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Abstract: The work presented here marks a further advance in expert uncertainty quantification. In a
recent probabilistic evaluation of ice sheet process contributions to sea level rise, tail dependence was
elicited and propagated through an uncertainty analysis for the first time. The elicited correlations
and tail dependencies concerned pairings of three processes: Accumulation, Discharge and Run-off,
which operate on major ice sheets in the West and East Antarctic and in Greenland. The elicitation
enumerated dependencies between these processes under selected global temperature change sce-
narios over different future time horizons. These expert judgments allowed us to populate a Paired
Copula Bayesian network model to obtain the estimated contributions of these ice sheets for future
sea level rise. Including positive central tendency dependence and tail dependence increases the
fatness of the upper tails of projected sea level rise distributions, an amplification important for de-
signing and evaluating possible mitigation strategies. Detailing and jointly computing distributional
dependencies and tail dependencies can be crucial components of good practice for assessing the
influence of uncertainties on extreme values when modelling stochastic multifactorial processes.

Keywords: expert judgment; Bayesian networks; copulas

1. Introduction

Many societally important issues entail substantial scientific uncertainty and their
characterisation and numerical treatment for hazard or risk assessment can be challenging.
It can also be fraught and compromised by limiting assumptions. Some examples of this
are as follows: emergent or species-jumping zoonoses, or other nascent public health
threats; industrial accidents; natural hazards, such as floods, earthquakes or volcanic
eruptions; and climate change. Here, we use a special case from the last of these to illustrate
how uncertainty distribution correlations and tail dependencies can influence, and avoid,
mistakenly under-estimating extreme value likelihoods.

Future sea level rise (SLR) poses serious threats to the viability of many coastal
communities and important facilities but is challenging to forecast over decadal to century
timescales using deterministic modelling approaches. In the period following the 2013 Fifth
Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) [1]
and the subsequent Sixth Assessment Report (AR6) in 2023 [2], considerable advances were
made in understanding ice sheet melting processes, in their numerical modelling and in
the observational record of ice sheet contributions to global mean SLR. In addition, severe
limitations concerning the predictive capability of ice sheet models were better recognised
(e.g., [1]).
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However, at the time of AR5, quantitative estimates of future melting rates of the three
major global ice sheets (Greenland, West Antarctica, East Antarctica) represented the largest
source of uncertainty in estimating future SLR driven by climate change. Therefore, to
serve the pressing needs of the science and policy communities, it was necessary to exploit
alternative approaches for assessing future SLR and, critically, the associated uncertainties.

Therefore, in the interval between the two IPCC Assessment Reports (AR5 and AR6),
a structured expert judgment study was undertaken, focused on potential ice sheet contri-
butions to SLR. New techniques were used for modelling correlations between inter- and
intra-ice sheet processes and, more crucially, for quantifying tail dependencies. The relevant
expert elicitation was undertaken in 2018 via separate, two-day workshops, one held in the
USA and one in the UK, accessing the professional judgments of twenty-two glaciologists
in total. Details of how these experts were selected are provided in [3] Supplementary
Information (SI) Note S1. The protocols of the workshops and the elicitation questions were
identical, so that the two sets of findings could be combined using an impartial weighting
approach (see Section 2).

Structured expert judgment (SEJ)—as opposed to other types of expert elicitation or
basic opinion polling—weights each expert using objective estimates of their ‘statistical
accuracy’ and ‘informativeness’, determined using the experts’ uncertainty evaluations over
a set of seed questions (sometimes referred to as calibration items); the questions, drawn
from glaciology, were all ones with ascertainable values (see Section 2). The approach is
analogous to weighting alternative climate-related models based on their ability to simulate
an observed property of the climate system according as their different capabilities in
capturing a relevant property, such as the regional 20th century surface air temperature
record (for the specifics of the elicitation seed items see [3] SI Note 8 and doi for the
available files).

In a typical SEJ, the weighted combination ‘Decision Maker’ (DM)—i.e., the perfor-
mance weighted (PW) combination of all the experts’ judgments—in general outperforms
an equal weights (EW) combination in terms of statistical accuracy and informativeness
jointly. The approach is particularly effective at identifying those experts who can quantify
their uncertainties with high statistical accuracy for specified problems rather than, for
example, experts with restricted domains of knowledge or, even, those who have high
scientific reputations but a questionable judgment of scientific uncertainty [4].

In the motivating study [3], participating glaciologists quantified their uncertainties
for the three main physical processes influencing ice sheet mass balance: Accumulation,
Discharge and surface Run-off. The experts carried this out separately for the Greenland,
West Antarctic and East Antarctic ice sheets (GrIS, WAIS and EAIS, respectively) and for two
schematic global surface air temperature change scenarios. The first temperature trajectory
(Low) stabilises in 2100CE at +2 ◦C above pre-industrial global mean surface air temperature
(defined as the average for 1850–1900) and the second (High) stabilises at +5 ◦C ([3] SI
Figure S1). The experts generated process-dependent contribution values to total sea level
change, with probabilistic uncertainties, for four projection dates: 2050CE, 2100CE, 2200CE
and 2300CE. The experts also quantified dependencies between Accumulation, Run-off
and Discharge for each ice sheet individually. But to reduce the elicitation burden on the
experts, it was agreed that a consideration of process dependencies between ice sheets
had to be restricted solely to Discharge, as that was regarded by the group as the most
critical process in terms of contributing to sea level rise. Thus, inter-ice sheet Discharge
dependencies were determined for the 2100CE High temperature rise scenario, but not for
the other processes or time horizons.

Global mean surface air temperature trajectories were adopted for the elicitation,
rather than CO2 emission scenarios. This was to isolate the experts’ judgments about the
relationships between temperature change scenarios and ice sheet changes from judgments
in relation to the complicating—and potentially confounding—issue of future climate
sensitivity. For the elicitation, the most straightforward approach was for the experts
to tie their judgments directly to scenarios related to mean global air temperature. An
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SEJ elicitation on CO2 emissions using the same methodology but without dependence
elicitation is described in [5].

An important and unique element of the 2018 elicitation was the quantification of intra-
and inter-ice sheet dependencies (see also [3] SI Note S1.5). Two features of dependence
were elicited: a ‘central dependence’ and an ‘upper tail dependence’. The former seeks to
capture the probability that one variable exceeds its median given that the other variable
exceeds its median, while the latter captures the probability that one variable will exceed its
95th percentile given that the other exceeds its 95th percentile. It is well known that these
two types of dependence are, in general, markedly different, a property that is not captured
by the usual Gaussian dependence model [6]. The latter assumption always imposes tail
independence, regardless of the degree of central dependence, and can produce large
errors when applied inappropriately. For example, if—under a given temperature rise
scenario—Greenland ice sheet Discharge exceeds its 95th percentile, what is the probability
that Greenland Run-off will also exceed its 95th percentile? This probability may be
substantially higher than the independent probability of 5%, and ignoring tail dependence,
may lead to under-estimating the probability of high end SLR contributions.

Based on each expert’s responses, a joint distribution was constructed to capture the
dependencies between Run-off, Accumulation and Discharge for GrIS, WAIS and EAIS with
dependence structures chosen, per expert, to capture both central and tail dependencies
(see [3]: Methods and SI Note S1.5).

To help interpret elicitation findings, in [3] the participating glaciologists were also
asked to provide qualitative and rank-order information on what they regarded to be
the leading processes for influencing ice dynamics and surface mass balance (e.g., snow-
fall accumulation minus ice ablation loss). For completeness, the combined sea level
contribution—from all mass balance processes and from the three ice sheets—was com-
puted, assuming either independence or dependence (further details can be found in [3] SI).

Here, focus is placed on appraising the original elicited dependencies in a more de-
tailed way than was possible in [3] and on establishing any improvement in the uncertainty
quantification of sea level rise projections, which may be achieved by incorporating more
sophisticated mathematical representations of the various contributory dependencies into
the Bayesian network (BN) model—relative, that is, to those in the earlier, 2019 results.
The elicitation was conducted in terms of future changes to sea level due to sheet process
contributions under different global temperature change scenarios. At the first workshop,
it was agreed the baseline reference would be the mean 2000–2010 global annual mass
transfer rate from the three ice sheets to the ocean. To express future SLR trends, experts
provided their judgments in terms of sea level change relative to this baseline rate. The
baseline rate is added to the aggregated SLR change judgments, integrated over the chosen
future timescales. This causes the values in [3] to differ slightly from the raw elicitation
values presented here. N.b., here, improvement in the quantification of SLR projections may
entail an increase in quantified uncertainty, especially in distribution tails—an important
potential outcome for the credibility of sea level rise estimation.

Our refined and updated analysis can be consequential because a very significant
conclusion in [3] was that probability distributions with long upper tails were greatly
influenced by inter-dependencies between ice sheet processes and between the three ice
sheets collectively. One important result in [3] was the finding that global total SLR
(including thermal expansion and glacier Run-off) exceeding 2 m by 2100CE was estimated
to lie beneath the 95 percentile of the combined glaciologists’ judgments. When published
in 2019, this was more than twice the upper value put forward previously for 2100CE by
the Intergovernmental Panel on Climate Change in AR5.

Thus, the 95th percentile estimate in [3], with a sea level rise estimate exceeding 2 m by
2100CE, represents a substantial future societal risk. Because a sound basis for the further
estimation of the probabilities of plausible upper tail rises in global sea level is justified,
the imperative exists for adopting a more comprehensive appraisal and refinement of
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uncertainty modelling—using the most advanced Bayesian network methods and copula
dependence modelling techniques.

Therefore, in the following sections, we describe and discuss the following: Section 2
methods for processing expert elicitations and for constructing related BNs; Section 3
detailed assessments of margins summarised from [3], tail dependencies and copulas and
copula-based BNs; Section 4 implications of the overarching BN modelling and analysis and
appraisal of the BN model performance; Section 5 a summary of revised findings pertinent
to future SLR projections and Section 6 conclusions concerning the generic methodologi-
cal advances intrinsic to our uncertainty modelling approach and recommendations for
further work.

2. Materials and Methods

This section starts with the presentation of the structured expert judgment (SEJ)
method, followed by basic concepts of Bayesian networks (BNs).

2.1. Structured Expert Judgment SEJ-Method

The experts quantified their uncertainty for the physical processes of Run-off (R),
Accumulation (A) and Discharge (D) for the ice sheets in Greenland (G), West Antarctica
(W) and East Antarctica (E) for each epoch (2050, 2100, 2200, 2300) and for a Low (+2 ◦C)
and High (+5 ◦C) warming scenario. Expert assessments take a form of fixed percentiles,
5th, 50th, 95th, from the assessor’s subjective distribution for a each unknown quantity. In
addition, experts quantified their uncertainty for 16 calibration variables from their field,
for which true values were retrieved. These data were processed according to the Classical
Model (CM), which constructs a performance-based weighting based on the calibration
variables and compares this with equal weighting (for a recent exposition of CM concepts,
see [7] or the Supplementary Information of [3]).

CM uses two measures of performance:

1. Statistical Accuracy (SA) is measured as the probability of falsely rejecting the hy-
pothesis that a probabilistic assessor is statistically accurate. It is, in other words, the
p-value of rejection for this hypothesis. We hasten to add that CM does not test and
reject expert hypotheses but, in compliance with proper scoring rule theory for sets of
assessments, uses this p-value to measure the degree of correspondence between as-
sessments and data in forming weighted combinations of expert distributions. When
n true values for a number of such quantities are observed, we compute the sample
distribution s of inter-quantile relative frequencies and compare this with the theoreti-
cal inter-quantile mass function p = (0.05, 0.45, 0.45, 0.05). The test statistic is 2n times
the log likelihood ratio of s and p. Assuming that the realisations are independently
sampled from the assessor’s distributions, this statistic is asymptotically chi-square
distributed with degrees of freedom equal to the number of assessed percentiles. Low
scores (near 0) mean it is unlikely that the divergence between s and p should arise by
chance. Higher scores (near 1) indicate better agreement between s and p.

2. Informativeness (In f ) is measured as the Shannon relative information of the minimal
information fit to the experts’ percentiles, relative to a user selected background
measure. In this analysis, the background measure per variable is always uniform on
an interval 20% larger than the smallest interval containing all experts’ assessments
and the realisation. Relative information is tail insensitive and “slow” so that the
experts’ information scores are quite insensitive to the size of the background measure.
This slowness means that the ratio of In f scores is much less variable over experts
than the ratio of SA scores.

Dependence was considered important for the probabilistic modelling as the physical
processes interact in ways not fully understood. Central dependence refers to overall
dependence as measured by rank correlation; tail dependence refers to dependence in
the deep tails, which is not captured by central dependence measures. These are distinct
notions [6]. Variables can have a weak central dependence yet show strong association in
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the tails. In modelling SLR, it is especially important to capture, e.g., the probability of very
high values of Run-off and Discharge as these both contribute to SLR.

2.2. Bayesian Networks

The qualitative part of a BN is represented by a directed acyclic graph (DAG), G = (V, E),
with nodes V = {v1, . . . , vd} and directed edges (arcs) E. Any sequence of arcs vi1 → . . . →
vik , is called a path from node vi1 to node vik in G. The graph G is called acyclic if it does not
contain a path that starts and ends at the same node. For each edge v → w in E, the node
v is said to be the parent of w and w is said to be the child of v. Moreover, we denote as
pa(v) (ch(v)) the set of parents (children) of v. Since G is a directed acyclic graph, its nodes
can be ordered (order denoted as ‘<’) such that parents appear earlier in the order than the
children. A simple DAG with four nodes is shown in Figure 1. In this DAG, node v3 has
two parents (pa(v3) = {v1, v2}) and one child (ch(v3) = {v4}). Moreover, the nodes of this
DAG can be uniquely ordered v1 < v2 < v3 < v4.

v1 v2

v3

v4

Figure 1. DAG with 4 nodes.

The nodes in V correspond to random variables X1, . . . , Xd. We assume that if
two nodes are connected by an arc, then the corresponding variables are directly related,
and if there is no arc between two nodes vi and vj and vi < vj, then corresponding variables
Xi and Xj are conditionally independent given variables corresponding to all parents of
node vj [8].

The quantitative part of the BN models is composed of the conditional distributions
of each node, given its parents. Then, the joint distribution of (X1, . . . , Xd) is equal to the
product of these conditional distributions:

PV(xV) = ∏
v∈V

Pv|pa(v)

(
xv

∣∣∣xpa(v)

)
. (1)

If all random variables X1, . . . , Xd are discrete, then the product of conditional prob-
ability tables on the right hand side of (1) gives us the joint probability mass function of
(X1, . . . , Xd). If all X′

is are absolutely continuous, the conditional densities of each node
given their parents are needed and PV represents the joint density of (X1, . . . , Xd).

2.3. Gaussian BNs

The most popular applications are Gaussian BNs, where the conditional density
of each node is Gaussian and the node means are a linear function of the parents and
constant variances.

Xv|pa(v) ∼ N

µv + ∑
w∈pa(v)

bw
v Xw, σ2

v

.

Such a representation of BNs is equivalent with the specification of the joint Gaussian
distribution of variables corresponding to nodes of the DAG (see e.g., [8]).
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2.4. Copula-Based BNs

The restrictions of Gaussian BNs can be relaxed by the application of copulas. A
copula is a distribution on the unit hypercube with uniform marginal distributions [6]. It
contains all the information about the dependence between elements of a random vector.
One can extract such a dependence structure corresponding to, e.g., multivariate Gaussian
distribution in the form of a Gaussian copula and use it to construct a BN with this copula
and different marginal distributions. Gaussian copula-based BNs have been successfully
applied in many areas (some examples are described in [9]). Copulas other than Gaussian
types of copulas are available that are able to model asymmetries and/or tail dependencies.
In Figure 2, two bivariate copula densities are presented.

Figure 2. Gaussian and Gumbel copula densities both with correlation 0.7.

The Gumbel copula presented in Figure 2 is an example of copula belonging to the
Archimedean family. It is asymmetric and has a property of upper tail dependence, which
can be observed as a very high value of its density at the (1,1) corner of the unit square.
The extensions of Archimedean copulas to higher dimensions are available but they are
limited by the types of dependencies that these models can describe. In particular, the
canonical Archimeaden copulas are able to only model exchangeable dependencies. In [10],
Archimedean copulas were applied to represent the conditional densities in the density
decomposition of BN in (1).

In [11], a very flexible copula-based BN approach was introduced. It is based on the
representation of each conditional density in the factorisation in (1) using a sequence of
bivariate (conditional) copulas (see also [12,13]). For a node that has more than one parent,
the convention is to order its parents (construct a parental ordering) and assign several
copulas. First, a copula is assigned between the node and its first parent; then, a copula
is assigned between the node and its second parent, conditional on the first parent; then,
a copula is assigned between the node and its third parent, conditional on the first and
the second parents. This process continues for all parents of each given node. Note that
all these (conditional) copulas are unconstrained, in the sense that they can be chosen
independently of each other and still form a valid density.

A Paired Copula Bayesian network (PCBN) is composed of the following:

• (qualitative part) a DAG, G and a set of orders of parents of each node Ov, denoted
as O;

• (quantitative part) marginal densities of variables corresponding to each node in G
and the set of conditional copulas cwv|pa(v;w), where pa(v; w) denotes a set of parents of
v before w in the order Ov (for nodes without parents cwv|pa(v;w) = cwv by convention).

The joint density PV(xV) in (1) in case of paired copula specification, can be rewritten

PV(xV) = ∏
v∈V

P(xv) ∏
w∈pa(v)

cwv|pa(v;w)

(
Fw|pa(v;w)

(
xw

∣∣∣xpa(v;w)

)
, Fv|pa(v;w)

(
xv

∣∣∣xpa(v;w)

))
(2)
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where the functions Fw|pa(v;w)

(
xw

∣∣∣xpa(v;w)

)
can be computed from copulas assigned to the

arcs of BN (the copulas in simplified form, i.e., not depending directly on the conditioning
variables, are presented in the decomposition (2)). This distribution comprises the product
of margins: i.e., the first product in (2) and the product of copulas for each node and its
parents (the second product in (2)). This second product is a factorisation of the joint copula
corresponding to the joint density, which can be denoted as cV .

Since the parental set of node v3 in the DAG in Figure 1 can be ordered as v1, v2 or
v2, v1, then the following copulas can be assigned to the BN’s arcs:

c12, c13, c23|1 and c34

or
c12, c23, c13|2 and c34.

When all the copulas in the factorisation (2) are Gaussian copulas, then the joint
distribution of variables corresponding to nodes in the graph is the distribution with copula
cV , which is the joint Gaussian copula. Hence, the Gaussian copula-based BNs are a special
case of PCBNs.

PCBNs require the specification of bivariate (conditional) copulas, which are uncon-
strained. They can belong to any parametric family or can be non-parametric.

3. Results SLR—Model

Below, we present a recent application of PCBN models to compute sea level rise
contributions from ice sheets, following [3].

3.1. Assessment of Marginals

In this section, a brief summary of the revised assessments of contributions to future
sea level rise due to Accumulation (A), Run-off (R) and Discharge (D) for Greenland (G),
and the West (W) and East (E) Antarctic ice sheets is presented to illustrate the impact
of our dependence modelling on the published findings. The results relate to the ‘High’
temperature scenario in [3], under which the global mean annual Surface Average Temper-
ature rises by +5 ◦C by year 2100, with respect to pre-industrial temperatures (but, here,
excluding the 2000–2010 baseline forward adjustment).

The experts provided their judgments in the form of 5th, 50th and 95th percentiles of
quantities of interest (see one example below).

In the case of Greenland, for a global temperature rise of +5 ◦C by 2100, what will be the
integrated contribution, in mm of SLR, relative to 2000–2010 for the following:

(i) Accumulation
5% value: 50% value: 95%value:

(ii) Run-off
5% value: 50% value: 95%value:

(iii) Discharge
5% value: 50% value: 95%value:

The experts also provided judgments on so-called seed questions, which were used to
assess their performance and then to choose a weighted combination of experts to obtain
distributions of SLR contributions. The full analysis of the assessments and the results can
found in the SI [3]. The analysis resulted in eight experts obtaining non-zero weight. These
weights are presented in Table 1.

Table 1. Weights of experts with non-zero weight.

Expert Ex 3 Ex 6 Ex 8 Ex 9 Ex 12 Ex 14 Ex 24 Ex 27

Weights 0.28 0.03 0.11 0.07 0.09 0.30 0.04 0.08
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The marginal distributions of each expert’s assessment of the contribution to sea level,
due to Discharge in West Antarctica (WD) under the High (+5 ◦C by 2100) scenario, together
with the performance-based combination, are shown in Figure 3. We can see some marked
variability in expert opinions, such as is often observed in SEJ studies. More information
about the expert assessments and the analysis of expert performance in this case can be
found in the SI [3].

Figure 3. Cdf plots of marginal distributions of sea level contributions of West Antarctica due to
Discharge assessed by experts 3, 6, 8, 9, 12, 14, 24 and 27, and the performance-based combination
PWWD. The latter black dashed line is mainly hidden in the central region of the various expert Cdfs.

3.2. Assessment of Dependencies

All experts quantified the dependence between these quantities at 2100 with +5 ◦C
global surface air temperature warming, with respect to pre-industrial temperatures. The
experts were asked to assess bivariate dependencies between pairs X, Y (all combinations
are presented in Figure 4 as edges of the undirected graph) in the form of the 0.5 and
0.95 exceedance probabilities (ExcProb).

P(Y > qY,0.5|X > qX,0.5), P(Y > qY,0.95|X > qX,0.95) (3)

where qY,0.5, qY,0.95 denote 0.5 and 0.95 quantiles (i.e., 5th and 95th percentiles) of the
distribution of Y, respectively.

GA GR

GD

WA WR

WD

ED

EA

Figure 4. Graph of bivariate relationships assessed by experts.

Some experts were comfortable enough to provide assessments in the form of values
of these probabilities; others preferred to use the classification presented in Table 2. All of
the experts’ responses were translated to the classification scheme in Table 2 (this scheme



Entropy 2024, 26, 949 9 of 17

is slightly more comprehensive than the summary Supplementary Information provided
originally in Table S8 in [3]).

Table 2. Colour coding dependencies.

Colour Description 0.5 ExcProb 0.95 ExcProb

Strong positive 0.8 0.8

Positive 0.7 0.5

Weak positive 0.6 0.3

Independent 0.5 0.05

Weak negative 0.4 0.03

Negative 0.3 0.02

Strong negative 0.2 0.01

3.3. Experts’ BNs

The copulas corresponding to the assessed 0.5 and 0.95 ExcProb can be easily computed
for parametric copulas with cumulative distribution function C as follows:

ExcProbp =
1 − 2p + C(p, p)

1 − p

where p = 0.5, 0.95. The results are presented in Table 3. Frank’s copula is chosen when no
tail dependence is indicated by the expert. For strong tail dependence, together with strong
overall dependence, the Survival Clayton copula is preferred, and, when medium degrees
of tail and of overall dependence are suggested, this situation is associated with either a
Gaussian or with a Gumbel copula. In cases where an expert assessed the 0.5 ExcProb to be
equal to 0.5 (as applies in case of independence) and also indicated that tail dependence is
present, the t-copula is chosen.

Note that it might be not possible to choose a copula (out of five parametric families
considered in this study, or even in general) that realises values of both ExcProb provided
by an expert. For instance, when the 0.5 ExcProb is assessed to be 0.5 and the 0.95 ExcProb
is larger than 0.05, then the t-copula, t(0,1), is chosen. In this case, the 0.5 and 0.95 ExcProb
are 0.5 and 0.3, respectively. Of the parametric copulas used in this study, there is no copula
that would realise the 0.5 ExcProb of 0.05 and 0.95 ExcProb as larger than 0.3.

Table 3. Copulas with parameters corresponding to colour coding.

0.5 ExcProb 0.95 ExcProb Copula
(prm)

Realised 0.5;
0.95 0.5 ExcProb 0.95 ExcProb Copula

(prm)
Realised 0.5;

0.95

Indep 0.5; 0.05 Gum (1.25) 0.6; 0.3

Frank (1.8) 0.61; 0.1 Gum (1.5) 0.67; 0.44

Frank (2.2) 0.63; 0.11 Gum (1.65) 0.7; 0.5

t (0,1) 0.5; 0.3 SClay (2) 0.75; 0.7

Gauss (−0.2) 0.43; 0.02 SClay (2.5) 0.78; 0.76

Gauss (0.6) 0.7; 0.31 SClay (3) 0.81; 0.8

Gauss (0.8) 0.79; 0.5

To quantify dependencies in PCBN, the conditional copulas are computed (out of the
five types of copulas discussed above), such that the 0.5 and 0.95 ExcProb for bivariate
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margins specified through the conditional copula are as close as possible to the probabilities
specified by the expert. Assume that the experts specified ExcProbsi,j,p, where i, j = 1, 2, 3
and p = 0.5, 0.95 for variables X1, X2, X3. First, copulas Ci,3 with parameters θi,3, i = 1, 2
corresponding to ExcProbsi,3,p are found. Using these copulas, the conditional distributions
Fi|3(p, x, θi3) are computed by the differentiation of Ci,3, with respect to x3. To find a
conditional copula C12;3 with parameter θ12;3, such that the ExcProbs1,2,p, p = 0.5, 0.95
agree with ones specified by the expert, the following formula is used:

ExcProb1,2,p =
1 − 2p +

∫ 1
0 C12;3(F1|3(p, x, θ13), F2|3(p, x, θ23), θ12|3)dx

1 − p

where p = 0.5, 0.95.
The problem of the non-existence of parametric copulas to agree with experts’ as-

sessments becomes even more pronounced when conditional copulas are specified. In
the simplified form, which we are using, conditional copulas depend on the values of the
conditioning variables only through the conditional cumulative distributions of the coupled
variables. The form of copula does not change. A few examples of such inconsistencies are
reported in Table 4 where all conditional copulas used for the eight experts’ models are
presented. The inconsistent ones are printed in red. In the case of expert 27, the inconsis-
tency stems from the fact that this expert assessed the bivariate margins (GR, GA) to be
uncorrelated overall but with a strong tail dependence, yet both other margins (GD, GA)
and (GR, GD) were assessed by this expert to be strong overall, as well as having tail
dependence. Specifying the conditional copula GR, GD|GA to be Survival Clayton with a
very high value of the parameter was not sufficient to obtain the 0.95 ExcProb of 0.7 for
(GR, GD), as specified by expert 27.

Table 4. Conditional copulas.

Expert Conditional
Copula

Conditional
Copula (Type)

Unconditional
Copula

50%; 95%
Achieved 50%; 95% Target

3 GR,GD|GA Frank (1.5) Frank (1.5) 0.6; 0.1 0.6; 0.1
6 GD,GA|GR SClay (5) SClay (2) 0.79; 0.24 0.75; 0.7
8 GR,GD|GA Gauss (0.32) Frank (1.8) 0.61; 0.1 0.6; 0.14

WR,WA|WD SClay (6) Gauss (0.8) 0.83; 0.5 0.8; 0.5
9 GR,GD|GA Gum (1.3) Gum (1.25) 0.6; 0.3 0.6; 0.31

WR,WD|WA Gum (1.3) t (0,1) 0.6; 0.28 0.5; 0.3
WD,ED|GD Gum (1.4) Gum (1.5) 0.66; 0.44 0.67; 0.44

12 GD,GA|GR SClay (10) Frank (1.8) 0.79; 0.22 0.61; 0.1
14 GD,ED|WD Gauss (0) t (0,1) 0.5; 0.27 0.5; 0.3
24 GR,GD|GA Gauss (0) t (0,1) 0.5; 0.22 0.5; 0.3

WD,ED|GD Gum (1.32) Gum (1.25) 0.61; 0.29 0.6; 0.3
27 GR,GD|GA SClay (10) SClay (2) 0.73; 0.47 0.75; 0.7

WR,WD|WA SClay (10) SClay (2) 0.73; 0.47 0.75; 0.7
GD,EG|WD Gum (1.3) SClay (2) 0.75; 0.7 0.75; 0.7

In Figure 5, the PCBN models of eight experts who received non-zero weight are
presented. The copulas (type and parameter value) used to model dependencies between
variables are assigned to the arks of the graph. The conditional copulas are in red. We
can observe that some experts included extra non-dependencies in their models: the
relationship between ED and EA especially is assessed as very weak.
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Figure 5. Cont.
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SClay(2)

(h) Expert 27

Figure 5. PCBN models of all experts with non-zero weights. Types of copulas and conditional
copulas (in red) and values of copula parameters are assigned to arks of each graph.

4. Sea Level Rise Estimates—Reappraisal with Dependencies

Ice sheet contributions to SLR by 2100 in [mm] for the High (+5 ◦C) global surface air
temperature rise scenario are computed with the PCBN model. The results (see Table 5
and Supplementary Materials) in the case where all experts’ SLR assessments are assumed
to be independent and combined with equal weights (IndepSLR-EW) are compared with
the results where experts’ distributions were combined with performance-based weights
(IndepSLR-PW). We can note that IndepSLR-EW is much more spread out and quite
different to IndepSLR-PW. This phenomenon is often encountered in expert judgment
studies. Moreover, we can examine the summary statistics and plots (in Figure 6) of SLR
distributions in the case of performance-based combinations with and without dependence.
As expected, the means of both distributions are the same, but the distribution with
dependence is more spread out than the one without dependence. Note the negative
contribution to SLR for the 5th percentile value when dependence is included. This
indicates a small probability that increased Accumulation can outweigh the mass loss due
to Discharge and Run-off.

Table 5. Comparison of SLR contributions from ice sheets [mm] (for +5 ◦C global surface air
temperature rise by 2100) obtained from models with independence when experts’ assessments are
combined with equal or performance-based weights and from a model which is performance-based
with dependence.

Mean StDev 5th%ile 50th%ile 95th%ile

IndepSLR-EW 623 576 2 461 1728
IndepSLR-PW 589 467 15 483 1484
DepSLR-PW 587 553 0 436 1654

In Figure 7, bar plots of ExcProb of 0.5, 0.25, 0.05 and 0.01 for SLR are presented, with
or without dependence. In the case of independence, the probability of exceeding 2000 mm
of SLR is 0.01 which, in the dependent case, is significantly larger, at 0.048. Thus, the 0.01
ExcProb when dependence is taken into account corresponds to an SLR of about 2600 mm.

In Table 6, more detailed SLR results for the model with dependence are presented. The
largest average contribution to the sea level rise is due to Discharge from the West Antarctic
ice sheet, which also has the largest correlation with SLR. However, when influences due to
Accumulation, Discharge and Run-off are combined, the largest average contribution is
due to the Greenland ice sheet.

Let us examine in Figure 8 the scatter plots of E, G, W and SLR. We can see very
complicated relationships between these variables, which are likely caused by mixing
distributions of experts using performance-based weights. This phenomenon is most
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visible for pairs containing the distribution of Greenland. Two experts with the highest
weight, expert 3 and 14, disagree significantly about the SLR values under this scenario.
The scatter plot of distributions of G and SLR for both experts is shown in Figure 9. The
average SLR according to expert 3 is 789 mm, which is almost twice the average assessed
by expert 14, equal to 431 mm.

Figure 6. Violin plots of sea level rise distributions obtained with performance-based weights
combination with dependence (DepSLR—green) and without (IndSLR—yellow).

Figure 7. Bar plots of exceedance probabilities for SLR with (green) and without (yellow) dependence.

Table 6. Summary statistics based on the performance-based SLR model in [mm] with dependence.
The last column contains the correlation of each ice sheet process component with SLR; correlations
for SLR independence are presented in brackets. E, G and W denote distributions of SLR contribu-
tions from the East Antarctic, Greenland and West Antarctic, respectively, and A, D and R denote
Accumulation, Discharge and Run-off contributions per ice sheet.

Mean StDev 5th%ile 50th%ile 95th%ile Corr(.,DepSLR) (Corr(.,IndSLR))

EA 35 64 −33 27 164 0.1 (0.07)
ED 100 177 −20 42 510 0.75 (0.5)
GA 24 54 −35 17 137 0.1 (0.05)
GD 94 103 0 64 291 0.48 (0.34)
GR 201 233 2 109 738 0.5 (0.48)
WA 15 101 −173 22 119 0.03 (−0.03)
WD 247 310 1 142 910 0.83 (0.73)
WR 19 51 0 7 85 0.24 (0.16)

E 65 180 −135 26 457 0.7 (0.46)
G 271 288 −28 173 902 0.56 (0.46)
W 251 324 −70 169 900 0.82 (0.54)

DepSLR 587 553 0 436 1654
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Figure 8. Scatter plot matrix of E, G, W and SLR.

In Figure 9, the scatter plot of the distributions of Greenland’s contribution and the
SLR for both experts 3 and 14, illustrating an example of inter-expert complexity mentioned
above, are presented.

Figure 9. Scatter plot of G and SLR for experts 3 and 14.

5. Discussion

To our knowledge, the recent ice sheet elicitation marks the first time expert tail depen-
dence has been elicited and used in risk quantification. Including positive dependence and
upper tail dependence increases the ‘fatness’ of the upper right tails of summed variables.
This is clearly seen if we focus on the eight weighted experts for the case of the +5 ◦C
scenario in 2100. These are experts for whom the hypothesis that their uncertainty quantifi-
cations are statistically accurate would not be rejected at the 1% significance level. With the
exception of expert 8, all experts’ 95th percentiles increase as a result of the dependence
elicitation. In many cases, the 5th percentiles also decrease. The medians remained the
same or decreased (Figure 10). Note the diversity in the assessments of the ‘statistically
accurate’ experts. Expert 8’s 95 percentile is just below 1 m, while that of expert 12’s is
2.1 m.
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It is known that the experts’ performance is a persistent property and that performance-
based combinations outperform equal weighting, both in- and out-of-sample [7]. Averag-
ing experts (either with equal weights or performance weights) tends to blur this effect
somewhat (Figure 11). The performance-based combination’s 95th percentile is 1.65 m.
Experts 3 and 14 accounted for 52% of the weight in the performance-based combination
(note the differences in their assessments).

As we become increasingly focused on the quality of uncertainty quantification, it
behooves us to apply the best available techniques. The present study presents evidence that
quantifying probabilistic dependence and tail dependence can be an important component
of best practice (see also Supplementary Materials).

Figure 10. Effect of eliciting dependence and tail dependence of 8 weighted experts. Bars represent
5%, 50% and 95% of SLR distributions of the experts combined with equal (EW) and performance-
based (PW) weights in the case of independence (I), Gaussian copulas corresponding to 50% ExcProb
assessed by experts (NTD) and with copulas with tail dependence (TD), as discussed in the paper.
Experts 3 and 14 with weights 0.28 and 0.3, respectively, are the most important experts.

Figure 11. Effect of adding eliciting dependence and tail dependence on EW and PW DMs. Bars
represent 5%, 50% and 95% of SLR distributions combined with equal (EW) and performance-based
(PW) weights in case of independence (I), Gaussian copulas corresponding to 50% ExcProb assessed
by experts (NTD) and with copulas with tail dependence (TD), as discussed in the paper.

6. Conclusions

The work presented here marks a further step in expert uncertainty quantification.
From its inception, risk analysis has dealt with high-impact low-probability events involv-
ing inter alia nuclear safety, natural hazards (earthquakes and volcanoes) and public health.
By their nature, these are always characterised by insufficient data, unvalidated models
and an absence of ‘the’ relevant probability distributions. These features, sometimes char-
acterised as ‘deep uncertainty’, are standard fare with which every risk analyst is required,
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and trained, to grapple. Expert uncertainty quantification has therefore been a cornerstone
of risk analysis for over 50 years, punctuated by methodological advances including rigor-
ous and traceable expert elicitation, the validation of expert subjective probabilities (in- and
out-of-sample), performance-based weighted combinations, and uncertainty propagation
with dependence (as chronicled in [14]).

Acknowledging the reliance on expert subjective probabilities disables the deflection
that we ‘don’t know the probability distributions’—there is nothing to not know, there
is only the quantification of subjective uncertainty (e.g., [15] Chs 2, 3 and 13). Now, as
humanity faces existential risks from human-induced climate change, there is a temptation
to revert to the 1960s’ unstructured approaches to uncertainty quantification, behind a fig
leaf of ‘deep uncertainty’ (colloquially, BOGSAT: Bunch of Guys/Gals Sitting Around a
Table). Without transparent elicitation, without the validation of subjective probabilities
and without quantitative uncertainty propagation, this marks a degenerative methodolog-
ical move which has significant potential to cause harm, which future generations will
surely condemn.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/e26110949/s1.
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Abbreviations
SLR Sea level rise A Accumulation (snow build-up on ice sheet)
DAG Directed acyclic graph D Discharge (ice mass loss to sea)
BN Bayesian Network R Run-off (ice meltwater loss to sea)
PCBN Paired Copula Bayesian Network G Greenland
CM Classical Model W West Antarctica
SEJ Structured Expert Judgment E East Antarctica
Inf Informativeness
SA Statistical Accuracy
ExcProb Exceedance Probability
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