Skip to main content
. 2024 Oct 27;26(11):911. doi: 10.3390/e26110911
Algorithm 1 Hash Learning algorithm of TEGAH
Input:
Training set {Xi,Yi,Zi}i=1N, Binary code length M, Hyper-parameters , Query sets Queryi, Parameters for TEGAH.
Output:
Binary code Bi=x,y,zM, Parameters ΘX, ΘY and ΘZ.
Initialization:
Initialize the parameters ΘX, ΘY and ΘZ, maximum iteration number epoch, mini-batch size 80.
  • 1:

    while iter<epoch do

  • 2:

        Compute Fxk, Fyk, Fzk features using Equations (3), (15) and (18) for the training set.

  • 3:

        Compute GAT fusion features using Equation (11).

  • 4:

        Calculate losses Ltri, Lclass, Lquan, Lwass and Lkl using Equations (12), (19), (22), (26) and (27).

  • 5:

        Calculate approximate binary hash codes using query sets data.

  • 6:

        Input to the trained TEGAH model.

  • 7:

        Calculate binary hash codes using the function.

  • 8:

    end while

return the TEGAH model after training.