
Citation: Liao, W.; Jin, Y.; Wang, Z.;

Wang, X.; Xia, X. Maximizing Nash

Social Welfare Based on Greedy

Algorithm and Estimation of

Distribution Algorithm. Biomimetics

2024, 9, 652. https://doi.org/10.3390/

biomimetics9110652

Academic Editors: Heming Jia,

Laith Abualigah and Xuewen Xia

Received: 23 September 2024

Revised: 19 October 2024

Accepted: 22 October 2024

Published: 24 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomimetics

Article

Maximizing Nash Social Welfare Based on Greedy Algorithm
and Estimation of Distribution Algorithm
Weizhi Liao 1, Youzhen Jin 1,*, Zijia Wang 2,*, Xue Wang 3 and Xiaoyun Xia 1

1 School of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China;
liaowz@zjxu.edu.cn (W.L.); xiaxiaoyun@zjxu.edu.cn (X.X.)

2 School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China
3 School Artificial Intelligence, Zhejiang Sci‑Tech University, Hangzhou 310018, China;

wangxuezstu@163.com
* Correspondence: jinritian521@sina.com (Y.J.); zijiawang@gzhu.edu.cn (Z.W.)

Abstract: The Nash social welfare (NSW) problem is relevant not only to the economic domain but
also extends its applicability to the field of computer science. However, maximizing Nash social wel‑
fare is anAPX‑hard problem. In this study, we propose two approaches to enhance themaximization
of Nash social welfare. First, a general greedy algorithm (GA) capable of addressing the Nash social
welfare problem for both agents with identical and differing valuations was presented. It is proven
that the proposed algorithm aligns with the previous greedy algorithmwhen all agents possess iden‑
tical valuations. Second, an innovative method for solving the Nash social welfare problems using
evolutionary algorithms was developed. This approach integrates the Estimation of Distribution
Algorithms (EDAs) with neighborhood search techniques to improve the maximization process of
Nash social welfare. Finally, the proposed algorithms were implemented across a range of instances
with the objective of maximizing Nash social welfare. The experimental results indicate that the
approximation solutions derived from the Estimation of Distribution Algorithm outperform those
obtained via the greedy algorithm.

Keywords: Nash social welfare; greedy algorithm; estimation of distribution algorithm;
neighborhood search

1. Introduction
The fairness of the allocation of goods to agents is quantified by its Nash social wel‑

fare (NSW). Proposed by Nash for the bargaining problem, NSW serves as a unique ob‑
jective that satisfies a set of natural axioms [1]. In addition to the economic domain, the
equitable allocation of computing resources among users [2] and the scheduling of jobs in
heterogeneous parallel computing environments to minimize execution time variance are
also recognized as the Nash social welfare problem within the field of computer science.
However, it is well known that maximizing the Nash social welfare is APX‑hard. In this
paper, we investigate the challenge of allocating a set of indivisible goods to agents with
additive valuations in order to maximize Nash social welfare when agents possess either
differing or identical valuations for the same goods. We present two algorithms aimed at
maximizing Nash social welfare.

First, we introduce a general greedy algorithm designed to compute Nash social wel‑
fare based on two priority principles: the agent with lower valuations is prioritized in ob‑
taining goods. Furthermore, once an agent has been granted priority access to goods, those
unallocated goods that hold maximum value for that agent are allocated accordingly. Un‑
like the previous greedy algorithm, which is limited to addressing the Nash social welfare
problem for agents with identical valuations, the proposed method extends its applicabil‑
ity to situations involving agents with differing valuations.

Biomimetics 2024, 9, 652. https://doi.org/10.3390/biomimetics9110652 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics9110652
https://doi.org/10.3390/biomimetics9110652
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0000-0001-7922-3343
https://doi.org/10.3390/biomimetics9110652
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics9110652?type=check_update&version=1

Biomimetics 2024, 9, 652 2 of 19

Second, we investigate a novel approach to solving the Nash social welfare problem
using evolutionary algorithms [3–5]. Ourmethod integrates the Estimation of Distribution
Algorithm (EDA) with neighborhood search techniques to maximize Nash social welfare.
Firstly, we proposed an encoding scheme for the allocation of goods to agents. Secondly,
we introduce an algorithm for generating the initial population that guarantees each agent
receives at least one good. Thirdly, we define an assignment probability matrix that char‑
acterizes the likelihood of allocating goods to agents. This distribution probability is up‑
dated by selecting superior solutions, and new individuals are generated through sam‑
pling from the probability matrix. Furthermore, we demonstrate that improvements in
Nash social welfare can be achieved by exchanging and relocating goods among agents.
To enhance the local search capability of our algorithm, we presented four distinct neigh‑
borhood search strategies.

In order to evaluate the effectiveness of the proposed algorithm, we conducted three
sets of experiments. In the first set, both the greedy algorithm (GA) and the Estimation of
Distribution Algorithm (EDA) were employed to address ten NSW problems under condi‑
tions where agents possess identical valuations. The experimental results indicate that the
EDA outperforms the GA, with the approximate solution derived from the EDA exceeding
0.943 times that of the actual optimal solution. The second set examines the performance
of GAs and EDAs when agents have different valuations. The Estimation of Distribution
Algorithmwas executed ten times for eachNSW instance. The results demonstrate a signif‑
icant improvement in solutions with EDAs compared to GAs. Furthermore, the standard
deviation of outcomes obtained through EDAs is notably small, suggesting that this pro‑
posed method is both stable and effective. The third set of experiments investigated how
sensitive EDAs are to key parameters.

The remainder of this paper is organized as follows: Section 3 introduces the con‑
cepts and preliminary information necessary for understanding our work. In Section 4, we
present a greedy algorithm designed to maximize Nash social welfare in scenarios where
agents possess either differing valuations or identical valuations for the same goods. We
demonstrate that the previous greedy algorithm represents a specific instance of our pro‑
posed method when agents have identical valuations. In Section 5, we introduce an in‑
novative approach to maximizing Nash social welfare through an evolutionary algorithm.
Thismethod integrates an Estimation of DistributionAlgorithm (EDA)with neighborhood
search techniques to enhance Nash social welfare outcomes. A distribution probability
matrix is defined to characterize the assignment probability of goods among agents. The
assignment probabilities are updated by selecting superior solutions, fromwhich new indi‑
viduals are generated via sampling from the probability. Additionally, four neighborhood
search strategies are proposed to augment the local search capabilities of the algorithm. In
Section 6, both the proposed greedy algorithm and the EDA are applied to address mul‑
tiple NWS instances effectively. Finally, Section 7 concludes this paper with remarks on
future research directions.

2. Related Work
In this section, we review related work on the fair allocation of a set of indivisible

goods among agents with additive valuations for these goods. J. Garg et al. proposed
an algorithm to compute market equilibria that can be rounded to yield the first constant‑
factor approximation algorithm for maximizing the Nash social welfare when agents have
budget‑additive valuation functions [1]. S. Branze et al. demonstrated that classic mech‑
anisms exist that achieve outcomes closely approximating optimal Nash social welfare
across all instances while simultaneously ensuring individual fairness; the quality of such
mechanisms is measured by their price of anarchy [2]. A. Inoue et al. introduced a
polynomial‑time algorithm that maximizes the Nash social welfare within an additive er‑
ror εvmax, where ε is an arbitrary positive number and vmax represents themaximumutility
of a good [6]. However, evaluating the additive error in the output necessitates a nontriv‑
ial amount of effort. W. Li et al. developed a constant‑factor approximation algorithm

Biomimetics 2024, 9, 652 3 of 19

for Nash social welfare under submodular valuations, which constitutes one of the largest
natural classes allowing for constant‑factor approximations even in terms of additive wel‑
fare [7]. Nonetheless, it should be noted that the approximation ratio remains relatively
large. S. Barman et al. presented a polynomial‑time 288‑approximation algorithm aimed at
maximizing Nash social welfare under binary XOS valuations. For fair division instances
involving binary subadditive valuations and a fixed constant ε ∈ (0, 1], exponentiallymany
value queries are required to find an allocation yielding at least 1

n1−ε in terms of Nash social
welfare, where n denotes the number of agents [8]. However, the development of constant‑
factor approximation algorithms for p‑mean (p ≤ 1) under binary XOS valuations remains
an open problem. S. Barman et al. proposed the first sublinear approximation algorithm
aimed at maximizing Nash social welfare under XOS valuations, which are specified via
demand and XOS oracles. With access to both XOS and demand oracles for the valua‑
tions of n agents, one can compute in polynomial time an O(n53/54) approximation for the
Nash social welfare maximization problem [9]. H. Akrami et al. presented a polynomial‑
time algorithm that achieves a 1.0345 approximation for maximization of Nash social wel‑
fare in instances where all agents possess 2‑value additive valuations [10]. However, this
proposed algorithm is specifically applicable only to scenarios involving agents with 2‑
value additive valuations. Xiaowei Wu et al. investigated the fairness aspect of Nash
social welfare within budget‑feasible allocation problems. Their findings indicate that a
budget‑feasible allocation that maximizes NSW attains a ¼ approximation of EF1; further‑
more, this approximation ratio improves when item costs are relatively small compared to
each agent’s budget [11]. R. Cole et al. proposed a polynomial‑time algorithm that guar‑
antees a constant‑factor approximation of the geometric mean of the agent’s valuations
and proved that the developed algorithm achieves an approximation factor of no greater
than 2.889 [12]. J. Garg et al. presented two approximation algorithms which were named
SMatch and RepReMatch for asymmetric agentswith additive and submodular valuations,
respectively. These approaches achieve approximation factors O(n) and O(n·logn) for ad‑
ditive and submodular valuations. However, these existingmethods designed for the sym‑
metric NSW problem fail to extend even to the highly restricted case where agent weights
are either 1 or 2. Notably, S. Match does not provide a better guarantee in this case [13]. I.
Caragiannis et al. demonstrated that their method selects allocations that are envy‑free up
to one good compelling notion that becomes quite elusive when combined with economic
efficiency considerations. Their results indicate that maximizing Nash welfare guarantees
each of the n agents at least a fraction of 2/(1 +

√
4n− 3

)
of their maximum share guar‑

antee; furthermore, each agent receives at least a 0.618 fraction of their pairwise maximum
share guarantee [14]. S. Barman et al. developed two greedy algorithms aimed at optimiz‑
ingNash social welfare in two specific cases. The findings reveal that the greedy algorithm
for identical valuations offers a 1.061‑approximation guarantee when agents possess iden‑
tical valuations; additionally, an exact solution can be obtained in polynomial time using
the greedy algorithm for binary valuations [15]. However, scenarios involving agents with
differing valuations for the same goods remain unaddressed. P. Jain and R.Vaish provide
a systematic study of the computational complexity of maximizing NSW for many‑to‑one
matchings under two‑sided preferences [16]. W. Suksompong and N. Teh examined the
issue of fairly allocating indivisible goods to agents, where weights represent their entitle‑
ments, and they propose a specific version of maximum weighted Nash welfare that can
be implemented in polynomial time [17]. Y. Kawase et al. explored the characteristics of
fair allocations when agents have binary valuations and analyzed the computational com‑
plexity associated with finding a fair allocation of mixed goods based on the proximity
theorem [18]. S. Barman et al. presented a polynomial‑time approximation algorithm for
maximizingNash social welfare in coverage instances [19]. A. Psomas and P. Verma. inves‑
tigated the relationship between fairness and efficiency under a relaxation of truthfulness
known as non‑obvious manipulability [20]. S. Dai et al. examined the relation between
a maximum Nash Social Welfare allocation and two well‑adopted fairness properties and
presented an algorithm for computing a pairwise maximin share allocation for identical

Biomimetics 2024, 9, 652 4 of 19

variants [21]. G. Jugal et al. presented the first constant‑factor approximation algorithm
for the symmetric case under Rado valuations [22]. J. Garg and A. Murhekar employed
well‑known fairness notions of envy‑freeness up to one good (EF1) and equitability up
to one good (EQ1) in conjunction with Pareto optimality to solve the problem of fair and
efficient allocation of a set of indivisible goods to agents with additive valuations [23].

The paper most closely related to our work is that of reference [15], which proposes
two greedy algorithms aimed at maximizing the Nash social welfare (NSW) in two spe‑
cific cases: one where agents have identical valuations and another where agents pos‑
sess binary valuations. The algorithm named ALG‑IDENTICAL in reference [15] is em‑
ployed to address the NSW problem for scenarios involving agents with identical valu‑
ations. It has been demonstrated that the outcomes produced by ALG‑IDENTICAL are
at least 0.943 times that of the actual optimal solution. However, it is important to note
that ALG‑IDENTICAL is not applicable for solving the Nash social welfare problemwhen
agents have differing valuations.

The advantages of those methods discussed in the aforementioned literature stem
from their mathematical proof that the ratio of the approximate solution to the actual op‑
timal solution remains constant. However, these methods are often effective only for spe‑
cific Nash social welfare problems. In contrast to the existing approaches, evolutionary
algorithms exhibit characteristics of self‑learning and self‑adaptation, enabling them to ef‑
fectively address complex issues that the existing methods struggle to solve [24–26]. As a
type of evolutionary algorithm, the Estimation of Distribution Algorithm (EDA) employs
stochastic optimization techniques that explore potential solution spaces by constructing
and sampling explicit probabilisticmodels based onpromising candidate solutions [27–30].
Given that EDA utilizes a macro‑level evolution strategy grounded in search space explo‑
ration, it demonstrates enhanced global search capabilities and faster convergence rates.

3. Preliminaries
In this section, we presented the relevant concepts and symbols associated with the

Nash social welfare problem, followed by a formulation of the mathematical model for
this issue.

LetN = {0, 1, …, n− 1} represent a set of agents andM = {0, 1, …,m− 1} denote a set of
indivisible goods, wherem > n. Each agent i ∈N has an associated value v(i, j) for each unit
of goods j ∈ M. An allocation A is expressed by A ⊢ A0 ∪ A1 ∪… ∪ An−1, where A0, A1,
…, An−1 are the set of goods allocated to agents 0 through n − 1, respectively, as shown
in Equation (1). It follows that A0 ∪ A1 ∪ … ∪ An−1 = M. For any two distinct agents i,
k ∈ {0, 1, …, n − 1}; if i ̸= k, then we have Ai ∩ Ak = Ø.

A =

A0 =

[
j10, j20, . . . , jl1

0

]
A1 =

[
j11, j21, . . . , jl2

1

]
An−1 =

[
j1n−1, j2n−1, . . . , jln−1

n−1

] (1)

The valuations assigned to the agents are assumed to be additive. The valuation of an
agent i for Ai is denoted by Vi, and it is defined as follows:

Vi = ∑j∈Ai
v(i, j) (2)

Specifically, if Ai = Ø, then Vi = 0. The measure used to evaluate the quality of an
allocation is its Nash social welfare, which represents the optimal geometric mean of valu‑
ations. For a given allocation A, the Nash social welfare of A is denoted as NSW(A) and is
defined in Equation (3).

NSW(A)= (∏i∈N Vi)
1
n (3)

Biomimetics 2024, 9, 652 5 of 19

The objective of the Nash social welfare problem is to identify an allocation that max‑
imizes the geometric mean of agent valuations. This problem can be formally represented
by the following mathematical model:

max
(
∏i∈N Vi

) 1
n (4)

s.t. (1) A0, A1, …, An−1 ⊆M

(2) A0 ∪ A1 ∪… ∪ An−1 =M

(3) Ai ∩ Ak = Ø, where i, k ∈ N and i ̸= k

4. Greedy Algorithm for Maximizing Nash Social Welfare
Let A* be the Nash optimal solution. An allocation B is define as a 1/β approxima‑

tion (where 0 ≤ β ≤ 1) if NSW(B) ≥ β·NSW(A*) [15]. S. Barman et al. proposed a greedy
algorithm named ALG‑IDENTICAL, which aims to maximize Nash social welfare when
agents have identical valuations. The ALG‑IDENTICAL algorithm guarantees a 1.061 ap‑
proximation. However, it is important to note that the ALG‑IDENTICAL algorithm is not
applicable for solving the Nash social welfare problem in scenarios where agents have dif‑
fering valuations. In this section, we presented a general greedy algorithm designed to
maximize Nash social welfare, applicable in scenarios where agents possess either identi‑
cal or different valuations. The proposed greedy algorithm is named ALG‑GENERAL.

The allocation process of ALG‑GENERAL is shown in Algorithm 1, which can be
divided into twomain sub‑processes: the order‑first sub‑process to rank the value of goods
in descending order for each agent (line 1–3) and the allocate‑second sub‑process to allocate
goods to each agent (line 4–9).

First, the value of all goods of each agent is sorted in descending order. Then, the
second loop in Algorithm 1 (line 5–9) is employed to allocate goods to an agent. In each
iteration, the algorithm first finds the agent iwith the lowest Vi (line 6). Subsequently, the
goods that hold the highest value for the agent among the unassigned goods are identified
(line 7) and allocated accordingly (line 8).

It is evident that ALG‑GENERAL operates within polynomial‑time complexity.

Algorithm 1: Greedy Algorithm for Maximizing Nash Social Welfare (ALG‑GENERAL)

Biomimetics 2024, 9, x FOR PEER REVIEW 5 of 20

NSWሺA) = (∏ 𝑉ii∈N)
1
n (3)

The objective of the Nash social welfare problem is to identify an allocation that max-
imizes the geometric mean of agent valuations. This problem can be formally represented
by the following mathematical model:

maxሺ∏ 𝑉i∈N)1
n (4)

s.t. (1) A0, A1, …, An−1⊆M

(2) A0 ∪ A1 ∪ … ∪ An−1 = M

(3) Ai ∩ Ak = Ø, where i, k∈N and i ≠ k

4. Greedy Algorithm for Maximizing Nash Social Welfare
Let A* be the Nash optimal solution. An allocation B is define as a 1/β approximation

(where 0 ≤ β ≤ 1) if NSW(B) ≥ β·NSW(A*) [15]. S. Barman et al. proposed a greedy algorithm
named ALG-IDENTICAL, which aims to maximize Nash social welfare when agents have
identical valuations. The ALG-IDENTICAL algorithm guarantees a 1.061 approximation.
However, it is important to note that the ALG-IDENTICAL algorithm is not applicable for
solving the Nash social welfare problem in scenarios where agents have differing valua-
tions. In this section, we presented a general greedy algorithm designed to maximize Nash
social welfare, applicable in scenarios where agents possess either identical or different
valuations. The proposed greedy algorithm is named ALG-GENERAL.

The allocation process of ALG-GENERAL is shown in Algorithm 1, which can be di-
vided into two main sub-processes: the order-first sub-process to rank the value of goods
in descending order for each agent (line 1–3) and the allocate-second sub-process to allo-
cate goods to each agent (line 4–9).

First, the value of all goods of each agent is sorted in descending order. Then, the
second loop in Algorithm 1 (line 5–9) is employed to allocate goods to an agent. In each
iteration, the algorithm first finds the agent i with the lowest Vi (line 6). Subsequently, the
goods that hold the highest value for the agent among the unassigned goods are identified
(line 7) and allocated accordingly (line 8).

It is evident that ALG-GENERAL operates within polynomial-time complexity.

Algorithm 1: Greedy Algorithm for Maximizing Nash Social Welfare (ALG-GENERAL)
Input: An instance <N, M, V>
1: for k = 0 to n-1 do
2: Sort the goods in descending order of value for agent k, i.e.,
 v(k,j1k)≥ v(k,j2k) ≥…≥ v(k,jmk) > 0
 where { j1k, j2k,…, jmk } = M
3: end for
4: Set A←(Φ, Φ,…, Φ)
5: for l = 0 to m – 1 do
6: Set i← arg mink∈[n]

 v(Ak)

7: Set h← arg max
x∈[m] and ∄u∈[m] ji

x∈ Au

 v(I, ji
x)

8: Ai←Ai∪{jih}
9: end for
10: return A
Output: An allocation A

Next, an example is given to illustrate the operation of the proposed algorithm. Let
N = {X, Y, Z} represent a set of agents, and let M = {a, b, c, d, e, f, g, h} denote a set of
indivisible goods. The notation X-M = {a:3, b:8, c:11, d:10, e:1, f:5, g:4, h:6} represents the
value of each good to agent X. Each element in the set X-M reflects the value of each good
from the perspective of agent X. For instance, the notation a:3 signifies that the good a

Next, an example is given to illustrate the operation of the proposed algorithm. Let
N = {X, Y, Z} represent a set of agents, and let M = {a, b, c, d, e, f, g, h} denote a set of
indivisible goods. The notation X‑M = {a:3, b:8, c:11, d:10, e:1, f :5, g:4, h:6} represents the
value of each good to agent X. Each element in the set X‑M reflects the value of each good
from the perspective of agent X. For instance, the notation a:3 signifies that the good a
holds a value of 3 for agent X. Furthermore, the value of each good to agent Y and agent
Z are as follows: Y‑M = {a:2, b:10, c:11, d:9, e:3, f :6, g:5, h:8}; Z‑M = {a:5, b:5, c:7, d:13, e:2, f :8,

Biomimetics 2024, 9, 652 6 of 19

g:6, h:10}. According to the proposed algorithm, the solution process for the Nash social
welfare problem is outlined as follows:
(1) First, the value of all goods of each agent is sorted in descending order. The results

are as follows:

S‑X‑M = c:11→d:10→b:8→h:6→f :5→g:4→a:3→e:1

S‑Y‑M = c:11→b:10→d:9→h:8→f :6→g:5→e:3→a:2

S‑Z‑M = d:13→h:10→f :8→c:7→g:6→b:5→a:5→e:2

(2) We useX‑A,Y‑A, andZ‑A to store goods that agentX,Y, andZ have already acquired.
Initially, these sets are empty sets. Thus, VX = VY = VZ = 0. Consequently, this step
can randomly select an agent and assign a good to it. It is assumed that the selected
agent is X. Since all goods have not yet been allocated, the good c with the highest
value to X is selected for X. Thus, we have X‑A = {c}, Y‑A = Ø, and Z‑A = Ø.

(3) Since Y‑A = Ø, and Z‑A = Ø, we have VY = VZ = 0. Consequently, we must allocate
goods to either agent Y or agent Z. We may as well allocate goods to agent Y first in
this step. Since the good cwith the highest value to Y has already been assigned to X,
we select b for Y among the unselected goods. Therefore, we arrive at the following
allocations: X‑A = {c}, Y‑A = {b}, and Z‑A = Ø.

(4) Since only Z‑A is empty, we must allocate the good dwith the highest value to agent
Z in this step. Thus, we have X‑A = {c}, Y‑A = {b}, and Z‑A = {d}.

(5) It is clear that VX = 11, VY = 10, and VZ = 13. According to the proposed algorithm,
agent Y acquires the good h, which holds the highest value for Y among the unallo‑
cated goods. It follows that X‑A = {c}, Y‑A = {b, h}, and Z‑A = {d}.

(6) According to X‑A = {c}, Y‑A = {b, h}, and Z‑A = {d}, it follows that VX = 11, VY = 18, and
VZ = 13. Thus, agent X obtains the good f, which holds the highest value for X from
the unallocated goods. Therefore, we have X‑A = {c, f }, Y‑A = {b, h}, and Z‑A = {d}.

(7) SinceVX = 16,VY = 18, andVZ = 13, agentZ acquires the good gwhich holds the highest
value for Z from the unallocated goods. Thus, we obtain X‑A = {c, f }, Y‑A = {b, h}, and
Z‑A = {d, g}.

(8) According to X‑A = {c, f }, Y‑A = {b, h}, and Z‑A = {d, g}, we have VX = 16, VY = 18, and
VZ = 19. Since the value of VX is minimal, agent X acquires the good a. It follows that
X‑A = {c, f, a}, Y‑A = {b, h}, and Z‑A = {d, g}.

(9) In the final step, agent Y acquires the good e, which is the only unallocated good.
Consequently, we arrive at the final allocation results: X‑A = {c, f, a}, Y‑A = {b, h, e},
and Z‑A = {d, g}. In this step, all goods have been successfully allocated. The total
value of the goods acquired by agent X amounts to 19, while agent Y’s acquisitions
hold a value of 21; similarly, agent Z also receives goods valued at 19. The NSW is
equal to 19.64.
Finally, we demonstrate that the algorithm proposed in this paper is equivalent to the

ALG‑IDENTICAL algorithm when agents possess identical valuations.

Theorem 1. ALG‑GENERAL is equivalent to the ALG‑IDENTICAL algorithm when agents have
identical valuations.

Proof of Theorem 1. The function of Step 1 in ALG‑IDENTICAL is to sort the goods in de‑
scending order of value. Similarly, the function of the first loop in our algorithm
(lines 1–3) also involve ordering the goods in descending order of value for each agent. It is
evident thatwhen agents have identical valuations, the function performedby the first loop
in our algorithm is equivalent to those executed by Step 1 of ALG‑IDENTICAL. Step 6 (line
6) of our algorithm serves a purpose analogous to that of Step 4 inALG‑IDENTICAL,which
determines which agent has the lowest valuation. Therefore, we need to demonstrate that
Steps 7 and 8 (lines 7–8) in our algorithm are equivalent to Step 5 in ALG‑IDENTICAL.

Biomimetics 2024, 9, 652 7 of 19

Once this equivalence is established, we can subsequently prove that the two algorithms
are indeed equivalent.

It is evident that Step 5 in ALG‑IDENTICAL involves allocating a good jl to the agent
with the lowest valuations at iteration l, where the good jl represents the most valuable
goods at this iteration. We can conclude that the goods jhi in our algorithm correspond to
the good jl in ALG‑IDENTICALwhen agents possess identical valuations at iteration l. We
will demonstrate this conclusion through induction as follows:
(1) When l = 1, it indicates that all goods are unallocated prior to the first iteration. Con‑

sequently, the function of Step 7 (line 7) in our algorithm is designed to allocate the
most valuable goods jih to the agent with the lowest valuation. Conversely, Step 5
in ALG‑IDENTICAL aims to assign the most valuable good j1 to the agent with the
lowest valuation during the initial iteration. Therefore, when agents possess identical
valuations, both goods jih and j1 refer to the same goods.

(2) We assume that the function of Step 7 (line 7) in our algorithm is to allocate the
good jk to the agent with the lowest valuations at iteration k when agents have iden‑
tical valuations. Here, the good jk represents the most valuable goods among the
top k goods. Since these top k goods have already been allocated in the first k itera‑
tions, it follows that during iteration k + 1, when agents have identical valuations, the
(k + 1)th most valuable good is defined as the goods with maximum value among
those unallocated. Consequently, the function of Step 7 (line 7) in our algorithm
serves to allocate goods jk+1 to the agent with minimal valuations at iteration k + 1.
This function is equivalent to that described in Step 5 of ALG‑IDENTICAL.
Therefore, we conclude that our algorithm is equivalent to theALG‑IDENTICAL algo‑

rithmwhen agents have identical valuations. It is important to note that ALG‑IDENTICAL
represents merely a special case of our proposed algorithm. □

5. Estimation of Distribution Algorithm for Maximizing Nash Social Welfare
The Estimation of Distribution Algorithm (EDA) is a stochastic optimization tech‑

nique grounded in statistical principles. By sampling the search space and employing
statistical learning, EDA can effectively identify optimal search regions, subsequently gen‑
erating new high‑quality individuals. In this section, we propose a novel approach to ad‑
dress the Nash social welfare problem based on EDAs. An algorithm that integrates the
Estimation of Distribution Algorithm (EDA) with neighborhood search techniques to max‑
imize Nash social welfare was developed. The assignment of goods to agents is achieved
by updating and sampling from a probabilistic model. Furthermore, we demonstrate that
the condition for improving Nash social welfare can be enhanced through the exchange
and relocation of goods. To bolster the local search capability of our algorithm, we present
four distinct neighborhood search strategies.

5.1. Encoding for Individuals
Each individual corresponds to an allocation in our EDA algorithm. Let N = {0, 1, …,

n − 1} represent a set of agents andM = {0, 1, …, m − 1} denote a set of indivisible goods,
where m > n. The encoding of an individual is illustrated in Equation (1).

5.2. Population Initialization for EDA
In order to ensure that the initial population of EDA is diverse and that the Nash

social welfare (NSW) of any allocation is not equal to zero, our algorithm divides the ini‑
tialization process into two stages. Firstly, we select an agent from those who have never
received goods and randomly assign one unallocated good to this agent. This operation
is repeated until each agent has received one good. Since every agent possesses at least
one good, it follows that the NSW of the allocation cannot be zero. Secondly, we randomly
select an agent again and assign another unallocated item to them. This process continues
until all items are allocated. It is evident that the randomness inherent in this allocation

Biomimetics 2024, 9, 652 8 of 19

methodpromotes diversitywithin the population. We outline our population initialization
algorithm in Algorithm 2, where Psize is the size of the population of the EDA.

Algorithm 2: Population initialization for EDA

Biomimetics 2024, 9, x FOR PEER REVIEW 8 of 20

5.2. Population Initialization for EDA
In order to ensure that the initial population of EDA is diverse and that the Nash

social welfare (NSW) of any allocation is not equal to zero, our algorithm divides the ini-
tialization process into two stages. Firstly, we select an agent from those who have never
received goods and randomly assign one unallocated good to this agent. This operation is
repeated until each agent has received one good. Since every agent possesses at least one
good, it follows that the NSW of the allocation cannot be zero. Secondly, we randomly
select an agent again and assign another unallocated item to them. This process continues
until all items are allocated. It is evident that the randomness inherent in this allocation
method promotes diversity within the population. We outline our population initializa-
tion algorithm in Algorithm 2, where Psize is the size of the population of the EDA.

Algorithm 2: Population initialization for EDA
Input: N, M, Psize
1: Set pop←∅
2: for l = 1 to Psize do
3: Set M1←M
4: Set A←(Φ, Φ,…, Φ)
5: for k = 0 to m − 1 do
6: Randomly select a goods j from M1
7: Set M1←M1-{j}
8: Set AK←AK∪{j}
9: end for
10: while M1≠∅ do
11: Randomly select an agent i from N
12: Randomly select a goods j from M1
13: Set Ml←Ml-{j}
14: Set Ai←Ai∪{j}
15: end while
16: pop←pop∪A
17: end for
18: return pop
Output: initial population pop

5.3. Probability Model and Its Updating and Sampling
Let N = {0, 1, …, n − 1} represent a set of agents and M = {0, 1, …, m − 1} denote a set of

indivisible goods (m > n). We define the matrix ρ(g) presented in Equation (5) as the as-
signment probability model, where the dimensions of the matrix are n × m. The element
ρi,j(g) represents the probability of assigning good j to agent i at iteration g. Here, the var-
iable i is an element of the set N, while j belongs to the set M.

ρ൫g൯ = ρ0,0(g) ⋯ ρ0,m-1(g)
⋮ ⋱ ⋮

ρn-1,0(g) ⋯ ρn-1,m-1(g)
 (5)

To guarantee a uniform sampling of the solution space during the initial phase of the
proposed algorithm, we distribute the initial probability uniformly, as demonstrated in
Equation (6).

ρሺ0) = ൦1
n

⋯
1
n

⋮ ⋱ ⋮
1
n

⋯
1
n

൪ (6)

In order to enhance the suitability of the probability model for accurately represent-
ing the distribution of solution space and the evolutionary trends within the population,
this algorithm selects the top δ % elite individuals that demonstrate the highest Nash so-
cial welfare from the overall population to update the probability. The probability matrix
is updated in each iteration using Equation (7).

ρi,j
ሺg + 1) = ሺ1 - α)ρi,j൫g൯ + α

δ%·Psize
∑ Ii,j

k (g)δ%·Psize
k=1 (7)

5.3. Probability Model and Its Updating and Sampling
Let N = {0, 1, …, n − 1} represent a set of agents and M = {0, 1, …, m − 1} denote

a set of indivisible goods (m > n). We define the matrix ρ(g) presented in Equation (5) as
the assignment probability model, where the dimensions of the matrix are n × m. The
element ρi,j(g) represents the probability of assigning good j to agent i at iteration g. Here,
the variable i is an element of the set N, while j belongs to the setM.

ρ(g) =

 ρ0,0(g) · · · ρ0,m−1(g)
...

. . .
...

ρn−1,0(g) · · · ρn−1,m−1(g)

 (5)

To guarantee a uniform sampling of the solution space during the initial phase of the
proposed algorithm, we distribute the initial probability uniformly, as demonstrated in
Equation (6).

ρ(0) =

1
n · · · 1

n
...

. . .
...

1
n · · · 1

n

 (6)

In order to enhance the suitability of the probabilitymodel for accurately representing
the distribution of solution space and the evolutionary trends within the population, this
algorithm selects the top δ% elite individuals that demonstrate the highest Nash social
welfare from the overall population to update the probability. The probability matrix is
updated in each iteration using Equation (7).

ρi,j(g + 1) = (1−α)ρi,j(g) +
α

δ%Psize∑
δ%·Psize
k=1 Ik

i,j(g) (7)

Here, α ∈ (0,1) denotes a learning speed, and Psize represents the population size. The
value of Iki,j(g) indicates whether a good j is assigned to an agent i in the kth elite individ‑
ual. If a good j is assigned to an agent i, then we have Iki,j(g) = 1; otherwise, it holds that
Iki,j(g) = 0.

Ik
i,j(g) =

{
1 a good j is assigned to an agent i
0 otherwise

(8)

Biomimetics 2024, 9, 652 9 of 19

Here, k represents the kth individual in the elite population.
In the proposed algorithm, a new population is generated by sampling from the prob‑

ability model at each iteration. The process of generating a new individual is as follows:
An unallocated good is assigned to an agent through a roulette selection based on the as‑
signment probability matrix. This operation is repeated until all goods are allocated, re‑
sulting in a new allocation being generated. Consequently, we can obtain new individuals
through repeated sampling, thereby forming a new population for the next iteration.

5.4. Neighborhood Search Strategy
The global search capability of distribution estimation algorithms is robust; however,

their local search capability tends to be relatively limited. The neighborhood searchmethod
is a systematic approach employed within a specific domain to identify the optimal solu‑
tion through iterative stepwise refinement. To enhance the local search ability of the Es‑
timation of Distribution Algorithm (EDA), we employ a neighborhood search method to
improve an allocation. The Nash social welfare associated with an allocation can be im‑
proved through the exchange and movement of goods among agents. In this context, we
propose four neighborhood search strategies aimed at strengthening the algorithm’s local
search capacity by facilitating the exchange and relocation of goods between agents.

Let A = [A0, A1, …, An−1] be an allocation. The Nash social welfare of A is defined
as (∏i∈N Vi)

1
n . It is evident that a greater value of ∏i∈N Vi leads to a higher value of

(∏i∈N Vi)
1
n . We present the following theorems.

Theorem 2. Let A = [A0, A1, …, An−1] denote an allocation. We define new allocations as follows:
A*

i←Ai−{j} and A*
k←Ak∪{j}, where good j belongs to Ai. Consequently, a new allocation denoted

by A* = [A*
0, A*

1, …, A*
n−1] is obtained. If Vi·v(k,j) − Vk·v(i,j) − v(k,j)·v(i,j) > 0, then it follows

that NSW(A*) > NSW(A).

Proof of Theorem 2. It is straightforward to observe that ifm ̸= i,k, then we have A*
m = Am

for any m ∈ {0, 1, …, n − 1}. Therefore, we can express the following:

∏i∈N V∗i −∏i∈N Vi = ∏m∈N∧m/∈{i,k} Vm·(V∗i ·V∗k − Vi·Vk) (9)

Since
V∗i = Vi−(i, j), V∗k = Vk + v(k, j) (10)

we obtain the following equation:

V∗i ·V∗k = (Vi−v(i, j))× (Vk + v(k, j))
= Vi ·Vk+Vi·v(k, j)− v(i, j)·Vk − v(i, j)·v(k, j)

(11)

This implies that

V∗i ·V∗k−Vi ·Vk= Vi·v(k, j)− v(i, j) ·Vk − v(i, j)·v(k, j) (12)

Thus, if Vi·v(k,j) − v(i,j)·Vk − v(i,j)·v(k,j) > 0, we conclude that

∏i∈N V∗i −∏i∈N Vi > 0 (13)

Hence, it follows that NSW(A*) > NSW(A). □

Theorem 3. Let A = [A0, A1, …, An−1] represent an allocation. We exchange good j1 from agent
Ai with good j2 from agent Ak. Specifically, we update the allocations as follows: A*

i←(Ai −
{j1})∪{j2}; A*

k←(Ak−{j2})∪{j1}. This results in a new allocation represented by A* = [A*
0, A*

1, …,
A*

n−1]. Let x = Vi, y = Vk, a1 = v(i,j1), a2 = v(i,j2), b1 = v(k,j2), and b2 = v(k,j1). If x·(b2 − b1) −
a1·(y − b1 + b2) + a2·(y − b1+ b2) > 0, we have NSW(A*) > NSW(A).

Biomimetics 2024, 9, 652 10 of 19

Proof of Theorem 3. Since allocation A* is derived by exchanging good j1 from agent Ai
with good j2 from agent Ak, while the goods of other agents remain unchanged, we can
express this relationship with the following equations:

V∗i = Vi − v(i, j1) + v(i, j2) (14)

V∗k = Vk − v(k, j2) + v(k, j1) (15)

Consequently, we obtain

V∗i ·V∗k = x · y + x · (b2 − b1)− a1 · (y− b1 + b2) + a2 · (y− b1 + b2) (16)

Given that Vi ·Vk= x·y, we can derive the following:

V∗i ·V∗k −Vi ·Vk = x · (b2 − b1)− a1 · (y− b1 + b2) + a2 · (y− b1 + b2) (17)

Thus, if x·(b2 − b1) − a1·(y − b1 + b2) + a2·(y − b1 + b2) > 0, it follows that

∏i∈N V∗i −∏i∈N Vi > 0 (18)

This indicates that NSW(A*) > NSW(A). □

It is important to note that neighborhood search does not guarantee that each opera‑
tion will result in an increased Nash social welfare value. If the neighborhood search fails
to identify a better value, the Nash social welfare value will remain unchanged. Therefore,
the value of NSW can only be enhanced by moving a good when Vi·v(k,j) − Vk·v(i,j) −
v(k,j)·v(i,j) > 0. Additionally, the value of NSW can only be increased through an exchange
of goods when x·(b2 − b1)− a1·(y − b1 + b2)+ a2·(y − b1 + b2) > 0.

Since the neighborhood search method represents an advanced optimization of the
current solution, its incorporation into EDAs will not compromise the outcomes of EDAs.
However, incorporating neighborhood search methods into EDAs will lead to an increase
in the runtime of EDAs. Consequently, it is essential to define the number of operations
allocated for neighborhood search.

According to Theorems 2 and 3, it is feasible to achieve a higher Nash social welfare
in allocation by facilitating the exchange or movement of goods among agents for a given
allocation. Consequently, we propose four neighborhood search strategies based on the
principles of good exchange and movement, as outlined below.

1. Random exchange good strategy. Let A = [A0, A1, …, An−1] represent an allocation.
Firstly, we randomly select Ai and Ak from the set A. Next, we randomly choose a
good j1 from Ai and a good j2 from Ak. Subsequently, we exchange good j1 with j2.
This process yields a new allocation denoted as A*. If NSW(A*) > NSW(A), allocation
A is replaced by the new allocation. An illustrative example of this random exchange
of goods is presented in Figure 1.

2. Random moving good strategy. Let A = [A0, A1, …, An−1] represent an allocation.
First, we randomly select Ai and Ak from A. Secondly, if v(Ai) > v(Ak) (v(Ak) > v(Ai)),
we identify a good j from Ai (Ak), such that the following conditions hold: Vi·v(k,j)
− Vk·v(i,j) − v(k,j)·v(i,j) > 0 (Vk·v(i,j) − Vi·v(k,j) − v(i,j)·v(k,j) > 0). Finally, we remove
good j fromAi (Ak) and insert it intoAk (Ai). Consequently, we obtain a newallocation
denoted asA*. We then replace the original allocationwith this new one. An example
of the random moving good strategy is illustrated in Figure 2.

3. The strategy of exchanging goods betweenmaximum agent andminimum agent. Let
A = [A0, A1, …, An−1] denote an allocation. Define i = argmaxv(Ah)

h∈[n] and

k = argminv(Ah)
h∈[n] . We randomly choose a good j1 from Ai and a good j2 from Ak and

exchange j1 with j2 to obtain a new allocation denoted by A*. If NSW(A*) > NSW(A),
we use allocation A* to replace allocation A.

Biomimetics 2024, 9, 652 11 of 19

4. The strategy of moving goods from maximum agent to minimum agent. Let A = [A0,
A1, …, An−1] represent an allocation. Define i = argmaxv(Ah)

h∈[n] and k = argminv(Ah)
h∈[n] .

We find a good j from Ai such that Vi·v(k,j) − Vk·v(i,j) − v(k,j)·v(i,j) > 0. Subsequently,
we remove good j from Ai and insert it into Ak. This process generates a new alloca‑
tion denoted as A*, which replaces the original allocation A.

Biomimetics 2024, 9, x FOR PEER REVIEW 11 of 20

3. The strategy of exchanging goods between maximum agent and minimum agent. Let
A = [A0, A1, …, An−1] denote an allocation. Define i = arg maxh∈[n]

 v(Ah) and k = arg minh∈[n]
 v(Ah).

We randomly choose a good j1 from Ai and a good j2 from Ak and exchange j1 with j2
to obtain a new allocation denoted by A*. If NSW(A*) > NSW(A), we use allocation A*
to replace allocation A.

4. The strategy of moving goods from maximum agent to minimum agent. Let A = [A0,
A1, …, An−1] represent an allocation. Define i = arg maxh∈[n]

 v(Ah) and k = arg minh∈[n]
 v(Ah). We

find a good j from Ai such that Vi·v(k,j) − Vk·v(i,j) − v(k,j)·v(i,j) > 0. Subsequently, we
remove good j from Ai and insert it into Ak. This process generates a new allocation
denoted as A*, which replaces the original allocation A.

Figure 1. Random exchange good strategy.

Figure 2. Random moving good strategy.

5.5. EDA for Maximizing NSW and Its Complexity Analysis
In this section, we begin by describing the methodology for determining the optimal

Nash welfare value through the application of EDA joint neighborhood search technol-
ogy. Then, the complexity of the proposed algorithm is analyzed.

The execution flow of maximizing Nash social welfare based on EDAs is shown in
Figure 3 and described in Algorithm 3, where Psize is the size of the population, α is speed
learning, δ is the percentage of elite solution in the population, and maxiter is the maxi-
mum iterations of the EDA algorithm. First, the initial population is generated, and the
initial assignment probability is established (lines 1–2).

A

Ai 2 10 1 7 3

Ak 4 8 12 15

A*

Ai 2 10 1 8 3

Ak 4 7 12 15

A

Ai 2 10 1 7 3

Ak 4 8 12 15

A*

Ai 2 10 1 3

Ak 4 8 12 15 7

Figure 1. Random exchange good strategy.

Biomimetics 2024, 9, x FOR PEER REVIEW 11 of 20

3. The strategy of exchanging goods between maximum agent and minimum agent. Let
A = [A0, A1, …, An−1] denote an allocation. Define i = arg maxh∈[n]

 v(Ah) and k = arg minh∈[n]
 v(Ah).

We randomly choose a good j1 from Ai and a good j2 from Ak and exchange j1 with j2
to obtain a new allocation denoted by A*. If NSW(A*) > NSW(A), we use allocation A*
to replace allocation A.

4. The strategy of moving goods from maximum agent to minimum agent. Let A = [A0,
A1, …, An−1] represent an allocation. Define i = arg maxh∈[n]

 v(Ah) and k = arg minh∈[n]
 v(Ah). We

find a good j from Ai such that Vi·v(k,j) − Vk·v(i,j) − v(k,j)·v(i,j) > 0. Subsequently, we
remove good j from Ai and insert it into Ak. This process generates a new allocation
denoted as A*, which replaces the original allocation A.

Figure 1. Random exchange good strategy.

Figure 2. Random moving good strategy.

5.5. EDA for Maximizing NSW and Its Complexity Analysis
In this section, we begin by describing the methodology for determining the optimal

Nash welfare value through the application of EDA joint neighborhood search technol-
ogy. Then, the complexity of the proposed algorithm is analyzed.

The execution flow of maximizing Nash social welfare based on EDAs is shown in
Figure 3 and described in Algorithm 3, where Psize is the size of the population, α is speed
learning, δ is the percentage of elite solution in the population, and maxiter is the maxi-
mum iterations of the EDA algorithm. First, the initial population is generated, and the
initial assignment probability is established (lines 1–2).

A

Ai 2 10 1 7 3

Ak 4 8 12 15

A*

Ai 2 10 1 8 3

Ak 4 7 12 15

A

Ai 2 10 1 7 3

Ak 4 8 12 15

A*

Ai 2 10 1 3

Ak 4 8 12 15 7

Figure 2. Random moving good strategy.

5.5. EDA for Maximizing NSW and Its Complexity Analysis
In this section, we begin by describing the methodology for determining the optimal

Nash welfare value through the application of EDA joint neighborhood search technology.
Then, the complexity of the proposed algorithm is analyzed.

The execution flow of maximizing Nash social welfare based on EDAs is shown in
Figure 3 and described in Algorithm 3, where Psize is the size of the population, α is speed
learning, δ is the percentage of elite solution in the population, andmaxiter is themaximum
iterations of the EDA algorithm. First, the initial population is generated, and the initial
assignment probability is established (lines 1–2).

Then, the proposed neighborhood search method is employed to improve each indi‑
vidual (lines 4–6). By evaluating these individuals, those exhibiting a high NSW value are
identified and selected as elite candidates. Furthermore, the historical optimal solution is
updated in accordancewith the elite population (line 7). The neighborhood searchmethod
is also utilized to enhance the previously identified optimal solution (line 8). Subsequently,
based on the elite population, the assignment probability is updated (line 9).

A new population is generated according to the assignment probability (lines 10–19).
There are two ways to allocate goods to an agent. The first way is to allocate goods to
an agent according to a roulette based on the assignment probability matrix. The second
way is to allocate and assign goods to the agent with the lowest valuation. Each iteration
begins by generating a randomnumber r, where r∈ (0,1). If r exceeds a specified threshold,
the first way is employed to allocate goods to the agent (line 14). Conversely, if r does not
exceed this value, the secondway is utilized for the allocation of goods to the agent (line 16).

Finally, when the number of iterations of the algorithm reaches its maximum thresh‑
old, the algorithm ceases further iterations and returns the optimal approximation solution
(line 21).

Biomimetics 2024, 9, 652 12 of 19Biomimetics 2024, 9, x FOR PEER REVIEW 12 of 20

Figure 3. Flow chart for EDA.

Then, the proposed neighborhood search method is employed to improve each indi-
vidual (lines 4–6). By evaluating these individuals, those exhibiting a high NSW value are
identified and selected as elite candidates. Furthermore, the historical optimal solution is
updated in accordance with the elite population (line 7). The neighborhood search method
is also utilized to enhance the previously identified optimal solution (line 8). Subsequently,
based on the elite population, the assignment probability is updated (line 9).

A new population is generated according to the assignment probability (lines 10–19).
There are two ways to allocate goods to an agent. The first way is to allocate goods to an
agent according to a roulette based on the assignment probability matrix. The second way

No

Yes

Initialize population using Algorithm 2

Initialize probability matrix using Equation (6)

Improve population using
neighborhood search method

Improve historical optimal solution
using neighborhood search method

Generate elite population

Update historical optimal solution

Update assignment probability
matrix using Equation (7)

Generate new population using
assignment probability matrix

Start

t> maxiter

t = t + 1

End

Output solution

Figure 3. Flow chart for EDA.

The computational complexity of the key operations in the proposed algorithm is out‑
lined as follows: according to Algorithm 2, the complexity associated with generating an
initial individual isO(m). Since the population size of the evolutionary algorithm (EDA) is
denoted as Psize, the complexity associated with initializing a population is O(Psize × m).
The initialization of assignment probability incurs a complexity ofO(m × n). Furthermore,
sorting the population to select an elite subset has a complexity ofO(Psize × logPsize). The
process of updating assignment probability exhibits a complexity of O(Psize × m × n).
Given that calculating the Nash social welfare for an allocation entails a time complexity
of O(m ×n), both the random exchanging good strategy and random moving good strat‑

Biomimetics 2024, 9, 652 13 of 19

egy have complexities represented as O(2 × LNiter × m × n) and O(2 × LNiter × m × n
+ LNiter × m), where LNiter is the number of neighborhood searches. Additionally, it can
be readily observed that the complexity involved in exchanging goods between the maxi‑
mum agent and the minimum agent is characterized by O(2 × LNiter × m × n + LNiter ×
n), while moving goods from maximum agent to minimum agent also maintains a similar
complexity profile at O(2 × LNiter × m × n + LNiter × n).

Algorithm 3: EDA for Maximizing Nash Social Welfare

Biomimetics 2024, 9, x FOR PEER REVIEW 13 of 20

is to allocate and assign goods to the agent with the lowest valuation. Each iteration be-
gins by generating a random number r, where r∈(0,1). If r exceeds a specified thresh-
old, the first way is employed to allocate goods to the agent (line 14). Conversely, if r
does not exceed this value, the second way is utilized for the allocation of goods to
the agent (line 16).

Finally, when the number of iterations of the algorithm reaches its maximum thresh-
old, the algorithm ceases further iterations and returns the optimal approximation solu-
tion (line 21).

The computational complexity of the key operations in the proposed algorithm is
outlined as follows: according to Algorithm 2, the complexity associated with generating
an initial individual is O(m). Since the population size of the evolutionary algorithm (EDA)
is denoted as Psize, the complexity associated with initializing a population is O(Psize ×
m). The initialization of assignment probability incurs a complexity of O(m × n). Further-
more, sorting the population to select an elite subset has a complexity of O(Psize × logP-
size). The process of updating assignment probability exhibits a complexity of O(Psize × m
× n). Given that calculating the Nash social welfare for an allocation entails a time com-
plexity of O(m ×n), both the random exchanging good strategy and random moving good
strategy have complexities represented as O(2 × LNiter × m × n) and O(2 × LNiter × m × n +
LNiter × m), where LNiter is the number of neighborhood searches. Additionally, it can be
readily observed that the complexity involved in exchanging goods between the maxi-
mum agent and the minimum agent is characterized by O(2 × LNiter × m × n + LNiter × n),
while moving goods from maximum agent to minimum agent also maintains a similar
complexity profile at O(2 × LNiter × m × n + LNiter × n).

Algorithm 3: EDA for Maximizing Nash Social Welfare
Input: An instance <N, M, V>, Psize, α, δ, maxiter
1: Using Algorithm 2 to initialize the population
2: Using Equation (6) to initialize the assignment probability matrix
3: for l = 1 to maxiter do
4: for k = 1 to Psize do
5: Using neighborhood search strategy to improve each individual of the population
6: end for
7: Select the elite group and update the historical optimal solution
8: Using neighborhood search strategy to improve the historical optimal solution
9: Update assignment probability matrix according to Equation (7)
10: for k = 1 to Psize do
11: Generate the kth individual as follows:
12: for j = 1 to m do
13: if r < pr
14: Allocate goods to agent according to assignment probability
15: else
16: Allocate goods to the agent with the least valuation
17: end if
18: end for
19: end for
20: end for
21: return the approximation optimal solution
Output: An approximation optimal solution

6. Simulation Experiment
As far as the author is aware, the previous literature on the Nash social welfare algo-

rithm primarily focused on its design and time complexity, without utilizing datasets to
validate the algorithm’s efficiency in solving problems. In this paper, we design two pro-
grams to generate datasets of varying scales for Nash social welfare issues. One program
addresses a scenario where agents have identical valuations for a single item; the other
tackles cases involving different valuations assigned by distinct agents to the same item.
To assess the effectiveness of our proposed algorithm in addressing Nash social welfare

6. Simulation Experiment
As far as the author is aware, the previous literature on the Nash social welfare algo‑

rithm primarily focused on its design and time complexity, without utilizing datasets to
validate the algorithm’s efficiency in solving problems. In this paper, we design two pro‑
grams to generate datasets of varying scales for Nash social welfare issues. One program
addresses a scenario where agents have identical valuations for a single item; the other
tackles cases involving different valuations assigned by distinct agents to the same item.
To assess the effectiveness of our proposed algorithm in addressing Nash social welfare
challenges, we conducted simulation experiments based on these datasets under two spe‑
cific conditions. The first condition pertains to the NSW problem when all agents share
identical valuations. The second condition involves situations where agents possess dif‑
fering valuations. The proposed algorithm has been implemented using Python 3.2, and
all experiments were executed on a PC equipped with an Intel® Core (TM) i7‑10510U CPU
running at 1.80 GHz (boosting up to 2.30 GHz), along with 16 GB RAM and aWindows 10
operating system.

6.1. Simulation Experiment for Agents with Identical Valuation
We have demonstrated that the greedy algorithm proposed in this paper is equiva‑

lent to the greedy algorithm presented in [15] when agents possess identical valuations,
as discussed in Section 3. In our initial simulation experiment, we examine ten NSW in‑
stances where agents share identical valuations. The results of the greedy algorithm (GA)
are compared with those obtained from the Estimation of Distribution Algorithm (EDA).
The parameters for EDAs are defined as follows: learning rate (α = 0.1), the percentage of
elite solution in the population (δ = 0.1), population size (Psize = 50), and maximum itera‑

Biomimetics 2024, 9, 652 14 of 19

tions (maxiter = 20,000). The quantity of agents and goods, as well as the valuation domain
for these goods across the NSW instances, is presented in Table 1. For instance, in instance
9, the valuation domain ranges from 1 to 200, with a total of 50 agents and 500 goods in‑
volved. To illustrate the universal effectiveness of our algorithm, we randomly generate
a value within the valuation domain for a good. The values assigned to a good follow a
uniform distribution.

Table 1. Ten instances with identical valuation.

No. n m Valuation Domain

1 10 30 [1, 20]
2 10 30 [1, 500]
3 10 100 [1, 20]
4 20 200 [1, 100]
5 30 200 [1, 200]
6 30 300 [1, 500]
7 40 400 [1, 100]
8 40 500 [1, 500]
9 50 500 [1, 200]
10 80 600 [1, 500]

The approximation optimization results for both GAs and EDAs are presented in
Table 2; specifically, the GA column displays outcomes derived from GAs while the EDA
column reflects those obtained through EDAs. The simulation results indicate that when
agents have identical valuations, the approximate optimization achieved by EDAs outper‑
forms that attained by GAs. NSW(AGA) and NSW(AEDA) denote the approximate opti‑
mization of EDAs and Gas, respectively, while NSW(A*) represents the actual maximum

Nash social welfare. It has been demonstrated that NSW(AGA)
NSW(A∗) ≈

1
1.0607 as shown in [15].

Additionally, given that NSW(AEDA) > NSW(AGA), this leads to the conclusion that

NSW(AEDA) >
1

1.0607
NSW(A∗) (19)

Table 2. Simulation results of identical valuation.

No. GA EDA

1 27.244 27.247
2 841.057 842.244
3 102.831 102.832
4 496.494 496.497
5 700.438 700.442
6 2509.859 2059.873
7 520.517 520.522
8 3174.779 3174.784
9 985.616 985.617
10 1927.055 1927.058

6.2. Simulation Experiment for Agents with Different Valuations
In this section, we examine ten instances of agents with different valuations and com‑

pare the results of the greedy algorithmwith those of the distribution estimation algorithm.
The parameters for the EDA are specified as follows: learning rate (α = 0.1), the percentage
of elite solution in the population (δ = 0.1), population size (Psize = 60), and maximum it‑
erations (maxiter = 3000). The number of agents and goods, as well as the domain of good
valuation for the NSW instances, are presented in Table 3.

Biomimetics 2024, 9, 652 15 of 19

Table 3. Ten instances with different valuations.

No. n m Valuation Domain

1 30 300 [10, 500]
2 20 300 [1, 100]
3 40 400 [100, 1000]
4 50 400 [100, 500]
5 50 500 [10, 200]
6 60 300 [1, 1000]
7 60 400 [1, 100]
8 40 400 [1, 1000]
9 70 300 [1, 1000]
10 80 400 [1, 1000]

The EDA algorithm was executed ten times for each instance, with the results dis‑
played in Table 4.

Table 4. A comparative table of results for GAs and EDAs.

No. GA EDA (av) EDA (max) EDA (min) EDA (sd)

1 4782.99 4821.63 48,824.88 4819.76 1.57
2 1410.84 1419.41 1419.70 1418.82 0.22
3 9642.84 9681.12 9689.73 9673.22 4.60
4 3913.77 3916.61 3919.86 3914.47 1.53
5 1948.12 1952.01 1954.49 1950.23 1.19
6 4857.06 4877.21 4886.27 4867.82 4.91
7 647.71 651.20 651.38 650.68 0.20
8 9696.25 9724.96 9733.39 9719.51 4.61
9 4142.68 4189.21 4192.44 4184.66 2.46
10 4888.08 4899.30 4902.27 4896.33 1.82

In Table 5, the GA column presents the outcomes from the Genetic Algorithm (GA),
while the ED (av) column indicates the average NSW obtained from the EDA. Addition‑
ally, the columns labeled EDA (min), EDA (max), and EDA (sd) represent, respectively,
the maximum NSW achieved by the EDA; the minimum NSW attained by the EDA; and
finally, the standard deviations for the EDA. The results indicate that the Nash social wel‑
fare value computed by the Estimation of Distribution Algorithm (EDA) surpasses that
obtained through the Genetic Algorithm (GA). The differences between the average Nash
social welfare (NSW) values of the EDA and those from the GA are 38.64, 8.57, 38.28, 2.84,
3.89, 20.15, 3.49, 28.71, 46.53, and 11.22, respectively. This clearly demonstrates that the
EDAoutperforms the greedy algorithm. Furthermore, the standarddeviations for the EDA
across all instances are recorded as follows: 1.57, 0.22, 4.60, 1.53, 1.19, 4.91, 0.20, 4.61, 2.46,
and 1.82, respectively. This suggests that the results produced by EDAs exhibit minimal
variation across different runs. Consequently, the proposed EDA demonstrates commend‑
able stability in addressing the problem of Nash social welfare.

Table 5. The results of EDAs.

No. Run1 Run2 Run3 Run4 Run5 Run6 Run7 Run8 Run9 Run10

1 4819.76 4820.49 4820.05 4822.79 4820.49 4824.88 4822.83 4820.39 4822.07 4822.59
2 1419.70 1418.82 1419.37 1419.44 1419.38 1419.61 1419.39 1419.38 1419.57 1419.44
3 9683.66 9680.63 9673.22 9680.11 9682.80 9676.03 9678.95 9689.73 9686.66 9679.43
4 3916.60 3917.78 3919.86 3914.72 3915.79 3917.66 3917.40 3915.99 3915.80 3914.47
5 1952.42 1951.30 1953.70 1951.34 1954.49 1951.32 1951.49 1950.23 1952.21 1951.62
6 4879.84 4877.96 4886.27 4875.53 4881.06 4867.82 4874.70 4871.95 4876.49 4880.52

Biomimetics 2024, 9, 652 16 of 19

Table 5. Cont.

No. Run1 Run2 Run3 Run4 Run5 Run6 Run7 Run8 Run9 Run10

7 651.34 651.32 650.68 651.05 651.15 651.30 651.18 651.27 651.38 651.34
8 9719.51 9733.39 9731.66 9725.95 9722.99 9722.32 9720.66 9724.17 9728.69 9720.27
9 4192.04 4191.17 4188.88 4184.66 4189.38 4190.57 4186.52 4192.44 4186.42 4189.99
10 4896.33 4897.77 4899.31 4897.50 ,902.27 4898.71 4900.38 4899.41 4902.16 4899.16

6.3. Sensitivity Analysis of Algorithm Parameters
The EDAalgorithm is characterized by three essential parameters: the population size

(Psize), the learning rate (α), and the proportion of elite groups (δ). In this study, we utilize
the tenth instance presented in Section 6.2 to investigate how variations in these three pa‑
rameter settings influence the solution outcomes of the algorithm through an experimental
design approach.

Each parameter has three levels, with the values for each level presented in Table 6.
Based on the number of parameters and their respective levels, we selected an orthogonal
experiment design with a scale of 9. For each combination of parameters, the algorithm
was executed independently ten times. The various combinations alongwith their average
NSW values are displayed in Table 7.

Table 6. The level values of algorithm parameters.

Parameters
Level

1 2 3

Psize 60 80 100
α 0.1 0.2 0.4
δ 0.1 0.15 0.2

Table 7. Orthogonal table and average NSW.

No.
Level

The Average NSW
Psize α δ

1 1 1 1 4899.30
2 2 2 2 4893.82
3 3 3 3 4897.14
4 1 2 3 4894.35
5 2 3 1 4901.24
6 3 1 2 4900.61
7 1 3 2 4900.50
8 2 1 3 4899.24
9 3 2 1 4900.32

In the case of parameter combination 5 (Psize = 80, α = 0.4, δ = 0.1), the algorithmobtains
the largest average value of NSW. Conversely, for parameter combination 2 (Psize = 80;
α = 0.2; δ = 0.15), the average value of NSW is at its lowest. The NSW values corresponding
to each parameter combination are presented in Table 8. Additionally, Figure 4 illustrates
the boxplots of NSW for all parameter combinations examined.

It can be seen from Table 8 that the maximum value of NSW achieved by the algo‑
rithm for parameter combinations 3, 5, and 9 surpasses that of the other combinations. For
combination 6, the median is the highest, while combination 2 exhibits the lowest median.
The range and significance of each parameter are presented in Table 9.

Biomimetics 2024, 9, 652 17 of 19

Table 8. Experimental results of different parameter combinations.

No. Run1 Run2 Run3 Run4 Run5 Run6 Run7 Run8 Run9 Run10

1 4896.33 4897.77 4899.31 4897.50 4902.27 4898.71 4900.38 4899.41 4902.16 4899.16
2 4896.43 4893.70 4890.58 4892.10 4893.16 4898.66 4899.35 4886.56 4890.17 4897.50
3 4907.59 4904.40 4895.75 4891.47 4889.76 4890.77 4900.57 4896.67 4899.40 4895.05
4 4888.62 4892.12 4898.69 4897.43 4895.42 4895.19 4898.07 4893.25 4891.24 4893.44
5 4896.91 4910.06 4903.40 4899.47 4897.71 4907.68 4901.49 4903.23 4900.49 4891.97
6 4903.37 4902.54 4901.00 4903.83 4902.69 4901.92 4887.02 4901.10 4904.23 4898.39
7 4901.79 4903.87 4899.45 4899.76 4902.24 4900.25 4903.55 4897.62 4896.06 4900.37
8 4900.00 4900.25 4899.74 4900.71 4894.83 4898.06 4896.81 4899.65 4902.01 4900.33
9 4905.75 4903.39 4894.64 4893.17 4910.26 4905.84 4896.96 4908.34 4891.68 4893.14

Biomimetics 2024, 9, x FOR PEER REVIEW 17 of 20

8 2 1 3 4899.24
9 3 2 1 4900.32

In the case of parameter combination 5 (Psize = 80, α = 0.4, δ = 0.1), the algorithm
obtains the largest average value of NSW. Conversely, for parameter combination 2 (Psize
= 80; α = 0.2; δ = 0.15), the average value of NSW is at its lowest. The NSW values corre-
sponding to each parameter combination are presented in Table 8. Additionally, Figure 4
illustrates the boxplots of NSW for all parameter combinations examined.

Table 8. Experimental results of different parameter combinations.

No. Run1 Run2 Run3 Run4 Run5 Run6 Run7 Run8 Run9 Run10
1 4896.33 4897.77 4899.31 4897.50 4902.27 4898.71 4900.38 4899.41 4902.16 4899.16
2 4896.43 4893.70 4890.58 4892.10 4893.16 4898.66 4899.35 4886.56 4890.17 4897.50
3 4907.59 4904.40 4895.75 4891.47 4889.76 4890.77 4900.57 4896.67 4899.40 4895.05
4 4888.62 4892.12 4898.69 4897.43 4895.42 4895.19 4898.07 4893.25 4891.24 4893.44
5 4896.91 4910.06 4903.40 4899.47 4897.71 4907.68 4901.49 4903.23 4900.49 4891.97
6 4903.37 4902.54 4901.00 4903.83 4902.69 4901.92 4887.02 4901.10 4904.23 4898.39
7 4901.79 4903.87 4899.45 4899.76 4902.24 4900.25 4903.55 4897.62 4896.06 4900.37
8 4900.00 4900.25 4899.74 4900.71 4894.83 4898.06 4896.81 4899.65 4902.01 4900.33
9 4905.75 4903.39 4894.64 4893.17 4910.26 4905.84 4896.96 4908.34 4891.68 4893.14

Figure 4. Boxplots for each parameter combination.

It can be seen from Table 8 that the maximum value of NSW achieved by the algo-
rithm for parameter combinations 3, 5, and 9 surpasses that of the other combinations. For
combination 6, the median is the highest, while combination 2 exhibits the lowest median.
The range and significance of each parameter are presented in Table 9.

Table 9. The average values of NSW for the parameters.

 𝐏𝐬𝐢𝐳𝐞 𝛂 𝛅
1 4898.05 4899.72 4900.29
2 4898.10 4896.16 4898.31
3 4899.34 4899.63 4896.91

Range 1.29 3.56 3.38
Grade 3 1 2

It is evident that the learning rate has the most substantial impact on algorithm per-
formance. An increase in the learning rate may lead to premature convergence; thus, the
value of NSW does not necessarily rise with an increasing α value. Therefore, selecting an
appropriate learning rate is crucial. The second most significant parameter is the propor-
tion of elite groups. Experimental results indicate that as δ increases, there tends to be a

Figure 4. Boxplots for each parameter combination.

Table 9. The average values of NSW for the parameters.

Psize α δ

1 4898.05 4899.72 4900.29
2 4898.10 4896.16 4898.31
3 4899.34 4899.63 4896.91

Range 1.29 3.56 3.38
Grade 3 1 2

It is evident that the learning rate has the most substantial impact on algorithm per‑
formance. An increase in the learning rate may lead to premature convergence; thus, the
value of NSW does not necessarily rise with an increasing α value. Therefore, selecting
an appropriate learning rate is crucial. The second most significant parameter is the pro‑
portion of elite groups. Experimental results indicate that as δ increases, there tends to
be a decrease in NSW values. Conversely, population size appears to have minimal influ‑
ence on algorithm performance. Nonetheless, experimental data still suggest that larger
populations yield higher NSW outcomes.

7. Conclusions and Future Works
In this paper, we present two types of algorithms designed to address the Nash social

welfare problem. We introduce a more general greedy algorithm that is applicable to both
scenarios where agents have identical valuations and those with differing valuations. Fur‑
thermore, we demonstrate that the greedy algorithm is a specific instance of our proposed
approach. Distinct from existingmethods, we investigate the use of distribution estimation
algorithms (EDAs) as a means to tackle the Nash social welfare issue. To validate our find‑
ings, we conducted experiments comparing the EDAwith the greedy algorithm, revealing
that the EDA consistently outperforms its counterpart. In the first set of experiments, both
the EDA and the greedy algorithm were executed on ten instances involving agents with
identical valuations. The experimental results indicate that the EDA achieves solutions at

Biomimetics 2024, 9, 652 18 of 19

least 0.943 times closer to the actual optimal solution compared to those obtained by the
greedy algorithm. In the second set of experiments, we consider cases where agents pos‑
sess different valuations; comparison results illustrate that the EDA yields higher Nash
social welfare outcomes than those produced by the greedy algorithm.

However, the EDA predicts the optimal region by employing sampling and statistical
learning techniques within the search space. This approach necessitates substantial com‑
putational resources, particularly when dealing with a large number of samples, resulting
in elevated calculation costs. Moreover, even if the effectiveness of the EDA in provid‑
ing solutions is commendable, we cannot guarantee the optimality of EDAs in polynomial
time, which still needs further research. Future work will primarily focus on the following
three aspects: First, various intelligent algorithms, such as the Ant ColonyOptimization al‑
gorithm (ACO), Whale Optimization Algorithm (WOA), Quantum‑Inspired Evolutionary
Algorithm (QIEA), and Spider Monkey Optimization algorithm (SMO), will be employed
to address the Nash social welfare problem. Second, the Nash social welfare problem will
be reformulated as a multi‑objective optimization challenge, utilizing multi‑objective op‑
timization algorithms to maximize Nash social welfare. Finally, we will explore how to
apply intelligent algorithms to compute effective approximations of the Nash social wel‑
fare problem using truthful yet non‑wasteful mechanisms.

Author Contributions: W.L.: conceptualization, methodology, formal analysis, investigation,
writing—original draft. Y.J.: conceptualization, methodology, supervision, writing—review and
editing. Z.W.: conceptualization, methodology, supervision, writing—review and editing. X.W.:
validation, writing—review and editing. X.X.: writing—review and editing, project administration.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (62106055,
61703183, 62176094), the National Key Research and Development Program of China
(2023YFC3305900, 2023YFC3305903), the Natural Science Foundation of Zhejiang Province
(LGG19F030010), theGuangdongNatural Science Foundation (2022A1515011825, 2021B1515120078),
theGuangzhou Science and Technology Planning Project (2023A04J0388, 2023A03J0662), and theQin
Shen Scholar Program of Jiaxing University.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon request. There are no restrictions on data availability.

Conflicts of Interest: The authors declare no competing interests.

References
1. Garg, J.; Hoefer, M.; Mehlhorn, K. Satiation in fisher markets and approximation of Nash social welfare. Math. Oper. Res. 2024,

49, 1109–1139. [CrossRef]
2. Brânzei, S.; Gkatzelis, V.; Mehta, R. Nash social welfare approximation for strategic agents. Oper. Res. J. Oper. Res. Soc. Am.

2022, 70, 402–415. [CrossRef]
3. Wang, Z.; Zhan, Z.; Kwong, S.; Jin, H.; Zhang, J. Adaptive Granularity Learning Distributed Particle Swarm Optimization for

Large‑Scale Optimization. IEEE Trans. Cybern. 2021, 51, 1175–1188. [CrossRef] [PubMed]
4. Xue, Z.; Wang, Z.; Zhan, Z.; Kwong, S.; Zhang, J. Neural network‑based knowledge transfer for multitask optimization.

IEEE Trans. Cybern. 2024. [CrossRef] [PubMed]
5. Wang, Z.; Jian, J.; Zhan, Z.; Li, Y.; Kwong, S.; Zhang, J. Gene targeting differential evolution: A simple and efficient method for

large‑scale optimization. IEEE Trans. Evol. Comput. 2023, 27, 964–979. [CrossRef]
6. Inoue, A.; Kobayashi, Y. An additive approximation scheme for the Nash social welfare maximization with identical additive

valuations. In International Workshop on Combinatorial Algorithms; Springer: Berlin/Heidelberg, Germany, 2022.
7. Li, W.; Vondrak, J. A constant‑factor algorithm for Nash social welfare with submodular valuations. In Proceedings of the IEEE

62nd Annual Symposium on Foundations of Computer Science (FOCS), Denver, CO, USA, 7–10 February 2021; pp. 25–36.
8. Barman, S.; Verma, P. Approximation Nash social welfare under binary XOS and binary subadditive valuations. In Conference

on Web and Internet Economics, 2021; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2021; Volume 13112.
9. Barman, S.; Krishna, A.; Kulkarni, P.; Narang, S. Sublinear approximation algorithm forNash social welfarewith XOS valuations.

Information Technology Convergence and Services. arXiv 2021, arXiv:2110.00767.

https://doi.org/10.1287/moor.2019.0129
https://doi.org/10.1287/opre.2020.2056
https://doi.org/10.1109/TCYB.2020.2977956
https://www.ncbi.nlm.nih.gov/pubmed/32224474
https://doi.org/10.1109/TCYB.2024.3469371
https://www.ncbi.nlm.nih.gov/pubmed/39383079
https://doi.org/10.1109/TEVC.2022.3185665

Biomimetics 2024, 9, 652 19 of 19

10. Akrami, H.; Chaudhury, B.R.; Hoefer, M.; Mehlhorn, K.; Schmalhofer, M.; Shahkarami, G.; Varricchio, G.; Vermande, Q.; van
Wijland, E. Maximizing Nash social welfare in 2‑value instance. In Proceedings of the 36th AAAI Conference on Artificial
Intelligence, Online Conference, 22 February–1 March 2022; Volume 36, pp. 4760–4767.

11. Wu, X.; Li, B.; Gan, J. Budget‑feasible maximum Nash social welfare allocation is almost envy‑free. arXiv 2012. [CrossRef]
12. Cole, R.; Gkatzelis, V. Approximation theNash social welfarewith indivisible items. In Proceedings of the Forty‑SeventhAnnual

ACM Symposium on Theory of Computing, Portland, OR, USA, 14–17 June 2015; pp. 371–380.
13. Garg, J.; Kulkarni, P.; Kulkarni, R. Approximating Nash social welfare under submodular valuations through (Un)Matching.

ACM Trans. Algorithms 2023, 19, 1–25. [CrossRef]
14. Caragiannis, I.; Kurokawa, D.; Moulin, H.; Procaccia, A.D.; Shah, N.; Wang, J. The unreasonable fairness of maximum Nash

welfare. In Proceeding of the 2016 ACM Conference on Economic and Computation, Maastricht, The Netherlands, 24–28 July
2016; pp. 305–322.

15. Barman, S.; Krishnamurthy, S.K.; Vaish, R. Greedy algorithm for maximizing Nash social welfare. In Proceedings of the 17th
International Conference on Autonomous Agents and Multiagent Systems, Stockholm, Sweden, 10–15 July 2018; pp. 7–13.

16. Jain, P.; Vaish, R. Maximizing Nash Social Welfare under Two‑Sided Preferences. arXiv 2023, arXiv:2312.09167. [CrossRef]
17. Suksompong, W.; Teh, N. On maximum weighted Nash welfare for binary valuations. Math. Soc. Sci. 2022, 117, 101–108.

[CrossRef]
18. Kawase, Y.; Nishimura, K.; Sumita, H. Fair Allocation with Binary Valuations for Mixed Divisible and Indivisible Goods. arXiv

2023, arXiv:2306.05986. [CrossRef]
19. Barman, S.; Krishna, A.; Sadhukhan, S. Nash Welfare Guarantees for Fair and Efficient Coverage. In Workshop on Internet and

Network Economics; Springer: Berlin/Heidelberg, Germany, 2022.
20. Psomas, A.; Verma, P. Fair and Efficient Allocations Without Obvious Manipulations. Adv. Neural Inf. Process. Syst. 2022,

35, 13342–13354.
21. Dai, S.; Gao, G.; Guo, X.; Zhang, Y. Exact andApproximation Algorithms for PMMSUnder Identical Constraints. In Proceedings

of the International Conference on Theory and Applications of Models of Computation, Xi’an, China, 25–29 April 2008; Springer:
Berlin/Heidelberg, Germany, 2022; pp. 322–333.

22. Jugal, G.; Edin, H.; Laszlo, V. Approximating Nash Social Welfare under Rado Valuations. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing, Virtual, 21–25 June 2021; Volume 19, pp. 1412–1425.

23. Garg, J.; Murhekar, A. Computing Pareto‑Optimal and Almost Envy‑Free Allocations of Indivisible Goods. J. Artif. Intell. Res.
2024, 80, 1–25. [CrossRef]

24. Wang, Z.; Zhou, Y.; Zhang, J. Adaptive estimation distribution distributed differential evolution for multimodal optimization
problems. IEEE Trans. Cybern. 2022, 52, 6059–6070. [CrossRef] [PubMed]

25. Zhan, Z.; Wang, Z.; Jin, H.; Zhang, J. Adaptive Distributed Differential Evolution. IEEE Trans. Cybern. 2020, 50, 4633–4647.
[CrossRef] [PubMed]

26. Wang, Z.; Zhan, Z.; Li, Y.; Kwong, S.; Jeon, S.; Zhang, J. Fitness and distance based local search with adaptive differential
evolution for multimodal optimization problems. IEEE Trans. Emerg. Top. Comput. Intell. 2023, 7, 684–699. [CrossRef]

27. Hauschild, M.; Pelikan, M. An introduction and survey of estimation of distribution algorithms. Swarm Evol. Comput. 2011,
1, 111–128. [CrossRef]

28. Li, Y.; Han, T.; Tang, S.; Huang, C.; Zhou, H.; Wang, Y. An improved differential evolution by hybridizing with estimation‑of‑
distribution algorithm. Inf. Sci. 2023, 619, 439–456. [CrossRef]

29. Wen, S.; Hu, X.; Chen, W. An estimation of distribution algorithm with clustering for scenario‑based robust financial optimiza‑
tion. Complex Intell. Syst. 2022, 8, 3989–4003.

30. Tang, L.; Liu, C.; Liu, L.; Wang, X. An Estimation of Distribution Algorithm with Resampling and Local Improvement for an
Operation Optimization Problem in Steelmaking Process. IEEE transactions on systems, man, and cybernetics. Systems 2024,
54, 1346–1362.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au‑
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.24963/ijcai.2021/65
https://doi.org/10.1145/3613452
https://doi.org/10.48550/arXiv.2312.09167
https://doi.org/10.1016/j.mathsocsci.2022.03.004
https://doi.org/10.48550/arXiv.2306.05986
https://doi.org/10.1613/jair.1.15414
https://doi.org/10.1109/TCYB.2020.3038694
https://www.ncbi.nlm.nih.gov/pubmed/33373312
https://doi.org/10.1109/TCYB.2019.2944873
https://www.ncbi.nlm.nih.gov/pubmed/31634855
https://doi.org/10.1109/TETCI.2023.3234575
https://doi.org/10.1016/j.swevo.2011.08.003
https://doi.org/10.1016/j.ins.2022.11.029

	Introduction
	Related Work
	Preliminaries
	Greedy Algorithm for Maximizing Nash Social Welfare
	Estimation of Distribution Algorithm for Maximizing Nash Social Welfare
	Encoding for Individuals
	Population Initialization for EDA
	Probability Model and Its Updating and Sampling
	Neighborhood Search Strategy
	EDA for Maximizing NSW and Its Complexity Analysis

	Simulation Experiment
	Simulation Experiment for Agents with Identical Valuation
	Simulation Experiment for Agents with Different Valuations
	Sensitivity Analysis of Algorithm Parameters

	Conclusions and Future Works
	References

