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Abstract: Deep hashing technology, known for its low-cost storage and rapid retrieval, has become
a focal point in cross-modal retrieval research as multimodal data continue to grow. However,
existing supervised methods often overlook noisy labels and multiscale features in different modal
datasets, leading to higher information entropy in the generated hash codes and features, which
reduces retrieval performance. The variation in text annotation information across datasets further
increases the information entropy during text feature extraction, resulting in suboptimal outcomes.
Consequently, reducing the information entropy in text feature extraction, supplementing text feature
information, and enhancing the retrieval efficiency of large-scale media data are critical challenges
in cross-modal retrieval research. To tackle these, this paper introduces the Text-Enhanced Graph
Attention Hashing for Cross-Modal Retrieval (TEGAH) framework. TEGAH incorporates a deep text
feature extraction network and a multiscale label region fusion network to minimize information
entropy and optimize feature extraction. Additionally, a Graph-Attention-based modal feature fusion
network is designed to efficiently integrate multimodal information, enhance the affinity of the
network for different modes, and retain more semantic information. Extensive experiments on three
multilabel datasets demonstrate that the TEGAH framework significantly outperforms state-of-the-art
cross-modal hashing methods.

Keywords: cross-modal hashing; graph attention; feature fusion; vision transformer; information
entropy

1. Introduction

In the era of information explosion, data take on various forms, including text, images,
and videos, across different modalities. These diverse modalities of data have accumulated
massive information resources in areas such as the internet, multimedia retrieval, and
social networks. However, effectively organizing, retrieving, and understanding data from
different modalities pose a significant challenge in the field of information retrieval [1].
Cross-modal retrieval aims to address this issue by establishing semantic links between data
of different modalities, enabling users to search for one modality of data (such as text) with
another (such as images) [2]. To achieve efficient cross-modal retrieval, hashing methods
are widely applied in the indexing and retrieval processes of cross-modal data [3,4]. Cross-
modal hash retrieval learns a common hash function to map data from different modalities
into the same hash space, ensuring that even data from different modalities can be mapped
to similar hash codes as long as they share semantic content. This method effectively bridges
the semantic gap between different modalities, realizing fast and accurate cross-modal data
retrieval [5–8].

The development of Convolutional Neural Networks (CNN) in recent years has signifi-
cantly enhanced the performance of cross-modal hash retrieval. CNNs, with their powerful
nonlinearity and translation invariance, enable the extraction of higher-quality features
from different modalities [9,10]. However, the semantic gap between different modalities is
an inherent issue. Images contain more semantic features than text and usually offer richer
high-level features. Despite this, most CNN-based cross-modal hashing works [11–15]

Entropy 2024, 26, 911. https://doi.org/10.3390/e26110911 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26110911
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0009-0006-1321-0391
https://orcid.org/0000-0001-8363-8832
https://orcid.org/0000-0002-9744-9589
https://doi.org/10.3390/e26110911
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26110911?type=check_update&version=2


Entropy 2024, 26, 911 2 of 22

employ the same loss function for feature learning across modalities. Such approaches,
however, overlook the differences in information between modalities and do not adequately
address the issue of semantic discrepancies [16–22]. Therefore, reducing this semantic gap
to enhance the representation of weaker modal features becomes particularly crucial.

Current research is delving deeper into methods for cross-modal hash learning, yet
traditional approaches in this field still face numerous challenges in both theory and
application. Methods cited in references [23–25] aim to exploit the high-order semantic
associations among data’s multilabels and utilizing label information to extract implicit
semantic content. However, these methods overlook the prior knowledge contained in
label information, specifically the weight information of labels. This oversight results in
an inability to effectively enhance retrieval performance. Methods referenced in [26–29]
employ the fusion of multiscale features from different modalities for semantic optimization,
make the more compact between the hash codes. Additionally, they align similar semantic
features across modalities using loss functions that incorporate semantic optimization,
which improves retrieval performance. However, these approaches do not optimize the
cross-modal retrieval process from a textual standpoint, offering limited consideration for
text features and thereby failing to effectively integrate features from different modalities.
Approaches cited in [30–33] utilize unsupervised clustering to optimize the extraction of
intrinsic similarity structures between modalities, enhancing their integration through
semantic alignment. However, these methods ignore the structural discrepancies between
textual and visual semantics, struggling to effectively align and merge semantic features
from different modalities.

With the widespread application of Transformers [34] in the visual domain, an increas-
ing number of cross-modal hash retrieval methods have started to incorporate Transformer
models, such as Swin-Transformer [35]. The continuous development of these Transformer-
based variants has made Transformer models more suitable for image tasks. Consequently,
leveraging the powerful performance of Transformers for retrieval tasks has significantly
enhanced cross-modal retrieval performance [36–39]. However, these cross-modal hash
retrieval methods, based on both convolutional neural networks and Transformers, have
not addressed the issue of textual semantic information scarcity and the severe imbalance
between textual data and visual data. Merely optimizing from the image perspective
struggles to rectify the inherent issues within text.

Addressing the aforementioned issues, this paper introduces a Text-Enhanced Graph
Attention Hashing for Cross-Modal Retrieval (TEGAH) framework. This framework
employs Graph Attention (GAT) [40] combined with a multiscale approach for modal
feature fusion, effectively mitigating semantic loss and discrepancies caused by the fusion
of different modal information. Additionally, it leverages label information to supplement
and enhance textual information. As far as we know, GAT is not used in cross-modal hash
retrieval to realize the relevant application of feature fusion, but GAT or GCN is more
used for feature extraction or classification [41,42]. This paper is the first to introduce the
GAT into cross-modal hash retrieval for cross-modal feature fusion, effectively generating
pseudo-labels that incorporate features from different modalities, thereby achieving efficient
cross-modal hash retrieval. As illustrated in Figure 1, the overall architecture of this
paper comprises four parts: an image network, a text network, a label network, and a
feature fusion network, collectively referred to as the cross-modal feature fusion learning
network. The image network utilizes a Transformer architecture image encoder to model
long-distance visual dependencies of images and capture their global information. In
the text network, two deep feature extraction modules and an autoencoder are designed
for text feature learning, with each text being transformed into a Bag-of-Words (BoW)
vector. To alleviate the scarcity of textual information, a novel Multiscale Label Area
Hybrid Network (MLAH) is proposed, focusing on supplementing text with multilabel
information. This network builds attention graphs for sparse labels and performs multiscale
feature extraction to capture their global dependencies, enriching text feature information
and optimizing the semantic feature extraction effect of the text network. Finally, the



Entropy 2024, 26, 911 3 of 22

graph attention feature fusion module (GAFM) proposed in this paper deeply merges
and aligns the acquired image semantic features and text semantic features, which can
dynamically adjust the similar structure between different modal nodes and generate better
prediction labels to supplement the whole network. This framework effectively reduces the
semantic discrepancies between different modalities, to some extent enhancing the feature
representation capability of different modalities for better semantic alignment and fusion,
resulting in higher quality binary hash codes.

Figure 1. The overall framework of TEGAH can be divided into five parts: (1) Image-Net: employing
the Swin Transformer-Small (SwinT-S) model to extract semantic features from images and map
these features into the feature space; (2) Graph Attention Feature Fusion Module (GAFM): a feature
fusion and alignment network that weights and merges image and text features to address semantic
discrepancies between different modalities; (3) Multiscale Label Area Hybrid Network (MLAH):
utilizing multiscale features across four layers and incorporating multiscale attention to mitigate
issues related to insufficient textual information; (4) Deep Text Feature Extraction Network (DTFEN):
improving upon traditional methods by capturing high-quality textual feature information; (5) Hash
Learning Module: transforming features into hash codes through nonlinear changes, with training
assisted by a combination of cosine-weighted triplet loss, label distillation loss, Wasserstein loss,
and quantization loss, each component specifically designed to enhance the extraction, fusion, and
representation of multimodal features, thereby improving the accuracy and efficiency of cross-modal
hash retrieval.

The main contributions of our work are as follows:

• The Text-Enhanced Graph Attention Hashing for Cross-Modal Retrieval (TEGAH)
framework proposed in this paper marks the first instance of integrating graph at-
tention to achieve cross-modal feature fusion, and a Graph Attention Feature Fusion
Module (GAFM) was designed for deep fusion between different modal features to
solve the semantic divergence problem in cross modal hash retrieval. It facilitates
better semantic alignment and feature fusion between different modalities and, to
some extent, compensates for semantic losses incurred during the fusion process,
thereby enhancing the performance of the network.
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• The paper introduces a Multiscale Label Area Hybrid Network (MLAH), which miti-
gates the issue of sparse label distribution by drawing closer the sparsely distributed
label information and fully exploring their interconnections. This approach reduces
the model’s misinterpretation of the semantic relevance of different labels caused by
sparse label distribution. Additionally, by fully extracting multilabel features at differ-
ent scales, MLAH adds multigranularity feature representations to textual features,
thereby enhancing the expressive capability of textual features.

• The paper proposes a Deep Text Feature Extraction Network (DTFEN) that modifies
the text network by incorporating deep feature extraction modules and an autoen-
coder, as opposed to the conventional use of fully connected layers for extracting
text information. By employing a deep feature extraction module prior to the hash
function, it more effectively integrates deep textual features, thereby improving the
utilization rate of text features.

The remainder of this paper is organized as follows. Section 2 provides an overview of
work related to cross-modal hashing methods. Section 3 details our Text-Enhanced Graph
Attention Transformer for Hash-based Cross-Modal Retrieval (TEGAH) method. Section 4
presents our experimental results and analysis. Finally, Section 6 offers our conclusions.

2. Related Work

Hashing methods have garnered widespread attention in retrieval scenarios. Cross-
modal hashing methods learn hash functions to map high-dimensional information from
diverse modalities into a unified common space, minimizing the semantic gaps between
modalities. This ensures that the Hamming distance between semantically related data is
smaller than that between semantically unrelated data. In this section, we briefly review
supervised and unsupervised cross-modal hashing methods, as well as the work involving
Transformer and GAT in cross-modal hash retrieval.

2.1. Supervised Cross-Modal Hashing

Supervised cross-modal hash methods enable efficient and accurate retrieval by uti-
lizing label information or inter-modal pairing information to map data from different
modalities into a shared hash space. The essence of these methods lies in effectively lever-
aging available supervisory information to guide the hash encoding process, ensuring
the semantic consistency across modalities is maintained. DCMH [5] is a prime example,
utilizing AlexNet [9] as the foundation for feature extraction and combining it with fully
connected layers for learning features and hash codes, facilitating effective retrieval be-
tween images and texts. DVSH [1] seeks to enhance semantic matching across modalities by
integrating the textual semantics of images. PRDH [28] introduces inter-modal and decor-
relation losses to optimize the similar structure across modalities. CMHH [6] employs a
Bayesian method for joint optimization, finely tuning the losses in the quantization process.
HSCH [29] explores fine-grained data information to avoid semantic conflicts and preserve
important similarity features. DJSAH [26] ensures high-level discriminative semantics are
preserved in the hash codes through semantic alignment and latent representations in a
shared latent space. SSCH [30] learns hash representations for various data through an
alignment-free pseudo-label process and label enhancement strategy. MAFH [24] adopts a
collective matrix decomposition method to map kernelized features of different modalities
to a shared latent space, optimizing hash code length through semantic labels for bit scala-
bility. DAPH [18], GCDH [42], and MIAN [19] propose their optimization strategies, such
as novel hash loss, GCN, and a probabilistic modality alignment framework, refining fea-
tures and optimizing cross-modal hash retrieval performance from different perspectives.
SCCGDH [20] and MESDCH [25] further enhance the robustness and discriminability of
hash encoding through category center hash functions and multilabel modality-enhanced
attention modules.
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2.2. Unsupervised Cross-Modal Hashing

Unsupervised cross-modal hashing methods do not utilize real labels but instead
learn hash functions by discovering the inherent similarities within the data. For example,
UCMH [39] enhances retrieval performance by optimizing a novel hash-similarity friendly
loss. It initially trains a Modality Interaction Enabled (MIE) similarity generator to produce
a superior MIE similarity matrix for the training set. Then, it uses the generated MIE simi-
larity matrix to guide the training of a deep hash network, introducing a novel bit selection
module that interacts between continuous codes of different modalities to generate high-
quality unified binary codes for the quantization loss, thereby further improving retrieval
performance. DAEH [32] designs an Adaptive Teacher-Guided Enhancement (ATGE) opti-
mization strategy, utilizing information theory to identify weaker hash functions. UKD [33]
introduces a new cross-modal hash distillation method, allowing supervised methods to be
guided by the outputs produced by unsupervised methods. UCCH [22] incorporates con-
trastive learning into cross-modal hash retrieval, introducing a novel momentum optimizer
that enables the binary hash function to learn, thus bridging the gap between contrastive
learning and hashing algorithms. To overcome the False Negative Pair (FNP) challenge,
UCCH proposes a Cross-Modal Ranking Learning Loss (CRL), leveraging all pairs instead
of hard negative pairs for better performance and robustness.

2.3. Transformer-Based Cross-Modal Hashing

With the widespread application of Transformers in both vision and text, Transformer-
based cross-modal hashing employs Transformers to learn the intrinsic similarities between
images and texts for hash function learning. For example, DCHMT [36] introduces a
selection mechanism to generate hash codes, transforming the discrete space into a con-
tinuous one. Hash codes are encoded as a series of 2D vectors. UCMFH [37] is the first to
explore the effectiveness of the CLIP [43] model in cross-modal hash retrieval, proposing
a simple yet powerful baseline model. It utilizes the CLIP model to extract textual and
visual features, then generates hash codes through contrastive learning and multimodal
fusion. However, it employs a simple weighted averaging method, not fully considering the
semantic alignment and complementarity between text and images. DSPH [23] proposes a
novel semantic-aware proxy loss for training a MIE similarity generator, creating a superior
MIE similarity matrix for the training set. It then uses this matrix as guidance to train a
deep hash network, with two Transformer encoders serving as feature extractors for images
and texts.

2.4. Graphical Attention Network

The Graph Attention (GAT) Network is a graph neural network based on the self-
attention mechanism. MS2GAH [41] builds graph features using the adjacency of nodes and
allocates varying weights to neighboring edges to bolster the model’s resilience. It further
employs multilabel annotations to connect the semantic relevance across modalities with
greater detail. Introducing the GAT network into cross-modal hash retrieval enables the
effective learning of representations for graph-structured data. GAT leverages the structural
information of heterogeneous graphs to build image and text data in a unified space, thus
capturing the high-level semantic relationships between data more effectively. Through
multilayer graph attention networks aggregating neighbor features, the expressive power
of each node is enhanced, and different weights can be adaptively allocated to different
neighbors. GAT can train the model with adversarial loss and triplet loss, achieving
personalized cross-modal retrieval, and enhancing the accuracy and efficiency of retrieval.

3. Methodology

In this section, we will look at TEGAH in detail. See Section 3.1 for definitions. The
details of the Graph Attention Feature Fusion Module (GAFM) are described in Section 3.2.
Multiscale Label Area Hybrid networks (MLFW) and deep text feature extraction networks
are described in more detail in Sections 3.3 and 3.4. Section 3.5 shows the details of the
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TEGAH model loss function, and in Section 3.6, we detail the various state-of-the-art
(SOTA) methods we compared and the parameter settings of the datasets.

3.1. Formula Definition

Similar to most other approaches, in this paper, the cross-modal hash retrieval frame-
work utilizes image-text-label triples as input, assuming there are N pairs of image-text
data and their labels. Typically, these triples can be represented as {(Xn, Yn, Zn)}N

n=1, where
X denotes images, Y denotes texts, and Z represents labels. This paper uses sets to rep-
resent these three types of information, i.e., the image set X = {x1, x2, . . . , xN}, the text
set Y = {y1, y2, . . . , yN}, and the label set Z = {z1, z2, . . . , zN}, where Zn ∈ {0, 1}C repre-
sents a One-Hot encoding, C stands for the number of label categories, and zn = 1 if the
image and text samples belong to this class; otherwise, zn = 0. The aforementioned in-
formation can be defined as a set of triples S =

{(
xj, yj, zj

)
|xj ∈ X, yj ∈ Y, zj ∈ Z

}
, which

contains all triples of images, texts, and labels. The features extracted through the image
network, text network, label network, and cross-modal feature fusion network are denoted
as Fk

i ∈ Rk, i ∈ {x, y, z}, mapping different modal features to the same k-dimensional fea-
ture space through the mentioned networks. The overall architecture of our proposed
TEGAH framework is shown in Figure 1. The hash codes are represented as bx ∈ {−1, 1}M,
by ∈ {−1, 1}M, and bz ∈ {−1, 1}M, where M denotes the length of the hash code, using
H(·) to denote the hash function, and Tanh function to map different modal features to the
corresponding hash code length. The Tanh function can be represented as follows:

Tanh(t) =
ex − e−x

ex + e−x
(1)

The sign function is used to generate the corresponding binary hash codes, typically
denoted as sign. Its definition is as follows:

sign(t) =
{

1, i f t ≥ 0
−1, i f t < 0

(2)

3.2. Graph Attention Feature Fusion Module (GAFM)

The Graph Attention Network (GAT) is a graph neural network based on the self-
attention mechanism, enabling the utilization of structural information from heterogeneous
graphs. By constructing image and text data within a unified space, GAT can effectively
capture high-level semantic relationships between data. Through the aggregation of neigh-
bor features by multilayer graph attention networks, the expressive capability of each node
is enhanced, allowing for the adaptive allocation of different weights to different neighbors.
Moreover, GAT leverages the self-attention mechanism to adaptively weight different
modal data, generating more accurate pseudo-labels. This assists in addressing the issue
of insufficient cross-modal data labeling, thereby improving the model’s generalization
ability. In summary, GAT is an effective method for integrating image and textual features,
enhancing the performance of cross-modal hash retrieval.

Some existing methods utilize GCN as a feature extractor to extract features from
different modalities, which can degrade retrieval performance. In contrast, by weighting
the features from different modalities through fusion, the generated pseudo-labels can, to
some extent, compensate for the lack of richness in textual data, serving as a supplement to
textual information.

In the method proposed in this paper, we have designed a Graph Attention Feature
Fusion Module (GAFM). Unlike the original GAT network, which requires the additional
generation of co-occurrence matrix information, our approach repurposes the adjacency
matrix as the co-occurrence matrix through cosine quantization and weighting operations.
To a certain extent, we can consider the label information as a type of weight matrix. By
reusing the label matrix and adjacency matrix, feature fusion can optimize the retrieval
process beyond just the training phase, enhancing retrieval effectiveness and efficiency. The
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structure of our Graph Attention Feature Fusion Module is detailed in Figure 2. The feature
representation extracted by the Image Encoder (ImgEncoder) from the image network is
denoted as ImgEncode, and the hash code obtained from the image network is represented
as Hk

x, where M denotes the M-dimensional hamming space, as shown in Equation (1).
Finally, we use H(·) to map the multiscale label fusion features obtained above to the hash
code length we need, taking image features as an example:

HM
x = H

(
Fk

x

)
(3)

where HM
x represents the image hash code, M represents the length of the hash code, and

H(·) represents the hash function. Assume that the features extracted by the image feature
extractor and text feature extractor are Fk

x and Fk
y , respectively, and the features extracted by

the label network are Fk
z , the adjacency matrix is defined as A ∈ RC×C, where C represents

the category of the label number. We use two layers of GAT, and use Concat to combine
different modal features. We perform deep feature fusion and optimization through the
network as a whole, that is, Fc = Concat

(
Fx

k, Fk
y

)
, and Ff usion denotes the fused features

and the overall formula of the modal feature fusion method, which is expressed as follows:

Ff usion = LFF(Fc + LRP2(Attentiong)) (4)

Among them, the LRPi component is defined as follows:

LRPi = PReLU(RMSNorm(Linear(·)))
s.t. i ∈ {1, 2, 3, 4}

(5)

We employ the PReLU activation function, Root Mean Square Layer Normalization
(RMSNorm), and a Linear mapping function to maintain normalization and dimensional
consistency of the fused features, ensuring the stability and generalization capability of the
network.

To better fuse coarse-grained features and enhance the representational effect of the
fused features, we propose a Local Feature Fusion Module (LFF) composed of Local
Kernel Alignment (LKA), convolution, the activation function (ReLU), and Global Max
Pooling (GMP). LKA provides multigranularity local fusion features for predicting labels,
as illustrated in Figure 2. Additionally, we derive different weighted scores λ and h from
features F′′

c and F′
c of varying depths for the purpose of weighted fusion, specifically

expressed as follows:
Attentiong = λ ∗ Fc

′′
+ h̄ ∗ Fc

′

s.t. λ = σ(Fc
′′
), h̄ = σ(Fc

′
)

(6)

to better integrate feature representations from different modalities, we employ the Gate
Recurrent Unit (GRU) [44] for a deeper level of cross-modal fusion. The specific operations
are as follows:

Fc
′
= LRP1(Fc)

Fc
′′
= GRU(LRP1(Fc))

(7)

the asterisk (*) represents the multiplication operation and σ(t) denotes the sigmoid func-
tion, which is expressed as:

σ(t) =
1

1 + e−t (8)

where Fc
′
represents the feature vector obtained after the first feature depth fusion extraction

layer LRP1, and Fc
′′

denotes the features extracted after passing through both LRP1 and the
GRU. The GRU, widely utilized in Natural Language Processing (NLP), employs a gating
mechanism to fuse information from different modalities, while also filtering out dissimilar
features and retaining those with semantic relevance. It is evident that, throughout our
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feature fusion process, we achieve multilevel and multigranularity deep feature fusion and
alignment, taking into account the global and local relevance within the fused features.

Figure 2. Graph Attention Feature Fusion Module (GAFM) architecture integrates and aligns image
and text features through the interaction of Layerwise Propagation Rule (LPR) and Gated Recurrent
Unit (GRU), employing Local Linear Fusion (LLF) to mine multiscale information internally. The
features are ultimately fed into the GAT to generate predicted pseudo-labels.

Given the GAT’s capacity for thorough exploration of label information, we utilize it
as a classifier to merge with the fused features obtained from the above process to generate
pseudo-labels. The weighted sum h′i of node i and its adjacent node features j is determined
by the normalized attention weight coefficients eij:

h′i = ∑N
j=1

eij

∑N
k=1 eik

(
Whj

)
eij = LeakyReLU

(
aT[Whi∥Whj

]) (9)

where hi and hj represents the feature vector for node i and j, W denotes the weight matrix,
a signifies the attention weight vector, which is a parameter that needs to be learned,
LeakyReLU refers to a nonlinear activation function, and the concatenation operation of
vectors is indicated by || and N represents the number of nodes. In GAT, each node i has a
corresponding attentional weight eij with every other node j to adjust the propagation of
information. These attention weights are obtained through the linear combination of a and
the node features, followed by normalization to ensure their sum equals 1.

As depicted in Figure 2, the weighted sum and weight parameters of Gl+1 are defined
as Θg. The hierarchical propagation rule of GAT can be defined as follows:

Gl+1 = φ
(

eij AcGlW l
)

Ω̃ = Ff usion ∗ (FG)
T

(10)

where G represents the pseudo-labels obtained through the GAT module and fusion module,
φ represents the nonlinear operation, Ω̃ signifies the predicted labels, Ac stands for the
adjacency matrix optimized through cosine similarity, ZT represents the transpose of
label Z, and FG represents the weight set obtained from the adjacency matrix weighting
calculation, which is calculated as follows:

FG = Gl+1(Ac | Θg
)

Ac= cos
(
ZT · Z, Z · ZT) = (ZT ·Z·ZT ·ZT)

∥(ZT ·Z∥×∥ZT ·Z∥
(11)
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We calculate the similarity probability score with the final value obtained through the
GAFM and the real label. By comparing the similarity, we can balance the differences of
different modal features, generate a better hash feature representation, and improve the
retrieval effect. Label classification losses are calculated as follows:

Lcls = ∑
i=1

N

∑
i=1

Zi log(σ(Ω̃)) + (1 − Zi) log(1 − σ(Ω̃)) (12)

Due to the effective integration of label information into the fusion embeddings by
GAT, the generated pseudo-labels encompass information from both modalities while pre-
serving the semantic relevance of the original modalities. This ensures that the subsequently
generated hash codes are more discriminative.

3.3. Multiscale Label Area Hybrid Network (MLAH)

Label information, akin to text, encompasses a wealth of feature information. In cross-
modal hash retrieval tasks, labels can serve as a complement to text, compensating for the
lack of rich semantic features in text. Unlike the aforementioned method, GAT primarily
utilizes labels as a form of supervisory information to guide the transformation of fused
features into pseudo-labels, whereas the label network considers labels as a new modality
of information. In cross-modal hash retrieval tasks, a single image sample corresponds to
multiple different labels, naturally leading us to consider the multiscale information within
labels. Moreover, due to the sparsity and diversity of label information distribution, the
truly useful information is often nonadjacent. To address these issues, we have designed
a multiscale area hybrid module, as shown in Figure 3, to establish connections between
nonadjacent areas of label features while incorporating a self-attention mechanism to
deepen internal semantic relevance. The overall algorithm is as follows:

Fk
z = AutoEncoder(So f tMax(QKT√

dk
)V)

s.t. Q = Concat(AEMM1(Zi), AEMM2(Zi))

K = AEMM3(Zi)

V = AEMM4(Zi)

(13)

where Hk
z represents the final label features obtained, dk denotes the modulation factor,

AutoEncoder refers the automatic codec, and LKA stands for Local Kernel Alignment, as
illustrated in Figure 2. Specifically, to reduce the presence of irrelevant information within
tokens and make useful information more compact, we employ the Attention-Enhanced
Multiscale Module (AEMM) to aggregate sparse information from the labels and perform
multiscale regional blending. The specific algorithm for AEMM is as follows:

AEMMj = GMP(ReLU(LKA(ReLU(Conv1D(Zi)))))
s.t. j ∈ {1, 2, 3, 4} (14)

where j indicates the use of different strides in one-dimensional convolution, Zi represents
the use of different label samples, and GMP stands for Global Max Pooling.

We assign two smaller strides to Q through AEMM1 and AEMM2, and two larger
strides to K and V through AEMM3 and AEMM4, respectively. This results in the acquisi-
tion of a query matrix containing compact information, as well as key and value matrices
with significant information. The global dependencies of label information are obtained
through the self-attention mechanism. Finally, we use H(·) to map the obtained multiscale
label fusion features to the required hash code length:

HM
z = H(Fk

z ) (15)
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Figure 3. Multiscale Label Area Hybrid Network (MLAH) consists of a feature extraction module
followed by four hierarchical multiscale attention modules, which are ultimately integrated through
weighted fusion.

3.4. Deep Text Feature Extraction Network (DTFEN)

Most cross-modal hash retrieval methods convert text into Bag-of-Words (BoW) vec-
tors and then use a multilayer perceptron (MLP) for feature extraction. This approach leads
to sparse information characteristics in feature embeddings, which are not conducive to
generating compact text hash codes. Therefore, this paper adopts a fine-grained text feature
extraction method to replace the traditional MLP or Transformer used in previous methods.
Compared to the former, this approach can better learn text features by aggregating more
sparse text features. Relative to the latter, our method reduces computational resources,
accelerates computation speed, and does not significantly increase the number of parame-
ters compared to the previous MLP. The network structure is shown in Figure 4, and the
proposed text network is described as follows:

Fk
y = Stage2(AutoEncoder(Stage1(Yi))) (16)

Stagei = GAP(ReLU(Conv1Dj())
s.t. i, j ∈ {1, 2} (17)

where Conv1Dj represents a one-dimensional convolution with a kernel size of 3 × 3, stride
of 1, and padding of 1. Stagei indicates different feature extraction stages, and GAP stands
for Global Average Pooling. To better blend fine-grained text representations, we utilize
a deep module fusion with an autoencoder to obtain the text’s deep mixed features Fk

y .
Finally, we use H(·) to transform text features into the required hash code length:

HM
y = H(Fk

y ) (18)

Figure 4. Deep Text Feature Extraction Network (DTFEN) comprises two deep extraction modules
and an autoencoder.
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3.5. Hash Learning

The algorithm of TEGAH model is summarized in Algorithm 1. The following four
loss functions are used to optimize the backpropagation process of TEGAH model. The
four loss functions are described in detail below.

Algorithm 1 Hash Learning algorithm of TEGAH
Input:
Training set {Xi, Yi, Zi}N

i=1, Binary code length M, Hyper-parameters ∂, Query sets Queryi,
Parameters for TEGAH.
Output:
Binary code BM

i=x,y,z, Parameters ΘX , ΘY and ΘZ.
Initialization:
Initialize the parameters ΘX, ΘY and ΘZ, maximum iteration number epoch, mini-batch
size 80.

1: while iter < epoch do
2: Compute Fk

x , Fk
y , Fk

z features using Equations (3), (15) and (18) for the training set.
3: Compute GAT fusion features using Equation (11).
4: Calculate losses Ltri, Lclass, Lquan, Lwass and Lkl using Equations (12), (19), (22), (26)

and (27).
5: Calculate approximate binary hash codes using query sets data.
6: Input to the trained TEGAH model.
7: Calculate binary hash codes using the function.
8: end while

return the TEGAH model after training.

3.5.1. Cosine Weighted Triplet Loss

To maintain similarity among hash codes from different modalities, this paper in-
troduces a cosine-weighted triplet loss mechanism. This approach maps features from
various modalities to a binary Hamming space that reflects similar semantic meanings,
thereby facilitating efficient similarity measurement and retrieval. The hash function is
trained using triplet samples

{
b̃x

i , b̃y−
k , b̃y+

j

}
, each consisting of an anchor and two positive

samples derived from both identical and distinct modalities. A sample is defined as positive
if it shares at least one label with the anchor; otherwise, it is considered negative. The
aim of the cosine-weighted triplet loss during training is to decrease the cosine distance
between hash codes of the same modality while increasing the distance between those of
different modalities. By adjusting the weights of the weighted terms, the model learns
a mapping function that preserves semantic similarity across modalities within the hash
space. Additionally, the introduction of normalized weighting factors optimizes structural
similarity within the multilabel semantic space. The aforementioned analysis yields the
following definition:

Ltri = Li−>t
tri + Lt−>i

tri (19)

where Li−>t
tri represents the cosine-weighted triplet loss from images to text and Lt−>i

tri
represents the cosine-weighted triplet loss from text to images, which is similar to Li−>t

tri
and will not be elaborated further here. Among them, Li−>t

tri can be defined as follows:

Li−>t
tri = ∑

i,j,k
τjk max

(
(λx

i,k)− λx
i,j + m, 0

)
(20)

where m represents the margin coefficient, which adjusts the threshold of similarity for
the triplet loss, η denotes the regularization coefficient, τjk represents the weight factor,
vj and vk indicate the similarity between the labels of the positive and negative samples
from different modalities with the anchor, computed through cosine similarity, and λx

i,k and
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λx
i,j represent the similarity matrices obtained through cosine similarity calculations. The

definition is as follows:

τjk =
2υj − 2υk

η

λx
i,k = cos(b̃x

i , b̃y−
k )

λx
i,j = cos (b̃x

i , b̃y+
j )

(21)

where b̃x
i and b̃y

i represent the hash codes that have been processed by the tanh activation
function but have not yet been binarized. These continuous-valued representations serve as
intermediate outputs. In contrast, the hash codes without the tilde symbol (e.g., bx

i ) denote
the final binarized codes, which are obtained after applying the sign function.

3.5.2. Label Distillation Loss

To optimize the structural semantics of multilabel data, relying solely on cosine-
weighted triplet loss is insufficient. It is crucial to maintain consistency in the semantic
space between labels and hash codes. Therefore, we employ label distillation loss to
preserve the semantic relevance between hash codes and labels. The definition of label
distillation loss is as follows:

KLloss =
1
2
(KLL,H + KLH,L) + KLS (22)

where KLH,L denotes the distillation loss from hash codes to labels, KLL,H represents the
distillation loss from labels to hash codes, KLS indicates the mean squared error of similarity.
The definitions are as follows:

KLL,H =
1

BN

B

∑
i=1

N

∑
j=1

max(0, SL,H) (23)

KLH,L =
1

BN

B

∑
i=1

N

∑
j=1

max(0, SH,L) (24)

KLS = 1
BN

B
∑

i=1

N
∑

j=1
(sim(Hi, Lj)− sim(Li, Hj))

2

s.t. SL,H = sim(Li, Hj)− sim(Hi, Lj)
SH,L = sim(Hi, Lj)− sim(Li, Hj)

(25)

where SL,H and SH,L, respectively, represent the similarity matrices from hash codes to
labels and from labels to hash codes, B represents the batch size, and N denotes the number
of samples used for training.

3.5.3. Quantization Loss

Quantization loss, through learning a hash function, maps real-valued features to
binary hash codes, aiming to preserve data similarity as much as possible. bM

∗i,j
represents

a hash code of length M, N denotes the number of samples to be learned in each batch,
and x, y, and z represent images, text, and labels, respectively. We define bM

∗i,j
, i ∈ B, j ∈ N,

∗ ∈ {HM
X , HM

Y , HM
Z }. We employ the squared L2 norm loss to measure the distance between

discrete hash codes and continuous values, training the model by minimizing the distance
or discrepancy between real-valued features and their corresponding binary hash codes.
By calculating the Hamming distance between binary hash codes, semantically similar
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cross-modal data can be found and their similar structure can be maintained. The following
definition can be obtained:

Lquan = 1
BN ∑B

i=1 ∑N
j=1

(
bM

xi,j
+ bM

yi,j
+ bM

zi,j

)
bM

x =
∥∥sign

(
HM

x
)
− HM

x
∥∥2

2

bM
y =

∥∥∥sign
(

HM
y

)
− HM

y

∥∥∥2

2

bM
z =

∥∥sign
(

HM
z
)
− HM

z
∥∥2

2

(26)

3.5.4. Wasserstein Loss

Wasserstein Loss: The Wasserstein distance [45], in mathematics, refers to a distance
function between probability distributions on a given metric space M. By incorporating it
into the TEGAH framework, it is utilized to balance differences between various modalities,
aiming to achieve effective optimization for cross-modal hash retrieval. The definition of
Wasserstein loss is as follows:

Lwass = EMD
(

Pi, Pj
)

= infγ(x,y)∈Π ∑x,y

∥∥∥HM
x − HM

y

∥∥∥γ
(

HM
x , HM

y

)
= infγ(x,y)∈Π E(x,y)∼γ

∥∥∥HM
x − HM

y

∥∥∥ (27)

where Pi and Pj are two probability distributions, X and Y are random variables in Pi and
Pj, ||HM

x − HM
y || denotes the distance between the image modality and the text modality

hash code, which is measured here using the Euclidean distance, and γ(·) denotes the
minimum of all distances. We introduce the Wasserstein distance into cross-modal hash
retrieval to better compensate for the differences between modalities. Finally, our proposed
TEGAH method uses cosine-weighted ternary loss, label distillation loss, quantization loss,
Wasserstein distance loss, and the total Loss can be computed by the following equation:

Ltotal = α(Li−>t
tri +Lt−>i

tri )+Lclass+Lquan+Lwass+Lkl (28)

where α is the hyperparameter to balance the cosine-weighted triad loss with other losses,
and in our experiments α is taken to be 10.

3.6. Baseline Setting

In our experiments, we selected 14 state-of-the-art cross-modal hash retrieval methods
for comparison, including DCMH [5], CMHH [6], AGAH [7], CPAH [8], DADH [14], SC-
AHN [17], DCHUC [21], MESDCH [25], SCCGDH [20], MIAN [19], GCDH [42], DAPH [18],
MAFH [24], and DSPH [23]. For all methods, we utilized the same experimental setup and
maintained consistency in the division of datasets, retrieval sets, and query sets across all
approaches, aligning them with our experimental configurations.

4. Experiments

To validate the effectiveness of our proposed Text-Enhanced Graph Attention Trans-
former for Hash-based Cross-Modal Retrieval (TEGAH) method, we carried out com-
prehensive experiments on three public multimodal retrieval datasets: MIRFLICKR-25K,
NUS-WIDE, and MS-COCO. In the following sections, we elaborate on the experimental
results of several state-of-the-art algorithms compared to our approach. Furthermore, we
provide detailed descriptions of the three datasets used for experimental training, explain
the experimental details of TEGAH, evaluate TEGAH’s performance metrics, and describe
the experimental setup.
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4.1. Datasets

In the experiments of this paper, we employ the same sampling strategy across
three large-scale multilabel datasets: MIRFLICKR-25K (https://press.liacs.nl/mirflickr (ac-
cessed on 17 October 2024)) [46], NUS-WIDE (https://www.kaggle.com/datasets/xinleili/
nuswide (accessed on 17 October 2024)) [47], and MS-COCO (https://cocodataset.org/
(accessed on 17 October 2024)) [48]. Each dataset is divided into training sets, test sets, and
retrieval sets. For different datasets, images and texts are processed in the same manner,
with the input network’s image resolution set to 224 × 224. Text is represented using Bag-of-
Words (BoW) encoding. Specific details about the division of datasets and the dimensions
of text feature encodings are presented in Table 1.

Table 1. Characterization statistics for the three benchmark datasets.

Dataset Details MIRFLICKR-25K NUS-WIDE MS-COCO

Dataset Size 20,015 186,577 122,218
Training Size 10,000 10,500 10,000
Retrieval Size 18,015 184,477 117,218

Query Size 2000 2100 5000
Number of Categories 24 10 80
Dim of Text Features 1386 1000 2026

4.2. Evaluation Criteria

In our work, we employ Mean Average Precision (mAP) and the Precision-Recall
curve (PR curve) as evaluation metrics for our experiments. These metrics are detailed as
follows.

4.2.1. Mean Average Precision (mAP)

mAP is a method used to assess the performance of retrieval systems, measuring the
average level of accuracy within the retrieval results. The mAP value represents the average
precision, assessing whether the modality retrieved matches the query modality category,
commonly used to evaluate the performance of cross-modal retrieval algorithms. Given a
set of query data Q and N retrieval results, the mean average precision can be expressed as:

mAP =
1

QR

Q

∑
q=1

N

∑
i=1

P(i)δ(i) (29)

where P(i) denotes the precision of the top i retrieval results, and δ(i) = 1 equals 1 if the
retrieval result is relevant to the query, and 0 otherwise, i.e., δ(i) = 0, Q represents the
number of queries initiated, and R represents the size of the entire search set.

The mAP serves as a metric to assess the performance of retrieval systems, aiding in
the evaluation of the accuracy of retrieval outcomes and the effectiveness of the retrieval
system. In our work, we utilize the mAP@all evaluation metric, where “all” refers to the
size of the entire retrieval set.

4.2.2. Precision-Recall (PR) Curve

The PR curve represents the precision of the retrieved ranked list at different recall
levels.

4.3. Experimental Details

In this paper, we employ a model pre-trained on ImageNet-1K as the backbone
network for image processing, extract textual features using a deep text network, and utilize
a GAT to optimize cross-modal feature fusion. Additionally, a label network supplements
textual semantic features. The input to our framework’s GAT consists of two adjacency
matrices constructed from label information optimized through cosine similarity. Our

https://press.liacs.nl/mirflickr
https://www.kaggle.com/datasets/xinleili/nuswide
https://www.kaggle.com/datasets/xinleili/nuswide
https://cocodataset.org/
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TEGAH framework is implemented in PyTorch version 2.1.0, with Python version 3.10 and
CUDA version 12.1. All experiments were conducted on a computer equipped with an
NVIDIA RTX-3090 Ti GPU and 128 GB RAM. In our experiments, the learning rate for the
image network was set between 10 × 10−5 and 10 × 10−6, while for the GAT network, text
network, and label network, it ranged from 10 × 10−4 to 10 × 10−5. The batch size was set
at 80, and the number of epochs at 300. We optimized the image and GAT networks using
AdamW optimizer and the text and label networks using the Adam optimizer.

4.4. Analysis of Experimental Results
4.4.1. Comparison with the Baselines

To assess the effectiveness and advancement of our proposed TEGAH method, we con-
ducted a comparative analysis with 14 state-of-the-art (SOTA) cross-modal hash retrieval
methods in terms of mAP values and PR curves. This comparison encompasses two evalu-
ation tasks: using images to retrieve text, denoted as “Image-to-Text” (I2T), and using text
to retrieve images, denoted as “Text-to-Image” (T2I). Table 2 present the mAP comparison
results for each method across three different datasets with 16, 32, and 64-bit hash codes.
Compared to the second-best method GCDH, our TEGAH method shows a maximum
performance increase of 1.7% and an average increase of 1.35% on the MIRFLICKR-25K
dataset, a maximum increase of 2.3% and an average increase of 0.75% on the NUS-WIDE
dataset, and a notable maximum increase of 4.4% and an average increase of 3.8% on the
MS-COCO dataset. The significant improvement on the MS-COCO dataset may be at-
tributed to its larger number of labels compared to the other two datasets (MIRFLICKR-25K
has 24 category labels, while NUS-WIDE has only 10), as a limited number of category
labels can affect the multiscale feature information extracted by the Multiscale Label Area
Hybrid Network (MLAH) and lead to sparser features when fusing modal features for the
Graph Attention Module, ultimately impacting retrieval performance. Although TEGAH’s
performance on the other two datasets (MIRFLICKR-25K and NUS-WIDE) did not reach
the level achieved on the MS-COCO dataset, the results indicate that our TEGAH method
can still effectively learn multiscale label features and optimize text feature extraction in
scenarios of sparse text feature information and limited label category information. By
employing the Multiscale Label Area Hybrid Network and the Deep Text Feature Extraction
Network, TEGAH can compensate for the scarcity of textual information and category
labels. Furthermore, the Graph Attention Feature Fusion Module enables the alignment
and fusion of different modal information, utilizing learned implicit information to bridge
the information gap between modalities, thereby optimizing the generation of final hash
codes and enhancing retrieval performance. Figures 5–7 showcase the Precision-Recall
(PR) curves for hash code lengths of 32 and 64 bits. It is observable that, in most instances,
the PR curve trends of our proposed TEGAH method outperform those of other methods
across the three datasets. On the NUS-WIDE dataset, our method surpasses the second-best
method GCDH in T2I performance, but slightly lags behind GCDH in I2T performance.
This discrepancy can be attributed to the lesser number of category labels used in the NUS-
WIDE dataset, which results in an insufficient number of features for the adjacency matrix
required by the MLAH and the GAFM. Consequently, the GAFM cannot fully utilize the
feature information from different modalities for alignment and fusion, thereby affecting
the generation of hash codes. This highlights the importance of adequate category labels
and adjacency matrix features in enhancing the effectiveness of cross-modal feature fusion
and alignment, which are critical for generating distinctive and accurate hash codes.
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Figure 5. Results of PR curves of 32 bits and 64 bits on MIRFLICKR-25K dataset.

Figure 6. Results of PR curves of 32 bits and 64 bits on NUS-WIDE dataset.

Figure 7. Results of PR curves of 32 bits and 64 bits on MS-COCO dataset.

4.4.2. Ablation Experiments

For cross-modal retrieval tasks, our proposed method performs two evaluation tasks:
“I2T” for retrieving text using images and “T2I” for retrieving images using text. In order
to validate the effectiveness of our proposed TEGAH method, we conducted extensive
experiments on three public datasets with the following details:

Table 3 outlines the design of our ablation experiments, featuring eight variants: (a)
‘baseline’ refers to the base model, where the GAFM, MLAH, and DTFEN modules are re-
moved from the final network, while all other parameter settings are retained. (b) ‘TEGAH’
represents the complete model, incorporating the GAFM, MLAH, and DTFEN modules.
(c) ‘TEGAH-V1’ adds only the MLAH module to the baseline model. (d) ‘TEGAH-V2’
introduces only the GAFM module into the baseline model. (e) ‘TEGAH-V3’ includes only
the DTFEN module in the baseline model. (f) ‘TEGAH-V4’ integrates both the GAFM and
MLAH modules into the baseline model. (g) ‘TEGAH-V5’ integrates both the DTFEN and
MLAH modules into the baseline model. (h) ‘TEGAH-V6’ incorporates both the DTFEN
and GAFM modules into the baseline model. Table 4 presents the results of ablation studies.
The outcomes from experiments TEGAH-V3, TEGAH-V5, and TEGAH-V6 indicate that
the incorporation of the DTFEN notably enhances the text feature extraction, particularly
yielding better results for hash codes of lower bit lengths. This improvement in text feature
extraction concurrently elevates the performance of the image feature extraction network
to a certain extent. Furthermore, the results from TEGAH-V1, TEGAH-V4, and TEGAH-V5
demonstrate significant improvements in “Text-to-Image” (T2I) retrieval following the
integration of the MLAH. This suggests that treating label information as a modality for
multiscale weighted fusion can effectively compensate for the scarcity of textual feature
information. Additionally, the introduction of the GAFM, as evidenced by the results
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from TEGAH-V2, TEGAH-V4, and TEGAH-V6, leads to enhanced retrieval performance
compared to the baseline. This enhancement indicates that GAFM can effectively integrate
and align features from different modalities, reinforcing their representation and mitigating
information loss in hash codes. Finally, the comprehensive performance improvement
observed in the results from TEGAH-V0, where all three modules were utilized, validates
the efficacy and rationale of our TEGAH framework.

Table 2. The MAP protocols on MIRFLICKR25K, NUS-WIDE, and MS-COCO (MAP@ALL). Results
are indicated in bold. ‘/’ denotes unavailable results, and ‘*’ indicates results cited from the original
paper.

Task Method
MIRFLICKR-25K NUS-WIDE MS-COCO

16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

I2T

DCMH [5] 0.7323 0.7432 0.7502 0.5248 0.6000 0.6197 0.5179 0.5314 0.5472
CMHH [6] 0.6863 0.6901 0.6887 0.5233 0.5171 0.5236 0.5530 0.5461 0.4714
AGAH [7] 0.7006 0.7241 0.6912 0.3945 0.4107 0.4258 0.5501 0.5515 0.5518
CPAH [8] 0.8063 0.8237 0.8305 0.5686 0.6207 0.6342 0.5949 0.6426 0.6448
DADH [14] 0.7333 0.7449 0.7496 0.5953 0.6084 0.6030 0.5750 0.5788 0.5755
SCAHN [17] 0.7828 0.7942 0.8021 0.6550 0.6580 0.6744 0.6479 0.6426 0.6431
DCHUC [21] 0.7358 0.7464 0.7427 0.6159 0.6460 0.6755 0.5282 0.5489 0.5338
MESDCH [25] 0.7898 0.8032 0.8153 0.6607 0.6832 0.6968 0.6590 0.6960 0.7212
SCCGDH [20] 0.7748 0.7949 0.7933 0.6770 0.6931 0.6977 0.6044 0.6351 0.6647
MIAN [19] 0.8044 0.8178 0.8183 0.6303 0.6433 0.6374 0.5856 0.6121 0.6131
GCDH [42] 0.8373 0.8545 0.8630 0.7136 0.7263 0.7424 0.7268 0.7630 0.7826
DAPH * [18] / / / / 0.6840 0.6930 0.6870 0.7180 /
MAFH [24] 0.7981 0.8168 0.8263 0.6367 0.6422 0.6582 0.6044 0.6689 0.6871
DSPH [23] 0.8016 0.8301 0.8446 0.6847 0.7015 0.7125 0.6864 0.7493 0.7704

Ours 0.8484 0.8665 0.8740 0.7052 0.7236 0.7356 0.7542 0.8021 0.8219

T2I

DCMH [5] 0.7554 0.7716 0.7788 0.5545 0.5903 0.5957 0.5508 0.5883 0.6049
CMHH [6] 0.6809 0.7134 0.7012 0.4795 0.4541 0.4668 0.4847 0.4980 0.5053
AGAH [7] 0.6873 0.7496 0.7478 0.4344 0.3980 0.4382 0.5012 0.5146 0.5191
CPAH [8] 0.7947 0.8064 0.8082 0.5605 0.5686 0.6053 0.5891 0.6384 0.6413
DADH [14] 0.7641 0.7748 0.7813 0.5631 0.5609 0.5711 0.4767 0.4819 0.4921
SCAHN [17] 0.7845 0.7956 0.7997 0.6692 0.6715 0.6795 0.6470 0.6430 0.6396
DCHUC [21] 0.7522 0.7712 0.7708 0.6356 0.6795 0.7019 0.5220 0.5269 0.5185
MESDCH [25] 0.7741 0.7898 0.7991 0.6662 0.6840 0.6977 0.6345 0.6737 0.7019
SCCGDH [20] 0.7622 0.7785 0.7903 0.6759 0.7072 0.7115 0.5949 0.6427 0.6475
MIAN [19] 0.7947 0.8013 0.8082 0.6486 0.6685 0.6586 0.5459 0.5997 0.5940
GCDH [42] 0.8103 0.8230 0.8319 0.7195 0.7348 0.7474 0.7219 0.7597 0.7845
DAPH * [18] / / / / 0.6770 0.6890 0.7030 0.7300 /
MAFH [24] 0.7841 0.7982 0.8006 0.6357 0.6480 0.6542 0.5963 0.6733 0.6912
DSPH [23] 0.7972 0.8133 0.8351 0.7025 0.7177 0.7315 0.6921 0.7520 0.7714

Ours 0.8238 0.8406 0.8481 0.7403 0.7578 0.7665 0.7593 0.8044 0.8263

Table 3. Ablation experiment settings for each module. ✔ indicates that the module is used, ✗

indicates that the module is not used.

MLAH GAFM DTFEN

TEGAH ✔ ✔ ✔

TEGAH-V1 ✔ ✗ ✗

TEGAH-V2 ✗ ✔ ✗

TEGAH-V3 ✗ ✗ ✔

TEGAH-V4 ✔ ✔ ✗

TEGAH-V5 ✔ ✗ ✔

TEGAH-V6 ✗ ✔ ✔
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Table 4. Ablation experiment results.

Task Method
MIRFLICKR-25K NUS-WIDE MS-COCO

16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

I2T

baseline 0.8219 0.8500 0.8620 0.6868 0.7174 0.7312 0.6816 0.7526 0.7859
TEGAH-V1 0.8225 0.8506 0.8620 0.6822 0.7176 0.7436 0.6987 0.7502 0.7882
TEGAH-V2 0.8261 0.8537 0.8696 0.6980 0.7187 0.7442 0.6845 0.7523 0.7913
TEGAH-V3 0.8441 0.8571 0.8644 0.7053 0.7155 0.7283 0.7287 0.7822 0.8054
TEGAH-V4 0.8260 0.8513 0.8632 0.6960 0.7219 0.7415 0.6874 0.7536 0.7900
TEGAH-V5 0.8480 0.8592 0.8643 0.7044 0.7119 0.7268 0.7322 0.7841 0.8063
TEGAH-V6 0.8476 0.8575 0.8651 0.7036 0.7107 0.7290 0.7346 0.7817 0.8086
TEGAH 0.8484 0.8665 0.8740 0.7052 0.7236 0.7356 0.7542 0.8021 0.8219

T2I

baseline 0.7794 0.8095 0.8292 0.6844 0.7189 0.7303 0.6804 0.7448 0.7801
TEGAH-V1 0.7981 0.8156 0.8339 0.6911 0.7237 0.7430 0.6970 0.7471 0.7842
TEGAH-V2 0.7836 0.8089 0.8262 0.7092 0.7202 0.7418 0.6882 0.7439 0.7860
TEGAH-V3 0.8108 0.8267 0.8368 0.7254 0.7401 0.7498 0.7227 0.7812 0.8069
TEGAH-V4 0.7956 0.8110 0.8318 0.7004 0.7288 0.7464 0.6822 0.7475 0.7850
TEGAH-V5 0.8176 0.8313 0.8410 0.7234 0.7367 0.7519 0.7268 0.7828 0.8094
TEGAH-V6 0.8158 0.8295 0.8397 0.7278 0.7377 0.7466 0.7312 0.7812 0.8126
TEGAH 0.8238 0.8406 0.8481 0.7403 0.7578 0.7665 0.7593 0.8044 0.8263

4.4.3. Top-5 Retrieval Outcomes

To showcase the effective retrieval capability of our introduced TEGAH approach,
we employed the MS-COCO dataset for Hamming ranking, as illustrated in Figure 8.
The retrieval instances obtained through our TEGAH approach are all pertinent. This
suggests that the TEGAH approach can markedly improve the performance of the text
feature extraction network. Moreover, the Multiscale Label Area Hybrid Network can, to
some extent, compensate for the scarcity of textual information. Consequently, through
the Graph Attention Feature Fusion Module, it is possible to better integrate the semantic
information of multilabels, generating more distinctive hash codes. This ability to accurately
retrieve relevant results underscores TEGAH’s effectiveness in addressing the challenges
of cross-modal hash retrieval, particularly in bridging the semantic gap between different
modalities and improving the richness of textual features for more accurate and efficient
search outcomes.

4.4.4. Visualization Results

To further validate the capability of the image feature extraction network in capturing
global information, Figure 9 presents several examples of feature visualization using
our proposed TEGAH method. Across three datasets, we selected 10 images each and
visualized their feature maps using the Grad-CAM method, specifically visualizing the
outputs before the LayerNorm layer of the last encoder block of the image feature extractor.
GradCAM visualizations highlight the regions of the image feature extraction network that
may influence the classification decision, which often contain key descriptive elements.
For instance, on the MS-COCO and NUS-WIDE datasets, certain images encompass two
identical objectives, and the image feature extraction network within the TEGAH method
can precisely capture both objectives. This demonstrates TEGAH’s effectiveness not only
in feature extraction but also in ensuring that the extracted features are meaningful and
relevant to the image content, thereby enhancing the accuracy of subsequent retrieval tasks.
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Figure 8. Utilizing our TEGAH framework, original samples are encoded and subjected to retrieval
within the MS-COCO dataset, employing 64-bit hash codes to ascertain the top 5 results. Samples
returned and denoted with a blue marker signify relevance to the query sample.
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Figure 9. The results of visualization of 10 images randomly selected in three datasets using the
Grad-CAM method.

5. Discussion

Although TEGAH has demonstrated strong performance, there remains room for
improvement in the image modality. At present, the potential of image feature extraction
and modality alignment has not been fully realized in certain complex scenarios, which
may negatively impact the overall retrieval performance.
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Furthermore, with the advancement of large language models (LLMs), these models
have evolved into systems capable of processing multimodal information. This develop-
ment presents new opportunities for enhancing both image and text modalities. Moving
forward, we will shift our focus towards improving existing cross-modal retrieval methods.
We will explore novel approaches for optimizing the extraction and integration of image
features without relying on labeled information. Additionally, we will leverage the capabil-
ities of LLMs to enrich text modality features, with the goal of generating more distinctive
and robust hash codes.

While the current approach relies on labeled data, our future work will aim to reduce
this dependency. We plan to investigate weakly-supervised, semi-supervised, and unsu-
pervised learning methods to mitigate the reliance on high-quality labeled data, thereby
making the retrieval methods more adaptable and applicable to a broader range of real-
world scenarios. Moreover, we will validate the performance of these improved methods
on large-scale unsupervised datasets to ensure their generalizability and scalability across
different data environments.

6. Conclusions

In this paper, we propose a new Text-Enhanced Graph Attention Hashing for the
Cross-Modal Retrieval (TEGAH) framework. First, we use the deep text feature extraction
network to extract deep features of text information so that we can directly improve
the extracted text features without changing the text features and improve the retrieval
effect. Secondly, we regard label information as a mode and propose a multiscale label
region hybrid network, which can supplement the modal features of text and alleviate the
information gap when text information is scarce. Finally, in order to integrate the features
of different modes, TEGAH uses GAT to learn a set of interdependent modal features, and
optimizes the learned features for modal alignment and fusion, preserving the common
features of different modes, bridging the information gap between different modes, and
generating more distinctive hash codes. A large number of experiments on MIRFLICKR-
25K, NUS-WIDE, and MS-COCO datasets prove that TEGAH method has good retrieval
performance. A large number of experiments on the MIRFLICKR-25K, NUS-WIDE, and
MS COCO datasets demonstrate that the TEGAH method achieves outstanding retrieval
performance and significantly outperforms existing cross-modal hashing methods.
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