (BP) neural networks with fuzzy neural networks to
achieve accurate classification performance. Abbes et al. [33] proposed a CAD system based
on fuzzy decision ontology for melanoma detection in skin lesion images. After feature
extraction, the system used fuzzy decision rules and the k-NN method to classify lesion
images. Deep learning techniques have the capability to directly handle unprocessed image
data, eliminating the requirement for a preliminary feature preparation phase. However,
it is important to note that these methods came with increased computational costs [34].
For example, Ali et al. [35] proposed a deep convolutional neural network (DCNN) model
for skin lesion classification. The model achieved better classification accuracy, with less
computation time than transfer learning models like DenseNet, ResNet, AlexNet, VGG-16,
and MobileNet. Patil and Bellary [36] proposed a non-invasive stage classification CNN
model of melanoma skin cancer. The model utilized a similarity measure for text processing
(SMTP) as a loss function. In a recent systematic literature review conducted by [37], several
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federated learning and transfer learning models for the classification of both melanoma
and nonmelanoma skin cancers were explored.

2.3. Integrated AI-Based Methods

In [38], Mahbod et al. examined the effects of incorporating skin lesion segmentation
masks on the performance of dermoscopy image diagnosis. They suggested that employing
segmentation masks in a proper manner can substantially enhance the overall diagnosis
performance of skin cancers. Numerous techniques have been suggested for simultane-
ously segmenting and classifying melanoma skin cancers, falling into two main groups:
non-end-to-end and end-to-end approaches. In the former category, two distinct models are
often trained separately for segmentation and classification, with their predictions serving
as supplementary inputs for each other, facilitating the exchange of valuable information.
Most non-end-to-end approaches concentrate on leveraging segmentation outcomes to
improve classification performance [5,8]. For example, Dhivyaa et al. [39] used different
methods for segmenting the skin lesion and then classified the lesion using decision trees
and random forest algorithms. Balaji et al. [40] proposed a model for skin lesion classifica-
tion, which used a graph cut algorithm for skin lesion segmentation followed by a Naïve
Bayes classifier. Batista et al. [41] designed a model for skin lesion classification using
deep and active learning techniques. They considered two segmentation strategies: The
U-Net CNN model and the fully convolutional networks (FCN), which were manually
corrected by the specialist. Gonzalez-Dıaz [42] introduced DermaKNet, a CAD system for
automated skin lesion diagnosis. DermaKNet combined the expertise of dermatologists
with a CNN-based framework, by incorporating specialized computational blocks to model
discriminative properties of lesions. Kadirappa et al. [43] introduced an automated skin
lesion analysis method, which demonstrated high accuracy in segmentation using the
U-Net architecture with a Spatial Attention Block (SPAB) and achieved robust classification
through the fusion of global and local features. Xie et al. [44] investigated the interdepen-
dence between skin lesion segmentation and classification tasks, introducing the mutual
bootstrapping deep convolutional neural networks (MB-DCNN) model to address both
tasks. In MB-DCNN, the coarse segmentation task generated an initial lesion mask, serving
as prior knowledge to aid in classification. Concurrently, the localization of lesion maps
from the classification network contributes to refining the segmentation.

Conversely, the second category of approaches, referred to as end-to-end, utilized a
single model for simultaneous skin lesion classification and segmentation [45,46]. This is
accomplished through the implementation of multi-task learning, where shared param-
eters for feature extraction are employed, and distinct cost functions are integrated [47].
Consequently, these methods facilitated the sharing of useful information across various
learning tasks [9,10,48]. For example, Song et al. [49] proposed an end-to-end deep learning
framework that can perform skin lesion detection, segmentation, and classification tasks
simultaneously. Similarly, He et al. [50] presented multi-task learning (MTL-CNN) for
simultaneously segmenting and classifying skin cancers. In this approach, an auxiliary
task, edge prediction, is incorporated to enhance the model’s ability to learn robust skin
lesion boundaries. Additionally, several lesion area extraction (LAE) sub-modules were
utilized to eliminate background noise from classification features, leveraging segmentation
predictions. Meanwhile, Song et al. [51] developed a strategy to enhance the diagnosis of
skin lesions by reframing multi-task learning as a multi-objective optimization problem,
separating objectives from a Pareto efficiency perspective.

An emerging paradigm in biomedical diagnostics is the use of microwave reflectometry
imaging [52,53], which has recently gained attention for its integration with artificial
intelligence techniques for in-vivo skin cancer detection [54–56]. This approach addresses
the diagnostic limitations of dermoscopy imaging, particularly in cases where skin lesion
types exhibit high visual similarity. Microwave reflectometry measures the dielectric
properties of skin lesions across various frequencies and combines these data with image
analysis for improved diagnostic accuracy. By adopting this technology, dermatologists
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can effectively detect early signs of skin cancer and provide better patient care. Exploring
this innovative direction holds significant potential for future research.

Table 1. Summary of previous works in skin lesion analysis, categorized by task type: segmentation,
classification, or integrated.

Reference Task Technique Dataset TNR TPR Accuracy F1
Score IOU DSC

Yuan et al.,
2017 [4]

AI-based
Segmentation

Methods

Deep FCN with Jaccard
distance ISIC 2016 96.7 90.4 95.3 - 83.6 90.3

Li et al.,
2019 [14]

Dense deconvolutional
network

ISIC 2016 96.0 95.1 95.9 - 87.0 93.1
ISIC 2017 98.4 82.5 93.9 76.5 86.6

Al-masni et al.,
2018 [15]

Deep full-resolution
CNN ISIC 2017 96.69 85.40 94.03 - 77.11 87.08

Xie et al.,
2020 [16] High-resolution CNN

ISIC 2016 96.4 87.0 93.8
-

85.8 91.8
ISIC 2017 96.4 87.0 93.8 78.3 86.2

PH2 94.2 96.3 94.9 85.7 91.9

Wu et al.,
2021 [18]

CNN with adaptive
dual attention module

ISIC 2017 96.28 90.61 95.70 - 82.55 89.69
ISIC 2018 94.10 94.2 94.70 84.4 90.8

Cao et al.,
2023 [19]

Global and local
inter-pixel correlations

learning network
ISIC 2018 92.9 94.1 94.4 - 83.9 90.3

Al-masni et al.,
2021 [20]

Contextual multi-scale
multi-level network ISIC 2017 96.23 87.69 93.93 - 77.65 85.78

Wu et al.,
2022 [21]

Dual encoder with
CNNs and Transformer

ISIC 2016 96.02 92.59 96.04 - - 91.59
ISIC 2017 97.25 83.92 93.26 - - 85.00
ISIC 2018 96.99 91.00 95.78 - - 89.03

PH2 97.41 94.41 97.03 - - 94.40

Zhu et al.,
2024 [23]

Multi-spatial-shift
MLP-based U-Net

ISIC 2017 98.28 91.31 - - - 92.08
ISIC 2018 97.71 90.15 - - - 91.03

PH2 97.97 96.50 - - - 96.40

Li et al.,
2024 [27]

Uncertainty
self-learning network

ISIC 2017 93.7 88.6 90.5 - 68.5 80.5
ISIC 2018 87.8 90.9 88.5 - 68.3 80.8

PH2 93.1 93.6 92.4 - 80.1 88.9

Cheong et al.,
2021 [28]

AI-based
Classification

Methods

SVM with the radial
basis function ISIC 2016 98.49 96.68 97.58 - - -

Xie et al.,
2017 [32]

Back propagation and
fuzzy NN

Xanthous 93.75 95.00 94.17 - - -
Caucasians 95.00 83.33 91.11 - - -

Abbes et al.,
2021 [33]

KNN and Feature
extraction

Collected
Dataset 89.00 96.00 92.00 - - -

Patil and Bellary,
2022 [36]

CNN with similarity
measure UCO AYRNA 96.33 96.03 96.0 95.96 - -

Yu et al., 2017 [5]

Integrated
AI-based
Methods
(non-end-

to-end
approaches)

Very deep residual
networks ISIC 2016 94.1 50.7 85.5 - - -

Al-masni et al.,
2020 [8]

Full-resolution
convolutional network

ISIC 2016 71.40 81.80 81.79 82.59 - -
ISIC 2017 80.62 75.33 81.57 75.75 - -
ISIC 2018 87.16 81.00 89.28 81.28 - -

Dhivyaa et al.,
2020 [39]

Decision trees and
random forest ISIC 2017 99.0 87.7 97.3 - - -

Balaji et al.,
2020 [40]

Dynamic graph cut and
Naive Bayes classifier ISIC 2017 70.1 91.7 72.7 - - -

Kadirappa et al.,
2023 [43]

SASegNet and
EfficientNet B1

ISIC 2017 97.3 95.6 95.60 95.4 - -
ISIC 2018 95.4 92.5 92.73 92.8 - -
ISIC 2019 97.7 92.4 91.73 92.5 - -
ISIC 2020 92.4 90.6 91.19 90.7 - -

Xie et al.,
2020 [44]

Mutual bootstrapping
DCNN

ISIC 2017 93.0 78.6 90.4 - - -
PH2 93.8 95.0 94.0 - - -
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Table 1. Cont.

Reference Task Technique Dataset TNR TPR Accuracy F1
Score IOU DSC

Al-masni and
Al-Shamiri,

2023 [47]

Integrated
AI-based
Methods

(end-to-end
approaches)

nnU-Net and FC-NN

Segmentation
ISIC 2016 - - - - - 89.03

Classification
ISIC 2016 89.47 80.47 - 79.94 - -

Jin et al.,
2021 [48]

Cascade knowledge
diffusion

Segmentation
ISIC 2017 96.1 88.7 94.6 - 80.0 87.7
ISIC 2018 90.4 96.7 93.4 - 79.4 87.7

Classification
ISIC 2017 92.5 70.0 88.1 - - -
ISIC 2018 97.6 80.2 96.3 - - -

Song et al.,
2020 [49]

End-to-end multi-task
deep learning

Segmentation
ISIC 2017 98.5 88.8 95.6 - 84.9 91.1

Classification
ISIC 2016 72.3 99.6 89.1 - - -
ISIC 2017 73.1 97.7 81.3 - - -

He et al.,
2023 [50] MTL-CNN

Segmentation
ISIC 2016 97.5 93.8 97.2 - 87.9 93.4
ISIC 2017 98.3 88.6 95.5 - 81.5 88.7

Xiangya-Clinic 97.8 93.1 96.9 - 86.4 92.4
Classification

ISIC 2016 96.3 67.3 88.5 - - -
ISIC 2017 93.0 76.8 90.7 - - -

Xiangya-Clinic 86.6 97.0 95.9 - - -

Yang et al.,
2017 [9]

Multi-task deep learning

Segmentation
ISIC 2017 98.5 84.9 95.6 - 76.0 84.6

PH2 96.0 97.3 96.5 - 88.2 93.1
Classification

ISIC 2017 92.5 67.8 85.0 - - -
PH2 93.6 94.3 93.3 - - -

Chen et al.,
2018 [10]

MTL with feature
passing module

Segmentation
ISIC 2017 - - 94.4 - 78.7 86.8

Classification
ISIC 2017 - - 80.1 - - -

3. Materials and Methods
3.1. Dataset

This study employs two well-known and publicly accessible dermoscopy datasets to
evaluate the proposed joint multi-task segmentation and classification method. Specifically,
the first dataset (https://challenge.isic-archive.com/landing/2016/, accessed on 20 May
2023), known as the International Skin Imaging Collaboration (ISIC 2016), was initially
introduced during the “Skin Lesion Analysis toward Melanoma Detection” challenge
at the 2016 International Symposium on Biomedical Imaging (ISBI) [57]. The ISIC 2016
dataset is composed of 8-bit RGB images of varying dimensions, ranging from 540 × 722
to 2848 × 4288 pixels. This dataset contains a total of 1279 dermoscopy images, with
900 images designated for training and a separate 379 images reserved for testing. These
images contain pathological skin lesions, each of which is labeled with a specific disease
classification, namely benign nevi or melanoma. The ISIC 2016 dataset also includes
binary masks for segmentation that precisely outline the segmented tumors against the
neighboring normal tissue. Expert dermatologists have meticulously labeled and annotated
both skin diseases and segmented lesions.

The second dataset (https://www.fc.up.pt/addi/ph2%20database.html, accessed on
15 January 2024), known as PH2, was obtained from the Dermatology Service of Hospital
Pedro Hispano in Matosinhos, Portugal [58]. The PH2 dataset comprises 200 dermoscopy
images in RGB format, consisting of 160 benign images (80 atypical nevi and 80 common
nevi) and 40 melanoma images. All the images in this dataset have a consistent size of
768 × 560 pixels. These data also provide annotations for all segmented lesions. Notably,
in this study, we employed the PH2 dataset as an additional unseen testing set to assess the
feasibility and generalizability of our proposed multi-task learning approach. An overview
of both dataset distributions and their respective data splits is presented in Table 2. Figure 1

https://challenge.isic-archive.com/landing/2016/
https://www.fc.up.pt/addi/ph2%20database.html
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illustrates examples of dermoscopy images from both the ISIC 2016 and PH2 datasets,
along with their corresponding skin cancer classes, ground-truth segmentation masks, and
segmented lesion boundaries.

Table 2. Distribution of ISIC 2016 and PH2 skin cancers datasets. # and × represent the inclusion
and exclusion of the augmentation process.

Dataset Augmentation
Training Set Testing Set

Total
B * M * Total B M Total

ISIC 2016 × 727 173 900 304 75 379 1279
ISIC 2016 # 2908 2768 5676 304 75 379 6055

PH2 × − − − 160 40 200 200

* The abbreviations ‘B’ and ‘M’ denote the pathological categories of skin cancers, benign and melanoma, respectively.
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Figure 1. Paired instances of skin lesion dermoscopy images, along with their associated segmentation
masks, sourced from the ISIC 2016 dataset and the PH2 dataset. (a) Shows benign cases, and
(b) displays melanoma cases from both datasets. The third column in each case represents a visual
display of the segmented lesion boundaries.

3.2. Data Preparation

Proper data preparation is a crucial step in developing effective artificial intelligence
models. It includes normalization, input image scaling, augmentation, and addressing
the imbalanced classes. These steps allow the machine learning algorithms to learn from
preprocessed data effectively, enhancing the overall quality of the model. In order to
preserve consistency and foster stable convergence learning, we normalized each RGB
dermoscopy image in a channel-wise manner, scaling them between zero and unity. Stan-
dardizing input size is a critical requirement for training and testing Convolutional Neural
Network (CNN) models; therefore, we rescaled all images in ISIC 2016 and PH2 datasets
to a fixed size of 192 × 256 pixels using bilinear interpolation. This process maintains a
similar height-to-width aspect ratio and avoids any potential geometric distortion [4].

In order to effectively train deep learning networks, a larger number of training sam-
ples is required. To address this need, we applied various augmentation techniques to
enlarge our training dataset. A total of 16 rotation and flipping transformations were
applied to the original training images, including rotation with angles of 0◦, 45◦, 90◦,
135◦, 180◦, 225◦, 270◦, and 315◦, and four left-to-right and four up-to-down flipping oper-
ators. Notably, we observed an imbalanced distribution of data between the benign and
melanoma classes. To address this imbalance, we employed a varied amount of augmenta-
tion operations for each skin cancer class. More particularly, we enlarged the benign images
only four times using four rotations, while the melanoma images underwent augmentation
16 times. Table 2 shows the dataset sizes after applying these enlargement techniques. It is
worth noting that these augmentations were only applied to the training dataset.
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3.3. What Is Multi-Task Learning (MTL)?

In the field of machine learning, multi-tasking is defined as the capacity to execute
various learning tasks at the same time while exploiting commonalities and distinctions
among them. In other words, multi-task learning refers to a single shared model that is
capable of performing multiple tasks rather than individual models for each task. Multi-task
learning offers several benefits, including, in theory, decreased inference time, enhanced
predictive accuracy, increased data efficiency, and reduced training duration [59,60].

However, the quality of predictions may decrease when a network is required to make
multiple predictions. This can result in reduced multi-task performance, where smaller
independent networks may outperform a single shared network. This may be due to the
dominance of one task over others, resulting in suboptimal performance [60]. Consequently,
to overcome the aforementioned challenges and capitalize on the potential advantages of
multiple learning tasks, it is essential to optimize the multi-task learning approach. For
further details of multi-task learning methods and their applications to the medical imaging
domain, refer to these review studies [61,62].

Figure 2 clarifies the concept of multi-task learning and how it integrates two indi-
vidual models that perform different tasks of classification and segmentation (shown in
Figure 2a,b) into a single shared model, as shown in Figure 2c. Even though the multi-task
diagram illustrated in this Figure exhibits a shared encoder for both tasks, it poses the prob-
lem of one task potentially dominating the learning over the other. This simplistic strategy
is referred to as basic multi-task learning. In the following sections, we demonstrate how
our optimized multi-task learning methodology can overcome this shortcoming.
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3.4. Proposed Multi-Task Learning Model

The proposed single multi-task deep learning model presents a computer-aided detec-
tion and diagnosis system that is capable of simultaneously segmenting the contours of
skin tumors and differentiating between their abnormalities. Elaboration regarding the con-
stituents of the proposed joint multi-task network is explained in the following subsections.

3.4.1. Network Configuration

In this study, we adopt the architecture of the basic U-Net [63] as our backbone while
employing the parameters and number of layers and features outlined in nnU-Net [64].
As is well known, the U-Net configuration is designed to achieve pixel-wise predictions
since it contains two major pathways: encoder and decoder. An encoder pathway com-
prises convolutional and subsampling layers, which are responsible for extracting and
learning contextual features of the input image with reduced receptive fields. Conversely,
the decoder pathway includes upsampling and convolutional layers that refine the learned
features, enabling the retrieval of dense predictions matching the size of the input image. In
order to effectuate the multi-task learning model within the U-Net architecture, a straight-
forward approach involves connecting the learned features located at the last layer of the
encoder pathway with extra dense Fully Connected Neural Networks (FCNN), thereby
enabling predictions for other tasks, exemplified here by diagnosis outcomes (see Figure 2c).
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Consequently, the redesigned U-Net functions as a multi-task learning model with the
capability to jointly handle the classification and segmentation tasks.

In this study, we employ a U-Net architecture that consists of six convolution blocks
with corresponding feature kernels of 32, 64, 128, 256, 320, and 320, respectively, which is
similar to the nnU-Net framework. At each convolution block in the encoder, two subse-
quent convolution operations are applied with strides of 2 × 2 and 1 × 1 and filter sizes
of 3 × 3, respectively. These convolutional layers are subsequently followed by batch
normalization and Rectified Linear Unit (ReLU) activation. Here, we replace the subsam-
pling operations in the encoder pathway with stride convolutions, fostering additional
learning of pooling layers and enhancing the model’s overall stability [65]. An analogous
configuration has been utilized in the decoder pathway, with the only difference being
that all convolution operations have a stride of 1 × 1. Instead of utilizing the upsampling
operation, we employ the transpose convolution. A convolutional layer with a kernel size
of 1 × 1 and a stride of 1 × 1 is appended to the last layer of the encoder path, which
employs a multinomial logistic regression referred to as the softmax classifier. Further
elaboration of the network’s structure can be observed in Figure 3.
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Figure 3. Scheme illustration of the proposed unified joint multi-task learning model for classifying
skin abnormalities and segmenting their lesion boundaries.

The proposed method employs a supervised learning strategy, enabling the model to
learn and extract relevant features during training, thereby optimizing performance and
minimizing computational loss. We input color RGB images into the network, allowing it
to learn various features, which may include shading and irregular boundaries. The last
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layer in the segmentation path utilizes a softmax function to convert these learned features
into a binary mask that delineates the suspicious region.

3.4.2. Joint Reverse Learning

In practical implementation, simultaneously training tasks with distinct objectives and
lacking any form of regularization may lead to one task overpowering the other (i.e., the
dominance problem), ultimately causing a decline in diagnosis accuracy. Notably, our
joint multi-task learning model seeks to promote mutual benefits between the diagnosis
and segmentation processes. In particular, our focus is on developing a unified multi-task
learning method that effectively regulates and optimizes the shared and distinct features of
both tasks. This paper proposes three various solutions to address the above challenges
and effectively manage the potential dominance of one task over the others.

Initially, our suggested joint multi-task learning method shares all the encoder layers
for both segmentation and classification tasks, which is known as a parameter-sharing tech-
nique. Shared layers of the associated tasks diminish the likelihood of overfitting, allowing
the network to learn representations that adeptly address both tasks and collaboratively
enhance their performance. Second, we establish a linkage between the segmentation de-
coder output and the features of the classification path. This process serves as an attention
mechanism involving the multiplication of the segmented regions with feature represen-
tations of the classification module. This leads to a focus on anomaly representations
while ignoring normal and redundant features. Third, we develop a new optimization
mechanism via reversely associating the weights in the FC-NN layers of the classification
sub-module with the last resolution levels in the segmentation decoder pathway. The
sequential nature of network implementation presents a challenge in executing this reverse
connection. To overcome this, we conduct recurrent computations on parts of the network
associated with this reverse connection. Specifically, the last two resolution levels of the
decoder are computed twice: once for normal propagation to obtain the initial segmentation
output, which is directly connected to the classification sub-module (the second solution
scenario), and another computation based on the reverse connections from classification
into segmentation. This reverse connection enables the updating of segmentation neural
network weights based on prediction decisions, serving as further attention for segmenta-
tion improvement. These proposed solutions mitigate the issue of task dominance often
encountered in multi-task learning. Figure 3 shows the detailed network structure featuring
the aforementioned joint learning mechanisms.

Assume that Xk
L represents a feature map at a particular convolutional layer L with k

features. Then, the subsequent convolution layer can be computed as follows:

Xk
L = Φ

(
Wk

L ∗ Xk
L−1 + bk

L

)
, (1)

where Wk
L is the weights of convolutional kernels, bk

L is the bias applied to each layer, ‘∗’ is
the convolution operator, and Φ(·) is the ReLU activation function. Then, the reverse joint
connection from the classification sub-module to the segmentation decoder layers can be
expressed mathematically as follows:

Xk
L = Φ

(
Wk

L ∗
[

Xk
L−1·FCk

cls

]
+ bk

L

)
, (2)

where FCk
cls indicates the weights associated with the classification pathway, which corre-

sponds to the same number of features k. Here, ‘·’ refers to the dot product operation that
reflects the attention mechanism.

3.4.3. Attention Mechanism

In addition to the joint learning strategies mentioned above, we demonstrate that
integrating attention modules into the encoder path layers can lead to further improvement
in classification performance. In this study, we employ a Convolution Block Attention
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Module (CBAM) [66] in the last two encoder resolution layers and directly attach their
outputs to the classification sub-module, as presented in Figure 3.

The CBAM integrates two sequential attention maps, namely the spatial and channel
attention modules. The channel attention module bears a resemblance to the squeeze-and-
excitation attention mechanism [67]. It facilitates the declaration of inter-channel relation-
ships among processed feature maps and identifies the most significant map (i.e., feature
detector). In contrast, the spatial attention module leverages the inter-spatial relationship
of the feature maps to emphasize the most informative part (i.e., ‘where’ it is located). To
provide further clarification on the CBAM, a plot [68] has been illustrated in Figure 4.
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3.4.4. Implementation Details

Our joint multi-task learning network utilizes a supervised learning approach, wherein
labeled data are leveraged to optimize the network training process. Given that this work
involves the training of both classification and segmentation tasks at the same time, we have
employed separate loss functions in order to ensure effective training and convergence. For
the classification and segmentation tasks, we employ the binary cross-entropy loss (LBCE)
and the Dice loss function (LDice), respectively. In order to efficiently optimize the multi-task
issue, we maintain a balance in individual losses designed for each task [69]. To achieve
this, a loss weighting technique that takes the control factor λ into consideration is used.
When λ1 > λ2, the classification task experiences adverse effects, while λ1 < λ2 negatively
impacts the segmentation task. Empirical experiments have led us to set λ1 = λ2 = 0.5.
The cumulative loss of this network is calculated using the formula below.

LTotal = λ1·LDice + λ2·LBCE (3)

The Adam optimizer is utilized to optimize all hyper-parameters, with a batch size of
10 and an initial learning rate set to 0.003. The learning rate is then exponentially reduced
by a factor of 10 during the training process. Network training reaches convergence at
approximately the 50th epoch. The system implementation of this work was conducted
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using the Python programming language with the Keras and Tensorflow libraries on a PC
equipped with a Cuda-enabled NVIDIA GeForce RTX 3080 GPU and 64 GB RAM.

3.5. Evaluation Measures

We quantitatively evaluate the proposed joint multi-task learning method using vari-
ous measures, including true positive rate (TPR), also known as sensitivity, true negative
rate (TNR), known as specificity, and F1 score for the classification task. Due to the image-
level nature of this task, there is an imbalance between benign and malignant data in the
test set. Therefore, we have adapted weighted measurements to address this issue. We
also rely on the F1 score, which balances precision and recall and is especially suitable
for imbalanced datasets. Moreover, we have utilized the confusion matrix to present a
detailed distribution of the network predictions. In addition, we have employed distance
measures, including the Dice similarity coefficient (DSC), the Mathew correlation coeffi-
cient (MCC), and intersection-over-union (IOU), also known as the Jaccard index, for the
segmentation task.

4. Experimental Results

We evaluated this study using the original test set of the ISIC 2016 dataset, which
comprises 379 images, including 75 and 304 melanoma and benign instances, respectively.

4.1. Baseline Experiments

In this section, we performed baseline experiments by implementing widely used
deep learning methods: ResNet50 [70] for the classification task and U-Net [63] for the
segmentation task. It is worth noting that both tasks were trained separately using the
same training and testing sets. The achieved weighted F1 score for the classification model
was 78.28%, while the segmentation model produced a Dice score of 91.04%. Based on
these outcomes, we aimed to enhance the classification performance by incorporating the
segmentation knowledge through the proposed multi-task learning strategy.

4.2. Ablation Study

The main objective of this section is to conduct experimental investigations of various
ablation studies, with the aim of reinforcing the proposed multi-task learning method for
simultaneous classifying and segmenting skin lesions in dermoscopy images. The base
multi-task learning model that reflects the design architecture in Figure 2c is denoted as
‘MTL0’. In this experiment, no joint optimization was applied, and the features at the last
encoder layer were passed to the FC layers to accomplish the classification task, while no
changes were made to the decoder pathway. As a result of the absence of optimization in
this base experiment, MTL0 achieved a segmentation Dice score of 90.03% and an overall
prediction F1 value of 76.52%. These results revealed a decline in the segmentation and
classification performances compared to the individual baseline experiments of U-Net and
ResNet50 outlined in Table 3. This emphasizes how crucial it is to include regularization in
the multi-task learning strategy to avoid one task overpowering the other.

The goal of the MTL1 experiment was to promote mutual benefit between both
segmentation and classification tasks by merging representations from the last two blocks
in the decoder with the features extracted from the last layer at the encoder in MTL0, as
illustrated in Figure 3. MTL1, therefore, represented an optimization approach utilizing
patterns from the segmentation decoder to enhance the classification task. More specifically,
it incorporated additional lesion patterns into the FCNN classification layers while ignoring
the surrounding healthy features, leading to an enhancement of the melanoma classification,
achieving an F1 score of 77.96%. Nevertheless, the segmentation of lesion borders was
adversely affected by this method, leading to a 1.17% reduction in DSC.

In the next MTL2 experiment, we applied joint learning that reversely connected the
weights of the FC layers in the classification sub-module to the feature maps of the last two
segmentation decoder layers. This recurrent computation mechanism allowed the model to
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focus on the segmentation path based on the classification predictions. Additionally, in this
experiment, the last two encoder layers were fused with the classification sub-module. As
reported in Table 3, the results showed that MTL2 effectively optimized shared patterns of
both tasks, leading to an enhancement in the predicted F1 score performance from 77.96%
to 80.66%, surpassing the performance of the baseline ResNet50 model. The results also
showed that MTL2 enhanced the lesion boundary segmentation DSC performance from
88.86% to 89.15%.

Table 3. Experimental results of the proposed joint MTL model for diagnosis and segmentation of
skin cancers, alongside baseline studies employing individual ResNet50 and U-Net methods.

ID Experiment Details Param.
[M]

Classification Measurements Segmentation
Measurements

B M TPR TNR F1
score MCC IOU DSC

Cls Baseline Classification via
ResNet50 [70] 23.84

B 261 43

78.10 85.86 78.26 - - -85.86% 14.14%

M 40 35
53.33% 46.67%

Seg Baseline Segmentation via
U-Net [63] 10.71

B - -
- - - 87.06 84.62 91.04- -

M - -
- -

MTL0 Multi-Task Learning (Base) 10.76
B 274 30

78.10 90.13 76.52 86.10 83.15 90.0390.13% 9.87%

M 53 22
70.67% 29.33

MTL1
Integrating Segmentation

Decoder Path Features into
Classification Sub-Model

10.80
B 274 30

79.16 90.13 77.96 84.89 81.56 88.8690.13% 9.87%

M 49 26
65.33% 34.67%

MTL2
Joint Reverse Learning from

Classification to Segmentation 10.86
B 277 27

81.53 91.12 80.66 84.74 81.95 89.1591.12% 8.88%

M 43 32
57.33% 42.67%

MTL3 CBAM Attention Module 10.90
B 277 27

81.79 91.12 81.79 85.07 82.08 89.3791.12% 8.88%

M 42 33
56.0% 44.0%

MTL4 More Melanoma Data 10.90
B 248 56

80.74 81.58 82.07 85.46 82.46 89.4881.58% 18.42%

M 17 58
22.67% 77.33%

For further improvement, we incorporated the CBAM attention module into the
features obtained from the last two encoder layers in the third experiment (MTL3). Note that
this experiment also leveraged the advantages of the preceding study (MTL2). Our results
exhibited improvements in both tasks, achieving an F1 index of 81.00% for classification
and a DSC of 89.37% for segmentation.

In the last experiment (MTL4), we sought to address the issue of class imbalance
between two categories since the confusion matrices shown in Table 3 present decline pre-
dictions of melanoma images compared to the benign cases. The relatively lower accuracy
of melanoma predictions compared to benign cases is due to the high visual similarity
between the two classes. As presented in Section 3.2, the augmentation process alone
was insufficient in addressing this issue, even with a high augmentation factor of 16 for
melanoma cases. Thus, we increased the training data with an additional 404 melanoma
images from the validation and training sets of ISIC 2017 to achieve a more actual balanced
dataset. Importantly, we used the same testing dataset for evaluation. Our results demon-
strated improvements in both tasks, with a diagnosis F1 value of 82.07% and a segmentation
Dice score of 89.48%. Table 3 presents detailed results of all these experiments.

Figure 5 displays exemplary results of our joint MTL approach in comparison to
baseline networks (i.e., ResNet50 and U-Net). The Figure illustrates the anticipated dual
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outcomes of our approach: predicting dermoscopy images as either benign or melanoma
skin cancer and precisely segmenting lesion borders. Figure 6 highlights this observation
by presenting a boxplot that displays all segmentation measures for each individual test
image. The results showed a remarkable similarity between the proposed MTL method
and the U-Net model.
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proposed joint MTL approach, U-Net, and ground-truth mask, respectively.
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5. Discussion

This study investigated a multi-task learning (MTL) approach for simultaneous skin
lesion segmentation and cancer-type classification (benign or melanoma). Our proposed
joint reverse learning method aimed to ensure balanced learning between these tasks and
prevent the dominance of one over the other. This is achieved by optimizing network
training and facilitating self-attention across both tasks. Compared to single-task models,
our MTL model, equipped with an optimization method involving forward and backward
connections, achieved promising results in both tasks. It effectively discriminated between
skin lesion abnormalities and demonstrated reasonable segmentation performance. These
findings suggest the potential of this approach to improve the accuracy and efficiency of
skin lesion diagnosis.

Our results, as shown in Table 3, demonstrate significant improvement in skin cancer
classification, achieving a weighted F1 score of 82.07% compared to the baseline ResNet50’s
78.26%. This improvement comes with remarkable efficiency, as our proposed method uses
only 10.90 million training parameters compared to ResNet50’s 23.84 million. This suggests
that our MTL approach effectively extracts and learns robust features from segmented
tumors during multi-task training. While the DSC score for segmentation dropped slightly
compared to the U-Net baseline (89.48% vs. 91.04%), the overall improvement in lesion
analysis and diagnosis outweighs this trade-off.

Figure 5 demonstrates successful segmentation by both U-Net and our MTL net-
work, with Dice scores exceeding 84% for most tumors. However, incorrectly segmented
lesions (underestimated or overestimated) impacted metrics significantly compared to
ground-truth masks. Notably, our MTL method outperformed ResNet50 in classification,
particularly for melanomas (second and last rows). Importantly, both methods struggled
with the high visual similarity between benign and melanoma cases, as shown in the last
example for benign cases and the first example for melanoma cases in the same Figure,
highlighting the inherent challenge of accurate classification in these scenarios.

While the proposed MTL method achieves a slightly lower quantitative segmentation
score (89.48%) compared to U-Net (91.04%), it is crucial to consider the practical implica-
tions. Visual inspection of Figure 5 reveals that most segmented regions in our method fall
within acceptable ranges, suggesting high fidelity to ground-truth labels. Both approaches
successfully handle challenging lesions with low contrast or irregular boundaries. These
qualitative observations highlight that the slight reduction in score does not necessarily trans-
late to significantly worse segmentation in practice. Furthermore, Table 3, Figures 5 and 6
demonstrate the effectiveness of the joint learning scheme. It facilitates mutual benefit
between network sub-modules, effectively addressing dominance issues and leading to
improvements in both segmentation and classification tasks.

5.1. Evaluation of Additional PH2 Dataset

To assess generalizability and real-world applicability, we evaluated our MTL method
on the unseen PH2 dataset (200 dermoscopy images, 160 benign, 40 melanoma). Note
that the PH2 dataset was exclusively used for testing purposes. In other words, none of
the models (i.e., proposed MTL, U-Net, and ResNet50) were trained using this dataset.
Compared to ResNet50, our method achieved a significantly higher weighted F1 score
(85.50% vs. 82.38%), as presented in Table 4. Notably, it excelled in melanoma classification,
correctly identifying 34 out of 40 cases compared to the ResNet50 model, which correctly
classified only 16 melanoma images. These results demonstrate the practical potential of our
approach for accurate skin cancer diagnosis, particularly for challenging melanoma cases.

Figure 7 showcases segmentation and classification results from the PH2 dataset.
While both methods generally perform well, our MTL approach exhibits superior classi-
fication, particularly for melanomas. Notably, both methods struggled with the visually
similar cases in the last row, highlighting the inherent challenge of accurate classification in
such scenarios.
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Table 4. The performance of skin lesion segmentation and classification of the proposed multi-task
learning approach were compared to U-Net and ResNet50 models using the PH2 dataset.

Method
Classification Measurements Segmentation Measurements

B M TPR TNR F1 Score MCC IOU DSC

Baseline Classification via
ResNet50 [70]

B
152 8

84.0 95.0 82.38 - - -95.0% 5.0%

M
24 16

60.0% 40.0%

Baseline Segmentation via
U-Net [63]

B
- -

- - - 82.10 80.44 88.56
- -

M
- -
- -

Proposed Multi-Task Learning
B

135 25

84.50 84.38 85.50 82.27 81.0 88.81
84.38% 15.63%

M
6 34

15.0% 85.0%
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Figure 7. Exemplary results from our proposed approach using the PH2 dataset in comparison to
ResNet50 and U-Net. The left side corresponds to benign instances, while the right side indicates
melanoma skin lesions. The segmented boundaries in blue, cyan, and white represent our proposed
joint MTL approach, U-Net, and ground-truth mask, respectively.

Interestingly, on the PH2 dataset, our MTL method achieved slightly better segmen-
tation performance (88.81% DSC) compared to the U-Net baseline (88.56%), unlike the
ISIC 2016 results. This suggests that different datasets may respond differently to the MTL
approach for segmentation. Despite the small improvement, Figure 7 visually demonstrates
the effectiveness of our method in segmenting both benign and melanoma lesions on the
PH2 dataset, as supported by the boxplot in Figure 6 (right). These findings highlight the
potential of our method for generalizable segmentation, although further evaluation of
diverse datasets is warranted.
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5.2. Comparison Against Previous Works

We compared our MTL method against top entries from ISIC 2016 and other state-of-
the-art approaches in Table 5. Focusing on melanoma classification performance measured
by sensitivity (TPR) and specificity (TNR) for consistency, we found that our approach
outperformed most single-stage methods. Distinguishing melanomas from benign lesions
remained challenging in previous methods, with TPR scores ranging from 24.0% to 66.7%.
Notably, our MTL method achieved a significantly higher TPR of 77.3%, representing a
6.5% improvement over the collaborative learning (CL-DCNN) model [71]. While MTL
work in [47] achieved a higher TPR of 89.5%, its significantly lower TNR of 44.0% suggests
potential overfitting or bias towards melanoma detection. Our TNR of 81.6%, while
slightly lower than the best-performing method, indicates good generalizability to benign
cases. These results demonstrate the effectiveness of our joint MTL approach in balancing
sensitivity and specificity for melanoma recognition, offering promising potential for
improved skin lesion analysis and medical image classification.

Table 5. Performance comparison of our proposed MTL approach against other state-of-the-art
methods and top-5 methods on the ISIC 2016 skin lesion classification dataset. The TPR and TNR are
unweighted measures.

Method Number of Stages TPR (%) TNR (%)

CUMED [5] (1st) non-end-to-end two stages (learned independently) 50.7 94.1
GTDL (2nd) single stage (VGG-19) 57.3 87.2
BF-TB (3rd) single stage (N.A.) 32.0 96.1
ThrunLab (4th) single stage (Inception v3) 66.7 81.6
Jordan Yap (5th) single stage (N.A.) 24.0 99.3
ResNet50 [70] single stage 46.7 85.9
GP-CNN-DTEL [72] non-end-to-end two stages (learned independently) 32.0 99.7
MTL [47] end-to-end two stages (joint learning) 89.5 44.0
MTL-CNN [50] end-to-end two stages (joint learning) 67.3 96.3
Proposed MTL end-to-end two stages (joint learning) 77.3 81.6

6. Conclusions

In this study, we demonstrated that utilizing a joint multi-task learning approach
enhances the reliability of both skin tumor boundary segmentation and skin cancer diag-
nosis. The primary aim of this research was to suggest the feasibility of simultaneously
performing different tasks using a unified multi-task learning approach. To achieve this
goal, we introduced a method designed to regulate and optimize the network, facilitating
effective learning for both segmentation and diagnosis. Our comparative analysis revealed
that, although the segmentation performance of Multi-Task Learning (MTL) was slightly
below that of U-Net on the ISIC 2016 dataset, significant improvements were observed in
classification performance.

Despite these promising results, there is room for further advancement, particularly
in improving overall diagnostic performance and model generalizability. Limitations of
the current study include its focus on binary classification and the inherent imbalance
within the datasets. Future work will aim to expand the model to encompass multiple skin
cancer classes, providing a more comprehensive diagnostic tool. Additionally, we intend to
explore fairness learning approaches to mitigate potential biases arising from sample size
disparities and ensure a more equitable performance across all lesion types.
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