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Abstract: Objective: Antifibrotics can improve the outcome of patients with idiopathic pulmonary
fibrosis (IPF) and other fibrosing interstitial lung diseases (F-ILDs), but predictive biomarkers at
diagnosis are needed to guide the use of immunomodulating and antifibrotic therapies. Methods:
Flow cytometry quantification of lymphocytes and neutrophils in bronchoalveolar lavage (BAL)
of 145 IPFs, 561 non-IPF-ILDs (125 F-ILDs), and 112 BAL controls were retrospectively correlated
with the incidence of fibrosis and third-quartile overall survival (Q3–OS). Results: The incidence of
IPF was directly proportional (9.6%, 22.2%, and 42.6%, p < 0.001) to BAL neutrophil counts (<5%,
5–15%, and >15%), but inversely proportional (34.1%, 18.6%, and 8.8%, p < 0.001) to BAL lymphocyte
counts (<7%, 7–20%, and >20%). Elevated neutrophils (>5%) with low lymphocytes (<7%) were
associated with an increasingly higher incidence of IPF (10.0–56.3%, p < 0.001) in patients aged 40 to
80, compared to the rest of patients (13.0–17.1%). Lymphocytes >20% compared to lymphocytes <7%
strongly protected patients with neutrophils >15% (59.7% vs. 20.7%, p < 0.001) from IPF. In contrast,
the incidence of F-ILD was not clearly related to BAL lymphocyte/neutrophil counts. Although, IPF
and F-ILD showed a shorter Q3–OS (1.8 ± 0.3 and 4.6 ± 0.8 years; p < 0.001) than non-fibrotic-ILDs
(11.1 ± 1.3 years), lymphocyte and neutrophil counts were associated with a longer and shorter
Q3–OS of non-fibrotic-ILDs (p < 0.03) and F-ILDs (p < 0.04), respectively, but not with a Q3–OS of
IPF patients (p < 0.708). Corticosteroids in patients with fibrosis showed a shorter Q3–OS than other
immunomodulators (2.4 ± 0.3 vs. 4.0 ± 1.8 years, p = 0.011). Conclusions: Accurate counting of
BAL lymphocytes and neutrophils by flow cytometry in ILD patients at diagnosis could help guide
immunomodulatory and antifibrotic therapies.

Keywords: lung fibrosis; BAL lymphocyte and neutrophils; interstitial lung disease; idiopathic
pulmonary fibrosis; patient outcome; flow cytometry

1. Introduction

The term interstitial lung disease (ILD) describes a large and heterogeneous group
of disorders affecting the lung parenchyma with overlapping clinical, radiographic, and
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histopathologic manifestations that commonly involve the pulmonary interstitium and, less
frequently, also the alveolar and vascular epithelium. Repair processes are involved in the
disease, with varying degrees of inflammation and fibrosis [1–3], which can be progressive
in some cases [4–6]. Features of progressive fibrosing ILD (PF-ILD) include a decline in
lung function as measured by forced vital capacity (FVC) or diffusing capacity of the lung
for carbon monoxide (DLCO), radiographic progression, or worsening symptoms despite
treatment [7]. Idiopathic pulmonary fibrosis (IPF), the most typical PF-ILD, is characterized
by a pattern of usual interstitial pneumonia (UIP) on high-resolution computed tomography
(HRCT) or histopathology and it is not associated with an identifiable etiology [8]. Risk
factors for IPF include increasing age, oxygen use at rest, lower or a decline in FVC,
and lower DLCO [9], but the clinical course can be complicated by episodes of acute
respiratory deterioration or acute exacerbations [10]. Many studies have described that a
diverse proportion of fibrosis and progressive fibrosis can also take place among connective
tissue disease-related (CTD)-ILD, unclassifiable-ILD, idiopathic interstitial pneumonia, and
chronic hypersensitivity pneumonitis (HP), or sarcoidosis [11–15]. Risk factors for non-IPF
PF-ILDs include UIP pattern, body mass index, oxygen desaturation during the 6 MWT,
and lung function parameters such as FVC and DLCO [14].

Different cells of the immune system are involved in the pathophysiology of ILD.
Macrophages play a significant role in fibrosing lung diseases, although their roles may
vary in distinct inflammatory microenvironments or with the composition of macrophage
subpopulation types [16–18]. Neutrophils are also capable of triggering inflammatory
mechanisms and lung fibrogenesis [19]. Neutrophil elastase [20], neutrophil extracellular
traps [21], and the balance of matrix metalloproteinases and tissue inhibitors of metallopro-
teinases [22] contribute to fibrosis and to fibrosis progression. Neutrophil chemoattractant
interleukin-8, the granulocyte colony-stimulating factor (G-CSF) and the number of neu-
trophils are higher in an IPF lung [22], but a greater presence of neutrophils is also related to
fibrosis in HP [23]. In IPF, even the number of circulating neutrophils correlated positively
with the extension and the progression of fibrosis [24]. In contrast, the role of lymphocytes
in ILD is contradictory, with either favorable or harmful effects depending on the proportion
of Th1, Th2, Th9, Th17, Th22, or regulatory T cells [25]. Nonetheless, increased lymphocyte
counts in bronchoalveolar lavage (BAL) have been associated with a significantly lower
probability of disease progression in patients with non-extensive fibrosis or with non-UIP
patterns [26], as well as with better outcomes in patients with acute respiratory failure [27]
or acute exacerbation [28].

Corticosteroids are the most common therapy in non-IPF ILDs, while other im-
munomodulators (mycophenolate mofetil, cyclophosphamide, azathioprine, or tocilizumab)
and antifibrotics (nintedanib and pirfenidone) are mostly reserved for CTD-ILD and IPF,
respectively. Nonetheless, antifibrotics are being explored in non-IPF fibrosing ILDs
(F-ILDs) [6,29,30].

The present study shows the results of BAL flow cytometry analysis at diagnosis in
a large series of ILD patients, indicating that lymphocytes and neutrophils play oppos-
ing roles in the development of fibrosis, particularly in IPF, but also in the survival of
patients with F-ILDs. The predictive value of these results at diagnosis could lead to better
personalized immunomodulating and antifibrotic treatments.

2. Materials and Methods
2.1. Specimens

This retrospective and observational study from real-life medicine included clinical,
radiological, and anatomopathological data from patients referred from public hospitals in
the Murcia Region, Spain. A total of 1500 consecutive BAL samples were analyzed by flow
cytometry between 2000 and 2018. Samples from patients with pulmonary infections at the
moment of BAL procedure (n = 229), lung or other cancers (n = 211), asthma (n = 86), chronic
obstructive pulmonary disease (n = 82), or tuberculosis (n = 30) were excluded. Finally,
the study included 706 BAL samples from patients with ILDs. As a control BAL group,
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112 BAL samples were included from patients with suspected lung disease (mainly due to
the presence of micronodules on radiological images) that, after years of follow-up, did
not show clinicopathological evidence of lung disease in the electronic medical record. In
addition, to compare the outcome of ILD patients, 243 patients with monoclonal gammopa-
thy of undetermined significance (MGUS), without pulmonary disease and free of adverse
prognostic factors [31], were included as a survival control of the general population.

The BAL sampling procedure was performed following the official American Thoracic
Society clinical practice guidelines [32].

The end of evolutionary data collection was on 1 April 2023. Anamnesis, clinical
examination, radiology (radiography and high-resolution computed tomography, HRCT),
BAL cytomorphology and microbiology, and anatomopathological and functional pul-
monary studies were performed according to clinical practice in each hospital. Pulmonary
fibrosis was computed with the presence of reticular changes, traction bronchiectasis, and
honeycombing in the radiological study. IPF and other F-ILDs were studied separately.
Diagnostic criteria of the ILD subtype were based on the ATS/ERS classification [33].
Immunomodulatory treatment was administered according to standard practice [34]. An-
tifibrotics were available from 2014 onwards with limited access according to local restric-
tions. Based on information from the electronic medical record, patients were grouped
into 3 treatment groups: (1) patients who did not require systemic immunomodulatory
treatment; (2) patients who only received corticosteroids; and (3) patients who required
other immunomodulatory treatments (rituximab, azathioprine, mycophenolate mofetil,
cyclophosphamide, or tacrolimus) after corticosteroids.

2.2. Immunophenotype Studies

BAL samples were centrifuged, the cell pellet was washed with FACSFlow (Becton
Dickinson; BD; San Jose, CA, USA) and resuspended in 0.5 mL of FACSFlow, and 50 µL of
the sample was stained in a TrueCount tube (BD, San Jose, CA, USA) with the following
monoclonal antibodies: CD1a-PE (HI149), CD3-BV510 (SK7), CD4-APC (SK3), CD8-PE-Cy7
(SK1), CD16-V450 (3G8), CD19-APC (SJ25C1), CD20-FITC (L27), CD45-APCH7 (2D1), and
HLA-DR-PerCp (L243) from BD and CD66abce-FITC (Kat4c) from Dako (Santa Clara, CA,
USA). A minimum of 0.5 million events were acquired in an 8-color FACSCanto-II flow
cytometer (BD, San Jose, CA, USA) adjusted on a daily basis as previously described [31].
The analysis in Diva-Software 9.0 (BD, San Jose, CA, USA), following the gating strategy
described in Figure 1, included both alive and dead cells (identified by the loss of FSC and
SSC), as long as they maintained the expression of leukocyte markers.

2.3. Statistical Analysis

Data were collected in Excel 2010 (Microsoft Corporation, Redmond, WA, USA) and
analyzed in SPSS 21.0 (Armonk, NY, USA). Kaplan–Meier and Log-Rank tests were used
for survival estimation. Overall survival (OS) was defined as the time from the first BAL
analysis to death, with living patients censored on the date of the last follow-up. The 75th
percentile of the OS (Q3–OS) was used to compare groups. The incidence of death in each
group was estimated as the number of deaths divided by the sum of the follow-up times of
the patients in the group. Comparisons between quantitative variables were performed by
an ANOVA. p < 0.05 was considered statistically significant.
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Figure 1. Flow cytometry analysis of the leukocyte subsets contained in BAL samples. Cell subsets
were selected and colored as follows: lymphocytes in light brown (CD45++ SSClow), macrophages in
cyan (DR+ SSHigh), neutrophils in light green (CD66+ CD16+ DR−), eosinophils in magenta (CD16−
CD66dim), Langerhans cells in red (CD1a+), T lymphocytes in dark green (CD3+), and B lymphocytes
in dark blue (CD19+ CD20+). Additionally, the CD3+CD4+ and CD3+CD8+ T subpopulations were
detected. Likewise, the beads contained in the TrueCount tube were identified with a pink color,
which was used to calculate the absolute cell count per microliter of the sample. Analysis gates were
combined hierarchically and logically as shown on the right side and described at the bottom of
the figure.

3. Results
3.1. Clinical, Biological, and Therapeutic Characteristics of Study Groups

Table 1 presents the biological and clinical characteristics of the patient and control
groups as well as the incidence of fibrosis (fibrosis, UIP, reticular or honeycomb patterns in
the HRCT) and the main immunomodulating treatment in each pulmonary pathology. As
expected, pulmonary fibrosis was present in all patients with IPF, but it was also observed
in a variable proportion of other ILDs, with the highest incidence detected in NSIP (33.8%),
HP (28.8%), and U-ILD (25.0%). Some pathologies were predominantly present among
men, such as pneumoconiosis (96.3%), IPF (75.9%), eosinophilic ILD (76.5%), PLCH (66.7%),
and LIP (64.9%). Comparable age was observed among groups, although patients with
PLCH were younger (36.7 years) compared to the rest of patients (53.8 years).
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Table 1. Biological, clinical, and therapeutic characteristics of patient and control groups.

Patients
(n)

Sex
(% Man)

Age
(Mean ± SD)

Fibrosis 1

n (%)
Incidence
of Death 2

Treatments (%) 3

NT IC SC Other

Control groups 343 53.2% 61.2 ± 13.5 0.023
General population 4 243 53.1% 67.9 ± 12.3 0.021
BAL control 5 112 52.70% 53.5 ± 16.6 0.027
Idiopathic pulmonary fibrosis (IPF) 145 75.90% 66.4 ± 10.9 145 (100%) 0.147 36 31 51 27
Other interstitial lung diseases (ILDs) 561 54.60% 57.3 ± 17.1 125 (22.3%) 0.035 189 93 177 99
Sarcoidosis 82 47.60% 55.6 ± 14.8 16 (19.5%) 0.016 28 11 31 12
Hypersensitivity pneumonitis (HP) 48 54.20% 49.7 ± 17.6 15 (28.8%) 0.032 6 13 22 6
Organized cryptogenic
pneumonia (COP) 44 43.20% 62.3 ± 17.4 8 (18.6%) 0.048 8 4 23 9

Lymphocytic interstitial
pneumonia (LIP) 37 64.90% 53.2 ± 15.9 3 (7.9%) 0.025 18 4 9 6

Respiratory bronchiolitis ILD (RB-ILD) 25 40.0% 53.3 ± 22.8 2 (8%) 0.029 9 5 9 2
Desquamative interstitial
pneumonia (DIP) 35 51.40% 54.4 ± 20.8 2 (5.6%) 0.035 16 5 8 6

Nonspecific interstitial
pneumonia (NSIP) 6 156 49.40% 59.3 ± 15.5 52 (33.8%) 0.044 48 18 43 47

Pneumoconiosis 27 96.3% 56.5 ± 16.0 5 (19.2%) 0.052 11 8 6 1
Pulmonary Langerhans
c. histiocytosis (PLCH) 9 66.7% 36.7 ± 15.8 1 (11.1%) 0.033 6 1 1 1

Eosinophilic ILD 17 76.50% 51.2 ± 22.7 1 (5.9%) 0.030 0 3 13 1
Unclassifiable ILD (U-ILD) 80 60.0% 61.3 ± 12.4 20 (25%) 0.038 39 21 12 8

1 Pulmonary fibrosis was computed with the presence of reticular changes, traction bronchiectasis, and honey-
combing in the radiological study. 2 Number of deaths divided by the sum of follow-up years of patients in each
group. 3 NT: no treatment; IC: inhaled corticoid; SC: systemic corticoid. Other immunosuppressants: rituximab,
azathioprine, mycophenolate mofetil, cyclophosphamide, or tacrolimus. 4 Patients with monoclonal gammopathy
with a good prognosis (without cytogenetic alterations or tumor circulating plasma cells in the peripheral blood).
5 BAL was performed for etiological affiliation but with no evident ILD pathology during follow-up. 6 Patients
with connective tissue disease–ILD were included mostly in this group.

3.2. BAL Leukocyte Profiles with a Predominance of Neutrophils Increase with Age

Figure 2A shows the leukocyte content of BAL in individuals without lung disease
(Figure 2A). A predominance of macrophages (89.7 + 0.74%) and counts below 3% of
the other myeloid and lymphoid subsets were observed. However, in patients with ILD,
mean values of total lymphocytes were about 20% and neutrophils about 10%. Sarcoido-
sis, hypersensitivity pneumonitis (HP), cryptogenic organizing pneumonia (COP), and
lymphocytic interstitial pneumonia (LIP) showed a lymphocytic profile (mean lympho-
cytes > 20.5 ± 1.3%). IPF and respiratory bronchiolitis–ILD (RB-ILD) showed neutrophilic
profiles (mean neutrophils > 9.04 ± 0.7%) (Figure 2B). Although lymphocyte counts re-
mained stable, neutrophil counts increased gradually from 7.20 ± 0.68% to 9.75 ± 1.06%
and 10.73 ± 0.78% (p < 0.001) with the age of patients from <55 to 55–65 and >65 years,
respectively (Figure 2C). As a consequence, a significant reduction in the proportion of
lymphocytic ILDs (38.2%, 28.9%, and 21.9%, p < 0.001) and a significant increment in neu-
trophilic ILDs (15.4%, 25.0%, and 37.0%, p < 0.001) were observed as patient age increased
from <55 to 55–65 and >65 years, respectively (Figure 2D).

3.3. Lymphocytes Counteract the Deleterious Effect of Lung-Infiltrating Neutrophils

ROC analysis revealed cut-offs of 7.0% and 5.0% for lymphocytes and neutrophils,
respectively, associated with favorable and unfavorable prognostic values for the OS (see
Figure 3A for details). The combination of neutrophil and lymphocyte cut-offs showed
four groups with different survival rates (Figure 3B): patients with neutrophils < 5% and
lymphocytes > 7% showed the longest Q3–OS (10.0 ± 0.9 years, p < 0.001); patients with
neutrophils > 5% and lymphocytes < 7% showed the shortest Q3–OS (1.9 ± 0.4 years); and
patients with neutrophils < 5% and lymphocytes < 7% (5.1 ± 0.8 years) or neutrophils > 5%
and lymphocytes > 7% (5.6 ± 0.9 years) showed intermediate Q3–OS. Therefore, lymphocytes
seemed to counteract the deleterious effect of lung-infiltrating neutrophils.
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of leukocyte subset in bronchoalveolar lavage (BAL) of individuals without pulmonary pathology;
(B) mean BAL lymphocyte and neutrophil values in patients with different types of interstitial lung
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(D) proportion of patients with lymphocytic (lymphocytes > 20%), neutrophilic (neutrophils > 10%),
eosinophilic (eosinophils > 3%), and Langerhans cells (>1.5%) profiles, for patients aged <55, 55–65,
and >65. ***, indicate p < 0.001 in the ANOVA test.
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3.4. Lymphocytes Counteract the Harmful Effect of Neutrophils, Delaying the Onset of Lung
Fibrosis and Death of ILD Patients

As expected, the proportion of ILD patients free of pulmonary fibrosis progressively
decreased from 84.8% in patients aged under 40 to 41.9% in patients aged over 90 years
(Figure 4A). This was mainly due to the increasing incidence of IPF from 3.3% in patients
aged under 40 to 37.2% in patients aged over 90, with the most pronounced increase
between 50 and 60 years of age, from 6.7% to 21%. In contrast, the incidence of F-ILD
slightly increased from 12.0% in patients under 40 to 20.9% in patients over 90. As a
consequence, the incidence of death in patients with IPF was much higher at earlier ages
(0.1, 0.13, and 0.21 for patients in their 60s, 70s, and 80s, respectively) than in patients
with F-ILD (0.045, 0.047, and 0.12) and in patients free of fibrosis (0.01, 0.028, and 0.084)
or the general population (0.004, 0.008, and 0.025). Patients with F-ILD showed a similar
incidence of death to that of patients without pulmonary fibrosis until they reached an age
older than 80, when they showed a higher incidence of death (0.27 vs. 0.128). Patients with
ILDs free of fibrosis showed a similar incidence of death to that of the general population
until their 80s (0.084 vs. 0.025) and older (0.128 vs. 0.093), when they showed a slightly
higher incidence of death.
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Figure 4. Incidence of fibrotic ILD (F-ILD), idiopathic pulmonary fibrosis (IPF), and death according
to the age and the counts of lymphocytes and neutrophils in the BAL of patients. (A) Incidence
of F-ILD, IPF, and death (estimated as the percentage of the sum of deaths divided by the sum of
follow-up times of patients) according to the age of ILD patients; (B) incidence of F-ILD and IPF
in patients according to the counts of lymphocytes (<7%, 7–20%, or >20%) and neutrophils (<5%,
5–15%, or >15%) in the BAL at diagnosis. p < 0.001 in the Chi-square test; and (C) Kaplan–Meier and
Log-Rank tests for overall survival (OS) of the general population, ILD patients without fibrosis, and
F-ILD and IPF patients. Pulmonary fibrosis was computed with the presence of reticular changes,
traction bronchiectasis, and honeycombing in the radiological study. The 75th percentile OS (Q3–OS)
is shown for each case.

The incidence of IPF was inversely proportional to the BAL lymphocyte counts (34.1%,
18.6%, and 8.8% for lymphocytes <7%, 7–20%, and >20%, respectively), but directly pro-
portional to BAL neutrophil counts (9.6%, 22.2%, and 42.6% for neutrophils <5%, 5–15%,
and >15%, respectively). In contrast, the incidence of F-ILD was not clearly related to BAL
lymphocyte or neutrophil counts (Figure 4B).
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Kaplan–Meier curves showed that ILD patients without pulmonary fibrosis presented
life expectancy comparable to that of the general population (Q3–OS of 11.1 ± 1.3 years vs.
not reached), whilst patients with F-ILD (4.6 ± 0.8 years) and IPF (1.8 ± 0.3 years; p < 0.001)
showed shorter survivals (Figure 4C).

Therefore, although BAL neutrophils or lymphocytes at diagnosis are related to the
diagnosis of IPF but not of F-ILD, both fibrotic processes were associated with shorter
lifespans of ILD patients.

To further investigate the role of lymphocytes and neutrophils in the incidence of
F-ILD and IPF, the combined effect of increasing amounts of neutrophils (<5%, 5–15%, and
>15%) and lymphocytes (<7%, 7–20%, and >20%) were studied. Although the combined
amounts of neutrophils and lymphocytes were not clearly associated with the development
of fibrosis in non-IPF LDs during aging, the amounts of neutrophils above 5% and of
lymphocytes below 7% were associated with increasingly higher incidences of IPF in ILD
patients in their 50s and older, with incidences of IPF greater than 50% in patients in their
70s and older (p < 0.001). However, in patients with neutrophil counts above 5% but
lymphocytes above 7%, the incidence of IPF remained between 15% and 20% in patients in
their 40s to their 80s. A similar situation occurred in all patients with neutrophil counts
below 5%, regardless of lymphocyte counts (Figure 5A).
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Figure 5. Lymphocytes counteract neutrophil-promoted idiopathic pulmonary fibrosis (IPF) during
aging. (A) Incidence of F-ILD and IPF according to the age of ILD patients and the combined counts
of neutrophils (>5%) and lymphocytes (>7%) in the BAL; (B) incidence of F-ILD and IPF in ILD
patients according to the combined counts of neutrophils (<5%, 5–15%, or >15%) and lymphocytes
(<7%, 7–20%, or >20%) in the BAL of ILD patients at diagnosis. Pulmonary fibrosis was computed
with the presence of reticular changes, traction bronchiectasis, and honeycombing in the radiological
study p estimated using the Chi-square test. Dashed lines indicate the mean incidence of fibrosis in
total patients.

When the role of BAL neutrophil and lymphocyte counts was assessed regardless of
patient age, neutrophils >5% were associated with slightly higher rates of F-ILD (≈22%,
p = 0.016) compared with neutrophils <5% (≈12%), regardless of lymphocyte counts.
However, the incidence of IPF increased in parallel with neutrophil counts but was strongly
counterbalanced by lymphocytes. Thus, IPF rates for neutrophil counts <5%, 5–15%, and
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>15% were 13.2%, 40.6%, and 59.7%, respectively, if lymphocyte counts were below 7%; but
10%, 18.8%, and 31.6% if lymphocyte counts were between 7% and 20%; or 6.5%, 8.4%, and
20.7% if lymphocyte counts were over 20% (p < 0.001). This demonstrates a dose–response
effect both of neutrophils in inducing IPF and of lymphocytes in protecting against the
deleterious effect of neutrophils (Figure 5B).

3.5. Neutrophil and Lymphocyte Counts Were Associated with Patient Overall Survival in
Non-IPF ILD, but Not in IPF

Next, we evaluated the influence of the combined neutrophil and lymphocyte counts
on the patient’s overall survival. In patients without fibrosis or with F-ILD, neutrophil
and lymphocyte counts were negatively and positively associated with patient survival,
respectively. Thus, the Q3–OS for patients with neutrophils < 5% and lymphocytes > 7%,
neutrophils < 5% and lymphocytes < 7%, neutrophils > 5% and lymphocytes > 7%, and
neutrophils > 5% and lymphocytes < 7% for patients without fibrosis were 16.0 ± 4.3, not
reached, 6.4 ± 1.7, and 6.4 ± 2.4 years (p = 0.03), respectively; and for patients with F-ILD,
the values were 8.7 ± 1.7, 3.5 ± 1.2, 5.0 ± 1.5, and 1.6 ± 0.4 years (p = 0.04), respectively.
However, in IPF patients, once the disease was diagnosed, survival was much shorter
regardless of the neutrophil and lymphocyte counts (p = 0.708, Figure 6).
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Figure 6. Neutrophil and lymphocyte counts were associated with the overall survival (OS) of ILD
patients without fibrosis and with pulmonary fibrosis associated with ILDs (F-ILDs), but not with
the OS of patients with idiopathic pulmonary fibrosis (IPF). Kaplan–Meier and Log-Rank tests for
the OS of ILD patients according to the combinations of lymphocytes (above or below 7%) and
neutrophils (above or below 5%) and the type of fibrotic process (F-ILD or IPF). Pulmonary fibrosis
was computed with the presence of reticular changes, traction bronchiectasis, and honeycombing in
the radiological study.

3.6. The Type of Immunomodulatory Treatment Differentially Influenced Overall Survival in
Patients With or Without Fibrosis

The type of immunomodulating therapies, consisting mainly of corticosteroids or
other types of immunosuppressants (rituximab, azathioprine, mycophenolate mofetil,
cyclophosphamide, or tacrolimus), was not associated with the differential OS of patients
without fibrosis (p = 0.634). However, patients with fibrosis (F-ILD and IPF) treated with
corticosteroids showed a shorter Q3–OS (2.4 ± 0.3 vs. 4.0 ± 1.9 years, p = 0.011) than
patients treated with other immunosuppressants (Figure 7).
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Figure 7. Immunomodulating therapies were differentially associated with overall survival in patients
with or without fibrosis. Kaplan–Meier and Log-Rank tests for the overall survival (OS) of ILD patients
according to the type of immunomodulatory treatment, corticosteroids vs. other immunosuppressants
(rituximab, azathioprine, mycophenolate mofetil, cyclophosphamide, or tacrolimus), and the presence
of fibrosis. The 75th percentile of the OS (Q3–OS) is shown for each case.

4. Discussion

Although the course of the disease for an IPF patient cannot currently be predicted
at diagnosis, data from clinical trials and observational studies indicate that antifibrotic
therapies can improve life expectancy [14]. However, many individuals with IPF remain
untreated, either because the physician perceives that the disease is stable or because they
are concerned about its potential side effects [35]. Early treatment is critical to preserving
patients’ lung function, reducing the risk of acute exacerbations, and improving outcomes
of this disease that induce irreversible and fatal damage. Data from this manuscript and
others [36] make it clear that once IPF is diagnosed, the survival of these patients in relation
to the general population or other ILDs is drastically shortened. Therefore, the availability
of adequate prognostic markers could help clinicians to prescribe antifibrotic treatments. In
this sense, our data can support early antifibrotic treatment since young patients with a
greater probability of developing fibrosis or having more rapidly progressive fibrosis are
identified at diagnosis, due to the mere fact that they have a high number of neutrophils
infiltrating the lung without the control that lymphocytes exert on these harmful cells.
However, the fact that current clinical guidelines indicate that patients with a clear UIP
pattern do not require BAL analysis poses a challenge [32], as it could help with prognosis,
therapy guidance, and the discrimination of overlapping UIP patterns in IPF and other
ILDs [30]. In fact, in our series, up to 14% of IPF patients with lymphocytes >20% were
detected in BAL. In these patients, the analysis of the cellular content of BAL could have
helped to diagnose this pathology more correctly [37].

It has been described that alveolar macrophages play an important antifibrotic role and
contribute to alveolar homeostasis [36], so it could be thought that any reduction in their
numbers could be associated with fibrosis. Our results show that as long as this reduction
is made by neutrophils, a profibrotic state is established at an early age; however, when this
reduction is due to lymphocytes, the fibrotic processes are attenuated. More importantly,
when both neutrophils and lymphocytes are elevated, the presence of lymphocytes was
associated with a reduction in the fibrosis rates in a dose–response manner. Although there
is no clear evidence that lymphocytes may protect patients from fibrosis, beyond the role
described for type-II innate lymphocytes (ILCs2) [38], our data seem to demonstrate that
the infiltration of the lung by lymphocytes might be associated with less fibrosis. This
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fact could be connected with the longer OS observed in patients with fibrosis treated with
non-corticosteroid immunomodulators [14], also observed in our series.

IPF and F-ILDs have overlapping genetics, pathophysiological mechanisms, and
clinical behavior [30,39]. However, the data described in this study show that the results of
lung-infiltrating lymphocytes or neutrophils are different in these pathologies. Although,
in both clinical entities, high counts of lymphocytes and neutrophils had either favorable
or unfavorable predictive value, respectively; in IPF, these cells were critical for an earlier
development of the disease but were not so clearly associated with the patient’s overall
survival once the disease was diagnosed. In contrast, the development of F-ILD did
not seem to be clearly related to lymphocyte and neutrophil counts; nonetheless, high
neutrophil counts were associated with shorter overall survival and a greater amount of
lymphocytes appeared to decrease the negative contribution of neutrophils. Although the
beneficial effect of lymphocytes could be due to a better response to immunomodulating
treatments in lymphocytic lung pathologies [37,40], the fact is that patients with both high
numbers of neutrophils and high numbers of lymphocytes were associated with a lower
rate of IPF and longer survival in F-ILDs. Therefore, the identification of factors secreted by
lymphocytes or their interactions in the lung microenvironment [36] could contribute to
the development of new therapies to mitigate fibrogenesis and improve patient outcomes.

Unfortunately, in this retrospective study it has not been possible to establish the
progressive condition in all F-ILD cases, so we cannot know whether neutrophils and
lymphocytes may be involved in the development of progressive F-ILD. However, the
shorter survival in both fibrotic and non-fibrotic ILDs associated with high counts of
neutrophils, improved with higher lymphocyte counts, suggests that these cells, like in IPF,
may be involved in the development of progressive F-ILD. This should be evaluated in new
and future studies. In addition, our study was also unable to assess the impact of modern
antifibrotics, due to the limited availability of this treatment during the study period.
However, conducting clinical trials evaluating antifibrotics in progressive F-ILDs [29,30]
would benefit from the analysis of BAL cell content as their results could be different
depending on the inflammatory microenvironment of the lung.

In conclusion, the results of our study suggest that accurate counting of BAL lympho-
cytes and neutrophils by flow cytometry in ILD patients at diagnosis could help guide
immunomodulatory and antifibrotic therapies. However, further studies will be necessary
to confirm our results and identify the molecular mechanisms involved.
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