Algorithm 1 Hash Learning algorithm of TEGAH |
Input:
Training set , Binary code length M, Hyper-parameters ∂, Query sets , Parameters for TEGAH.
Output:
Binary code , Parameters , and .
Initialization:
Initialize the parameters , and , maximum iteration number , mini-batch size 80.
-
1:
while do
-
2:
Compute , , features using Equations (3), (15) and (18) for the training set.
-
3:
Compute GAT fusion features using Equation (11).
-
4:
Calculate losses , , , and using Equations (12), (19), (22), (26) and (27).
-
5:
Calculate approximate binary hash codes using query sets data.
-
6:
Input to the trained TEGAH model.
-
7:
Calculate binary hash codes using the function.
-
8:
end while
return the TEGAH model after training.
|