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Abstract: Background: As the demand for early and accurate diagnosis of autism spectrum dis-
order (ASD) increases, the integration of machine learning (ML) and explainable artificial intel-
ligence (XAI) is emerging as a critical advancement that promises to revolutionize intervention
strategies by improving both accuracy and transparency. Methods: This paper presents a method
that combines XAI techniques with a rigorous data-preprocessing pipeline to improve the accu-
racy and interpretability of ML-based diagnostic tools. Our preprocessing pipeline included outlier
removal, missing data handling, and selecting pertinent features based on clinical expert advice.
Using R and the caret package (version 6.0.94), we developed and compared several ML algorithms,
validated using 10-fold cross-validation and optimized by grid search hyperparameter tuning. XAI
techniques were employed to improve model transparency, offering insights into how features
contribute to predictions, thereby enhancing clinician trust. Results: Rigorous data-preprocessing
improved the models’ generalizability and real-world applicability across diverse clinical datasets,
ensuring a robust performance. Neural networks and extreme gradient boosting models achieved
the best performance in terms of accuracy, precision, and recall. XAI techniques demonstrated that
behavioral features significantly influenced model predictions, leading to greater interpretability.
Conclusions: This study successfully developed highly precise and interpretable ML models for ASD
diagnosis, connecting advanced ML methods with practical clinical application and supporting the
adoption of AI-driven diagnostic tools by healthcare professionals. This study’s findings contribute
to personalized intervention strategies and early diagnostic practices, ultimately improving outcomes
and quality of life for individuals with ASD.

Keywords: autism spectrum disorder; clinical diagnosis; data preprocessing; healthcare analytics;
machine learning; patient outcomes; personalized intervention; explainable artificial intelligence

1. Introduction

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder affecting
approximately 1 in 54 children worldwide [1]. It is marked by ongoing challenges in social
communication and interaction, along with restricted and repetitive behaviors and inter-
ests [2]. The wide range of symptoms varies greatly among individuals, making diagnosis
difficult and necessitating personalized intervention strategies to effectively support each
child. ASD’s profound impact extends beyond individuals to families, educational systems,
and healthcare infrastructures, resulting in significant social and economic burdens [3].
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Early and accurate diagnosis is crucial, as early intervention can greatly and significantly
improve developmental outcomes and quality of life for children with ASD [4].

Identifying ASD is essential, as initial signs typically appear between 2 and 3 years
of age, a critical period for brain development [5]. In this period, the brain’s increased
plasticity makes it ideal for interventions that can positively influence developmental
paths [6]. However, early symptoms are often subtle and diverse, encompassing a range of
behavioral and communication issues that can be easily overlooked or misinterpreted [7].
Traditional diagnostic methods rely primarily on subjective behavioral assessments by
clinicians, such as the Autism Diagnostic Observation Schedule and the Autism Diagnostic
Interview—Revised (ADI-R) [8]. In addition, standardized assessment tools such as the
Childhood Autism Rating Scale (CARS), the Social Responsiveness Scale (SRS), and the
Autism Spectrum Quotient 10 (AQ10) are commonly used to evaluate ASD symptoms [9–11].

While these assessments are invaluable, their reliance on clinical expertise introduces
variability and potential bias, causing inconsistencies in diagnosis [12]. Furthermore, due to
the nature of ASD assessments and surveys, there may be an overwhelming representation
of individuals with ASD compared to non-ASD individuals in the datasets. This imbalance
can lead to decreased diagnostic accuracy when relying solely on traditional methods, as
models may be biased toward overrepresented classes. In addition, shortages of trained
professionals and high demand for diagnostic services exacerbate identification delays,
highlighting the need for more efficient and scalable diagnostic approaches.

In recent years, artificial intelligence (AI) and machine learning (ML) has become
pivotal in advancing early ASD diagnosis and intervention. ML algorithms, including sup-
port vector machines (SVMs), random forest (RF), and extreme gradient boosting (XGBoost),
are highly effective in analyzing large and complex datasets [13], uncovering patterns that
are undetectable by traditional methods. For example, RF and XGBoost have successfully
classified ASD using behavioral and clinical data, achieving high accuracy [14,15]. These
algorithms enable predictive models that improve diagnostic accuracy and support person-
alized intervention plans tailored to each child’s developmental [16]. In this study, we focus
on survey-based behavioral and clinical data and use R for our analyses, prioritizing acces-
sibility and ease of use for clinicians. By not including imaging data, we aim to develop a
more streamlined and interpretable diagnostic approach, suitable for initial assessments
prior to specialized testing by clinicians.

Even when AI models achieve high accuracy, it is critical to understand their decision-
making processes, especially what variables they consider important beyond known factors,
such as CARS, SRS, and AQ10 scores. Adopting ML in ASD diagnosis faces challenges,
notably the ‘black-box’ nature of models, which lack transparency in their predictions [17].
This opacity can undermine clinician confidence and hinder AI integration in healthcare [18].
Understanding the importance of different variables, including those not typically empha-
sized in clinical assessments, may provide new insights and previously overlooked factors
in ASD diagnosis. In addition, the absence of rigorous validation of data reliability affects
the accuracy and generalizability of ML models [19]. Issues such as missing data, outliers,
and biased feature selection can distort predictions [20].

To overcome these hurdles, this study incorporates explainable artificial intelligence (XAI)
techniques [21], such as permutation feature importance (PFI), local interpretable model-
agnostic explanations (LIMEs), and Shapley additive explanations (SHAP), to clarify ML
model’s decision-making processes. These methods aim to enhance transparency and trust,
ensuring that models are both accurate and interpretable [22]. This dual emphasis on
performance and explainability is critical for fostering collaboration between AI systems
and healthcare professionals, facilitating the integration of ML-driven diagnostic tools
into clinical practices [23]. In addition, by identifying and understanding the importance
of variables beyond traditional assessment tools, we can improve diagnostic criteria and
support the development of more comprehensive intervention strategies.

This study underscores the paramount importance of data reliability, implementing
a meticulous data-preprocessing pipeline involving outlier removal, missing data han-
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dling, and feature selection based on clinical expert input [24]. This refinement ensures
that our ML models are based on high-quality data, enhancing accuracy and credibility.
Our rigorous approach addresses common oversights in previous research, improving the
generalizability and real-world applicability of our findings [25]. Furthermore, we provide
clear guidelines to help clinicians adopt AI tools effectively in diagnostics. In addition, by
using R, which is widely used in medicine for statistical analysis and data modeling, we
aim to provide accessible and practical AI tools for clinicians without requiring extensive
programming expertise. Our current study does not include imaging data, but instead fo-
cuses on survey-based assessments to streamline the diagnostic process prior to specialized
testing by clinicians.

This study is guided by the following research questions:

1. What is the impact of a rigorous data-preprocessing pipeline—including outlier re-
moval, missing data handling, and expert-driven feature selection—on the perfor-
mance, robustness, and generalizability of ML models for ASD diagnosis, especially
in the context of data heterogeneity and imbalance?

2. How do different ML algorithms (e.g., SVMs, RFs, XGBoost, and neural networks)
compare in terms of accuracy, interpretability, and computational efficiency in diag-
nosing ASD using the R programming language and the caret package, and what are
the trade-offs between model complexity and practical usability in clinical settings?

3. How can the integration of advanced XAI techniques (e.g., PFI, LIME, and SHAP)
improve the interpretability of ML models for ASD diagnosis, and what new insights
do they provide into the relative importance of different features, including those not
traditionally emphasized in clinical assessments, such as CARS, SRS, and AQ10?

4. How does the development of accessible ML tools using R and caret facilitate the adop-
tion of AI-driven diagnostic methods by clinicians, and how does this accessibility
impact the effectiveness and reliability of ASD diagnosis without requiring extensive
programming expertise?

This study significantly advances ASD diagnosis and prediction through several
key contributions:

• We implement a careful data-preprocessing pipeline that includes outlier removal,
missing data handling, and feature selection based on input from clinical experts.
This rigorous approach addresses common data challenges, such as heterogeneity
and imbalance, and improves the validity, robustness, and generalizability of our ML
models. Our results demonstrate the critical role of data quality in the development of
reliable diagnostic tools.

• We develop and rigorously evaluate several ML models—including SVMs, RFs,
XGBoost, and neural networks (NNETs)—for ASD diagnosis, using R and the caret
package. Using 10-fold cross-validation and grid search hyperparameter tuning, we
optimize model performance and thoroughly compare their accuracy, interpretability,
and computational requirements. This comprehensive analysis provides valuable
insight into the trade-offs between model complexity and diagnostic efficacy.

• We integrate advanced XAI techniques, such as PFI, LIME, and SHAP, into our ML
models to improve interpretability. This integration allows us to dissect the decision-
making processes of complex models and uncover the relative importance of different
features, including those not traditionally emphasized in clinical evaluations. These
insights can inform the development of more comprehensive diagnostic criteria and
personalized intervention strategies for ASD.

• Using R programming and the caret package, we create practical and accessible ML
tools tailored for clinicians. Our emphasis on user-friendly implementations and
model interpretability through XAI techniques ensures that these tools can be effec-
tively integrated into clinical practice. This enables healthcare professionals to use
AI-driven diagnostics without extensive programming skills, thereby increasing the
accessibility and effectiveness of ASD diagnosis.
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The remainder of this paper is organized as follows: Section 2 reviews existing ASD
diagnosis studies and challenges. Section 3 outlines our data-collection sources, preprocess-
ing steps, and reliability checks and describes the ML algorithms and rationale for using R
and the caret package for model training and evaluation. Section 4 presents the experi-
mental setup, performance metrics, and results of our models, including XAI application.
Section 5 discusses the cross-validation results and evaluates model generalizability, noting
areas for further validation and improvement. Section 6 summarizes our key findings,
clinical implications, and future research directions.

2. Related Work
2.1. Machine-Learning Approaches in ASD Diagnosis

Research on ASD diagnosis highlights the vital role of early detection in enhancing
children’s developmental outcomes. Table 1 summarizes previous studies’ contributions
and the distinct features of our study. While earlier research demonstrated effective di-
agnostic tools and ML models, they lacked explainable AI techniques and rigorous data
preprocessing. Our study bridges this gap by integrating advanced ML algorithms priori-
tizing model interpretability and data reliability, enhancing both predictive performance
and clinical applicability.

Table 1. Comparison between previous studies on autism spectrum disorder (ASD) diagnosis and
intervention and the present study.

Authors Year Contributions Differences from Present Study

Lord and Luyster [5] 2006 Demonstrated stability of ASD diagnosis from age 2 to 9;
emphasized reliability of early diagnosis.

Does not incorporate ML or XAI; focuses on longitudinal
stability rather than predictive modeling.

McCarty and Frye [6] 2020 Identified challenges in early diagnosis; proposed
multi-stage screening to improve diagnostic accuracy.

Does not utilize ML algorithms or XAI techniques; focuses
on screening methodologies.

Bryson et al. [7] 2003 Reviewed impact of early intervention on developmental
outcomes; emphasized importance of early detection tools.

Lacks application of ML models and XAI; focuses on
intervention strategies rather than predictive analytics.

Guthrie et al. [8] 2013 Examined stability of early diagnoses; highlighted need for
multifaceted diagnostic approaches.

Does not apply ML or XAI; emphasizes clinical expertise
and multi-source information integration.

Omar et al. [12] 2019 Developed ML models using RF-CART and RF-ID3; created
a mobile diagnostic application for ASD.

Focuses on model development and application without
integrating XAI techniques; limited interpretability of
model predictions.

Usta et al. [13] 2019 Evaluated ML algorithms for predicting short-term ASD
outcomes; found decision tree to be most effective.

Does not incorporate XAI for model interpretability;
primarily focuses on prognosis prediction rather than
diagnostic accuracy.

Alsuliman and Al-Baity [26] 2022 Developed optimized ML models for ASD classification
using PBC and GE data with bio-inspired algorithms.

Does not integrate advanced XAI techniques to improve
both the accuracy and interpretability of their models.

Ben-Sasson et al. [27] 2023 Developed a gradient boosting model for early ASD
prediction using electronic health records.

Lacks integration of XAI techniques; focuses on predictive
modeling using electronic health records.

Abbas et al. [28] 2023 Compared TPOT and KNIME for ASD detection, focusing
on feature selection.

Does not include XAI techniques; focuses on comparing
AutoML tools for ASD detection.

Reghunathan et al. [29] 2023 Used machine-learning classifiers for ASD detection, with
logistic regression showing the highest accuracy.

Does not use XAI techniques; focuses on feature reduction
and classifier accuracy.

Bala et al. [30] 2023 Built an ASD detection model across age groups, with SVM
performing best.

Focuses on model performance across age groups without
applying XAI for interpretability.

Batsakis et al. [31] 2023 Built a data-driven AI model for clinical ASD diagnosis,
highlighting data limitations.

Emphasizes model development using AutoML without
integrating XAI for improved interpretability.

Our Study 2024
Developed interpretable ML models using XAI techniques;
implemented rigorous data preprocessing; provided
guidelines for non-experts.

Integrates XAI for model transparency; emphasizes data
reliability and preprocessing; offers practical guidelines for
clinical use.

Lord and Luyster’s [5] longitudinal studies demonstrated that ASD diagnoses made at
age 2 remain stable through age 9, providing strong evidence for the reliability of early diag-
nosis. They noted that differentiating between narrowly defined autism and broader ASD
categories is unnecessary owing to high variability in children’s developmental trajectories.
This study highlighted the importance of early diagnosis for predicting developmental
trajectories and planning appropriate interventions. McCarty and Frye [6] noted challenges
in identifying behavioral abnormalities that delay diagnosis, suggesting a multi-step screen-
ing to reduce false positives. Despite the high sensitivity and specificity of M-CHAT-R/F
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screening tool, it has a low positive predictive value owing to ASD’s low prevalence.
Bryson et al. [7] emphasized the importance of early identification and intervention in ASD,
showing that early intervention can positively impact long-term developmental outcomes,
enabling some children to achieve normal developmental paths. This underscores the
necessity for effective early diagnostic tools and interventions.

Guthrie et al. [8] examined the stability of early ASD diagnoses and emphasized the im-
portance of integrating clinical expertise with information from multiple sources to improve
diagnostic accuracy. Their study supports a multifaceted diagnostic approach to ensure reli-
able and consistent ASD diagnoses. In ML for ASD, Omar et al. [12] developed a predictive
model using classification and regression trees (RF-CARTs) and iterative dichotomizer 3
(RF-ID3) algorithms with the AQ-10 dataset and real-world data, achieving high accuracy
across various age groups (4–11 years, 12–17 years, and 18 years and older). They also
created a mobile application to make their model accessible for public use. Usta et al. [13]
evaluated the performance of four ML algorithms, namely naive Bayes (NB), generalized
linear model (GLM), logistic regression (LR), and decision tree (DT), in predicting ASD
prognosis in 433 children, highlighting early diagnosis and intervention as key for positive
outcomes. Among the models tested, the DT algorithm demonstrated the highest area
under the curve (AUC) value.

Alsuliman and Al-Baity [26] developed 16 optimized ML models to improve the
classification of ASD using personal and behavioral characteristics (PBCs) and gene ex-
pression (GE) data. The study applied bio-inspired algorithms, such as gray wolf opti-
mization (GWO), flower pollination algorithm (FPA), bat algorithm (BA), and artificial bee
colony (ABC), to improve feature selection and model accuracy. The GWO-SVM model
achieved the highest accuracies of 99.66% (PBC) and 99.34% (GE). Ben-Sasson et al. [27]
developed an ML model to predict ASD in infants using electronic health records from
a national screening program. The model, validated with 3-fold cross-validation, used
gradient-boosting machine (GBM) to achieve a mean AUC of 0.86 and identified devel-
opmental delay and parental concern as key predictors. Abbas et al. [28] compared the
automated ML (AutoML) tools TPOT and KNIME for the detection of ASD in toddlers.
TPOT achieved 85.23% accuracy, while KNIME achieved 83.89%, illustrating the benefit of
feature-selection techniques for early diagnosis of ASD.

Reghunathan et al. [29] investigated different classifiers for the detection of ASD in dif-
ferent age groups. They used the cuckoo search algorithm for feature reduction and found
key factors for ASD classification, with LR showing the highest accuracy. Bala et al. [30]
developed an ML model to detect ASD across different age groups, including infants,
children, adolescents, and adults. The study applied various feature selection techniques
and evaluated several classifiers, with SVM performing best across all age datasets. Ac-
curacy rates ranged from 95.87 to 99.61%. The authors used SHAP to analyze and rank
the most important features to further improve classification accuracy. Batsakis et al. [31]
describe an ongoing study using AI technologies to support diagnostic decision-making
in clinical settings. They developed a data-driven prediction model by analyzing clinical
data from past cases using an AutoML platform. Initial results are promising, but the study
highlights the limitations of the available data and the need for further research to improve
the model’s capabilities.

2.2. Advanced Techniques in ASD Diagnosis: fMRI and NLP Applications

Research on ASD has used functional magnetic resonance imaging (fMRI) and natural
language processing (NLP) to study its neurological and behavioral aspects. fMRI is a
technique that maps brain activity with the objective of identifying neurological differences.
In contrast, NLP is a method that assesses communication patterns with the goal of en-
hancing our comprehension and diagnosis of ASD. Mainas et al. [32] evaluated traditional
ML classifiers, such as SVM and XGBoost, and compared them with deep learning (DL)
models, such as TabNet and multilayer perceptrons (MLPs), for fMRI data analysis in ASD
diagnosis. They found that SVMs with radial basis function (RBF) kernels outperformed DL
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models, achieving an AUC of 75%, and highlighted key brain regions involved in sensory
perception and attention as critical for ASD classification.

Rodrigues et al. [33] used ML and resting-state fMRI (rs-fMRI) to classify ASD severity
based on brain activity. Using Autism Diagnostic Observation Schedule (ADOS) scores as
a measure of severity, their study identified potential brain region biomarkers and achieved
an accuracy of 73.8% in the cingulum regions, suggesting the utility of rs-fMRI data in
classifying ASD severity, although they noted the need for further validation. Helmy
et al. [34] reviewed the role of AI and ML in the diagnosis of ASD using various brain
imaging techniques, particularly magnetic resonance imaging (MRI). The focus was on
diffusion tensor imaging (DTI) and fMRI, discussing how DL has improved the early,
objective, and efficient diagnosis of ASD. The paper summarized advances in AI for ASD
detection and discussed future trends in the integration of AI into clinical practice.

Themistocleous et al. [35] developed an ML model using NLP to discriminate children
with ASD from typically developing peers based on narrative and vocabulary skills. The
model achieved 96% accuracy, with histogram-based GBM and XGBoost outperforming
DTs and GBM in terms of accuracy and F1 score. This study highlights the potential of AI
tools for early diagnosis of ASD, especially in underserved communities. Toki et al. [36]
used ML techniques to classify ASD in children using data from a serious game specifically
designed for ASD assessment. Different NNETs, including MLPs and constructed NNETs,
were used, with the constructed NNET performing best, achieving 75% accuracy and 66%
recall. This suggests that these techniques can increase the efficiency of ASD screening and
help clinicians provide better care.

2.3. R’s Growing Importance in Medical Data Analysis: Paths and Perspectives

Recent studies have confirmed the growing importance of the R programming lan-
guage in medical data analysis. Kaur and Kumari [37] used ML techniques on the Pima
Indian diabetes dataset to detect patterns and risk factors. They developed predictive
models using various supervised ML algorithms—linear kernel SVM, RBF kernel SVM,
k-nearest neighbors (k-NN), artificial neural networks (ANNs), and multifactor dimen-
sionality reduction (MDR)—to classify patients as diabetic or non-diabetic, demonstrating
the utility of ML in early detection of diabetes. Li and Chen [38] applied classification
models—DT, RF, SVM, NNET, and LR—to the Breast Cancer Coimbra Dataset (BCCD) and
the Wisconsin Breast Cancer Database (WBCD). These models were evaluated using pre-
dictive accuracy, F-measure, and AUC values, with RF showing the strongest performance
for breast cancer classification, highlighting its clinical relevance.

Leha et al. [39] investigated ML algorithms to predict pulmonary hypertension (PH)
using echocardiographic data from 90 patients with measured pulmonary artery pres-
sure (PAP). They applied models such as RF, lasso penalized LR, boosted classification trees,
and SVMs and achieved high predictive accuracy, especially with the RF model (AUC 0.87),
indicating the potential of ML to improve diagnostic support for PH. Miettinen et al. [40]
investigated metabolic markers associated with chronic pain, sleep disturbance, and obe-
sity in 193 patients undergoing pain management. Using ML and hypothesis-driven
approaches, they identified key metabolites as significant for classifying patients with
severe-pain phenotypes. The study found that metabolomic changes related to amino acid
and methionine metabolism were associated with obesity and sleep problems, suggesting
that co-occurring problems may influence chronic pain at the metabolic level.

Beunza et al. [41] compared several supervised ML algorithms, including DT, RF,
SVM, NNET, and LR, to predict clinical events using data from the Framingham Heart
Study. The study used two platforms, R-Studio and RapidMiner, and evaluated the models
based on their AUC scores. NNET performed best in R-Studio (AUC = 0.71), while SVM
had the highest AUC in RapidMiner (AUC = 0.75). The research highlights how ML
algorithms can improve traditional regression techniques in clinical prediction. Despite
these advances, previous studies often lack interpretability, posing a challenge for clinical
adoption. Recognizing this gap, this study integrates XAI techniques, such as PFI, LIME,
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and SHAP, to improve model transparency. Improving model transparency using XAI
techniques allows us to examine whether and how variables known to be important in
clinical practice differ from those identified by the model.

We emphasize data reliability through a rigorous preprocessing pipeline that includes
outlier removal, missing data handling, and feature selection based on input from clinical
experts [31]. These enhancements increase analytical accuracy and reliability, ensuring that
ML models are built on high-quality data. This approach improves the generalizability
and practical applicability of research findings by addressing issues often overlooked
in previous research [32]. This study provides clear guidance and best practices to help
clinicians use ML tools for diagnosis in an accessible and effective manner through the R
programming language, emphasizing improved data reliability, model interpretability, and
practical use. This approach differentiates research and contributes to the development of
more reliable and clinically applicable diagnostic tools for ASD.

3. Methods

This section outlines the framework and methods for developing ML models for
the early diagnosis of ASD. It covers the rationale for selecting specific tools and tech-
niques, model selection and configuration, hyperparameter optimization strategies, and
XAI integration to ensure model interpretability and transparency. Figure 1 illustrates the
overall flow of this process, highlighting the key stages, from data preprocessing to model
evaluation, with a clear emphasis on how each step contributes to the goal of accurate and
interpretable ASD predictions.
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3.1. Data Acquisition and Preparation

This study uses the ASD children trait dataset, which comprehensively captures
characteristics of children with ASD, including age, gender, diagnostic criteria, and socioe-
conomic status. Table 2 details these variables. The dataset features identifiers for 1985 cases
under CASE_NO_PATIENT’S. The Social_Responsiveness_Scale scores range from 0 to 10,
with some entries missing. Age_Years covers ages 1 to 18, consistently captured across
all entries. The Qchat_10_Score, assessing certain ASD traits, also ranges from 0 to 10 but
includes some missing values. Binary attributes such as Speech Delay/Language Disorder,
Learning Disorder, and Genetic_Disorders are clearly marked as ‘yes’ or ‘no’, without missing
data, while Depression and Social/Behavioral Issues have some missing entries. Ethnicity is
categorized into 11 distinct types, fully represented. This table ensures a comprehensive
view of the dataset’s structure and content, aiding in the analysis of significant variables.
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Table 2. Detailed overview of ASD children trait dataset with variable characteristics.

Variable Description Range/Values Missing Data

CASE_NO_PATIENT’S Unique identifier for each patient case 1 to 1985 No
A1–A10 Behavioral indicators, measured as binary values, reflecting certain autistic traits 0 or 1 No
Social_Responsiveness_Scale Score measuring social responsiveness; higher values indicate more difficulties 0 to 10 Yes
Age_Years The age of the child in years 1 to 18 No
Qchat_10_Score Questionnaire score assessing autistic traits in young children 0 to 10 Yes
Speech Delay/Language Disorder Whether the child has speech or language delays Yes, no No
Learning Disorder Presence of learning disabilities Yes, no No
Genetic Disorders Whether the child has any known genetic disorders Yes, no No
Depression Indicates if the child has depression Yes, no Yes
Global Developmental Delay/Intellectual Disability Indicates the presence of developmental delays or intellectual disabilities Yes, no No
Social/Behavioral Issues Whether the child exhibits social or behavioral problems Yes, no Yes
Childhood Autism Rating Scale (CARS) A clinical tool to rate autism severity (1 = nothing, 2 = little, 3 = medium, and 4 = severe) 1 to 4 No
Anxiety Disorder Indicates if the child has been diagnosed with anxiety disorders Yes, no No
Sex Gender of the child M, F No
Ethnicity Ethnic background of the child Asian, Black, Hispanic,

Latino, Middle Eastern,
Mixed, Native Indian,
PaciFica, South Asian,
White European, others

No

Jaundice Whether the child had jaundice at birth Yes, no No
Family_mem_with_ASD Indicates if a family member has been diagnosed with ASD Yes, no No
Who_completed_the_test The person who completed the assessment Family member,

Healthcare professional,
others

No

ASD_traits (dependent variable) Final diagnostic classification for ASD Yes, no No
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The data used in this study were carefully selected and restricted by clinical experts
according to the following strict criteria:

1. Ensuring data completeness was a priority, and only datasets with no missing values
were considered for analysis. Rather than simply excluding records with missing
values, a transparent method for handling missing values was used. Missing values
were handled through multiple imputations, and records were excluded from the
analysis only when imputation was not feasible. For example, for the SRS records,
data from 781 individuals—about 40% of the original 1985—were excluded because
of incomplete items.

2. The analysis included only datasets that were appropriate for the age range specified
by each test tool, with strict adherence to the age range specified by the test tool. For
example, QCHAT-10, which targets infants and toddlers aged 18–24 months, required
the exclusion of datasets outside this age range for reliability reasons. Similarly, SRS
datasets that did not meet their specific age criteria were excluded. Age criteria for
each instrument were determined based on the relevant literature in order to maintain
validity and reliability.

3. To improve the reliability of the test responses, cases categorized as ‘other’, ‘school and
NGO’, or ‘self’ were excluded from the analysis, as they were considered less reliable.
This exclusion criterion was based on previous studies indicating that results can vary
significantly depending on the respondent, making them statistically unreliable.

4. Any datasets that were likely to introduce prediction error or statistical bias were
omitted during the analysis phase. For example, cases in which the responses to items
A1–A10 were all zeros were excluded because they showed insufficient variability to
effectively predict autism. This exclusion was considered justified because previous
analyses confirmed a low correlation with autism prediction.

To identify the most effective ML model for ASD diagnosis, we first imported the
dataset using readxl [42] and performed a thorough preprocessing to ensure compatibility
with the different models. This preprocessing allowed us to test a variety of algorithms,
each chosen for their ability to handle complex, high-dimensional data and provide insight
into feature importance. Through these strict data-selection criteria, we ensured the consistency
and reliability of the data, thereby guaranteeing the accuracy and validity of the analysis results.
Figure 2 briefly illustrates the data-processing steps used to ensure accurate analysis.
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In our study, the dataset underwent a comprehensive transformation process to ensure
its suitability for analyzing ASD traits. Key transformations included the following:

• Gender transformation: The original Sex variable (‘F’ for female; ‘M’ for male) was
converted to numerical values (males as 1; females as 2) for easier analysis.

• Age preservation: The Age_Years variable remained unchanged to ensure reliable
age-related analysis.
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• Ethnicity recoding: The Ethnicity variable, initially comprising various ethnic descrip-
tors, was recoded into numeric identifiers (e.g., Asian as 1, Black as 2, and Hispanic
as 3) for standardized modeling inputs.

• Family history of ASD: The Family_mem_with_ASD variable, which originally docu-
mented responses as ‘yes’ or ‘no’, was transformed into a binary format (1 for ‘yes’;
2 for ‘no’) to simplify familial ASD analysis.

• Rater categorization: The Who_completed_the_test variable was reclassified into Rater,
encoding family members as 1 and healthcare professionals as 2.

• ASD traits: The ASD_traits variable retained its binary format, with ‘yes’ as 1 and ‘no’
as 2 for analysis.

• Social Responsiveness Scale (SRS): Scores from 1 to 10 were kept to measure social-
responsiveness severity.

• Autism diagnostic scores: The Childhood Autism Rating Scale variable consolidated
various diagnostic metrics into a single score, reflecting autism severity, categorizing
symptoms from ‘nothing’ to ‘severe’, thereby standardizing ASD severity assessments.

• Autism Quotient Score: The Qchat_10_Score variable was renamed to AQ10 in the
cleaned dataset. This score quantifies autism severity on a scale from 1 to 10, standard-
izing diagnostic outcomes across different assessments.

• Other ASD-relevant variables (A1–A10): ASD-relevant variables, labeled from A1
to A10, reflect diagnostic criteria or behavioral observations. These variables were
standardized to ensure uniformity across datasets, enhancing their analytical use.

Meticulous data transformations enhanced analytical clarity and aligned the dataset
with established standards, ensuring robust ASD-related analyses. Data reliability, crucial
in social science research, was verified through statistical validation and expert review. Clin-
ical experts identified inconsistencies, increasing dataset reliability by removing erroneous
data. After preprocessing and reliability checks, the dataset was refined to 634 samples
and 19 variables from 1985 samples and 28 variables, focusing on variables essential for
ASD diagnosis. This refined dataset optimized predictive performance for ML models.
Table 3 classifies each variable, detailing ranges and categories for clarity, while the prepro-
cessed dataset used for our experiments, along with brief descriptions of the values and
characteristics of each variable, is available in Table S1 (ASD_Preprocessed_Dataset.xlsx).

Table 3. Preprocessed dataset characteristics.

Variable Description

Gender Categorical variable: 1 = boy; 2 = girl.
Age_Years Numeric variable. Represents the age of the child (range: 1–18 years).
Ethnicity Categorical variable: 1 = Asian, 2 = Black, 3 = Hispanic, 4 = Latino, 5 = Middle Eastern, 6 = Mixed,

7 = Native Indian, 8 = Others, 9 = Pacifica, 10 = South Asian, and 11 = White European.
Family_mem_with_ASD Binary variable: 1 = yes; 2 = no. Indicates if any family member has ASD.
Rater Categorical variable indicating who completed the test. 1 = Family member, 2 = Healthcare

professional, 3 = Others.
ASD_traits (Dependent Variable) Binary variable: 1 = yes; 2 = no. Represents if ASD traits are present.
Social Responsiveness Scale (SRS) Numeric variable ranging from 1 to 10. Measures the severity of social impairment. Missing

values are present.
CARS Numeric variable ranging from 1 to 10. Higher values indicate more severe symptoms.

Missing values are present.
A1 to A10 (Autism Spectrum
Quotient)

Binary variables (0 = no; 1 = yes). Represents responses to a series of questions related to
autism traits.

AQ10 (Autism Quotient Score) Numeric variable ranging from 1 to 10. Measures autism-trait severity.

3.2. R: A Robust Environment for Statistical Analysis and ML

The R programming language was chosen for ASD diagnostic models because of
its strengths in statistical analysis, data manipulation, and ML [43]. Its user-friendly li-
braries facilitate complex analyses for non-experts, thus assisting healthcare professionals.
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R excels in data processing, with packages such as dplyr and data.table, which are essential
for preparing datasets for model training [44,45]. Visualization tools such as ggplot2 and
lattice libraries [46,47] have improved data interpretation for data scientists and clinicians.
The caret package provided a unified interface for implementing a wide variety of ML
algorithms [48], streamlining training and evaluation. In addition, specialized packages
optimized for specific ML techniques, such as xgboost, randomForest, and nnet, integrate
seamlessly with R, further enhancing model versatility and performance. R supports auto-
mated cross-validation and hyperparameter tuning, ensuring efficient model optimization
and reproducibility. In summary, R’s comprehensive suite of statistical and ML tools, com-
bined with its power and flexibility, made it an ideal platform for both data preprocessing
and model development in this study.

3.3. Selection and Configuration of ML Algorithms

To identify the most effective ML model for ASD diagnosis, a diverse set of algorithms
was tested for their ability to handle complex, high-dimensional data and provide insights
into feature importance. The evaluated algorithms include the following:

• Random forest (RF) [49,50]: Utilized the randomForest package. This ensemble-learning
method improves prediction performance and reduces overfitting by using multiple
DTs. Equation (1) shows that the RF model predicts the output based on the majority
vote from multiple DTs, thus improving accuracy and robustness.

yhat = majority_vote(T1(x), T2(x), ..., Tn(x)). (1)

• Support vector machine (SVM) [51,52]: Implemented using the e1071 package. SVM
is effective in high-dimensional spaces and captures complex patterns by finding the
optimal separating hyperplane. Equation (2) determines the classification of SVM by
computing a hyperplane in high-dimensional space that best separates the classes.
alphai, yi, and K represent support vectors, labels, and the kernel function, respectively,
enhancing SVM’s ability to model complex relationships.

f (x) = sign(sum(alphai × yi × K(xi, x) + b)). (2)

• Gradient-boosting machine (GBM) [53,54]: Operated using the gbm package. GBM
increases model accuracy by sequentially correcting errors from previous models,
effectively handling complex data relationships. Equation (3) updates the prediction
model by incrementally improving errors, where hm(x) is the improvement term, and
v is a scaling factor that helps fine-tune the correction.

Fm(x) = F(m − 1)(x) + v × hm(x). (3)

• XGBoost [55,56]: Configured using the xgboost package. It is an optimized version of
GBM that includes additional regularization and parallel processing to improve speed
and performance. Equation (4) represents XGBoost’s loss computation, which not only
focuses on reducing the prediction error (l(yi, yhat_i)), but also includes a regularization
term (Omega) to prevent overfitting.

L(theta) = sum(l(yi, yhat_i) + sum(Omega(fk))). (4)

• C5.0 Decision Tree [57,58]: Facilitated by the C50 package. C5.0 simplifies complex tree
structures to improve interpretability and predictive accuracy. Equation (5) calculates
the information gain from using attribute, A, to split set, S, which helps decide the
best splits to improve tree accuracy and simplicity.
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Gain(S, A) = Entropy(S) − sum((|Sv|/|S|) × Entropy(Sv)). (5)

• Neural network (NNET) [59,60]: Built with the nnet package. NNET models complex
nonlinear relationships and is powerful for pattern recognition, although it is resource
intensive. Equation (6) represents the activation of a neuron, where sigma is the
activation function, wij is the weight, xi is the input, and bj is the bias, illustrating the
computational process of the neuron.

aj = sigma(sum(wij × xi + bj)). (6)

• k-nearest neighbors (k-NN) [61,62]: Implemented through the class package. k-NN
classifies instances based on the proximity of the k nearest training data points.
Equation (7) averages the labels yi of the k-nearest neighbors to predict the class,
demonstrating k-NN’s reliance on local data similarity.

yhat = (1/k) × sum(yi). (7)

• Logistic regression [63,64]: Used the glmnet package. This model assumes a linear
relationship between variables and outcomes, effectively modeling binary data. This
logistic function (Equation (8)) calculates the probability that the outcome is 1 based
on the linear combination of the input features, x, weighted by w, plus a bias term,
b, illustrating a simple yet effective classification approach.

P(y = 1|x) = 1/(1 + exp(−(w × x + b))). (8)

Each model is selected to provide a comprehensive comparison that addresses both
linear and nonlinear relationships and focuses on accuracy, reliability, and interpretability
in ASD diagnosis.

3.4. Hyperparameter Optimization and Grid Search Using Caret

Hyperparameter optimization is critical for enhancing ML model performance [65],
significantly affecting accuracy and generalizability. This study utilized a grid search
approach to systematically explore the hyperparameter space for each algorithm, ensuring
optimal performance [66]. The optimization process was integrated with ten-fold cross-
validation to validate model performance and prevent overfitting.

3.4.1. The Caret Package: An Overview

The caret package in R is a comprehensive toolkit that simplifies training, tuning,
and evaluating ML models [48]. It provides a consistent interface to a wide array of
ML algorithms, facilitating the implementation of standardized workflows for model
development. The key reasons for utilizing caret in this study are as follows:

• Unified interface for diverse models: Caret offers a consistent set of functions for
training and evaluating different algorithms, streamlining workflows and simplifying
model comparison.

• Automated cross-validation and resampling [67]: Caret automates cross-validation
and resampling to assess model performance and ensure generalization to unseen
data, reducing human error and enhancing reproducibility.

• Efficient hyperparameter tuning: A standout feature of caret is its ability to perform
hyperparameter tuning through grid search and other optimization techniques. By
automating hyperparameter space exploration, it boosts model performance with
minimal manual effort.
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• Feature engineering and preprocessing integration: Caret seamlessly integrates feature-
engineering and data-preprocessing steps into the modeling pipeline, ensuring consis-
tent data transformations and fair model comparisons.

• Performance metrics and model comparison: Caret provides built-in functions for
calculating various performance metrics and supports side-by-side model comparisons
to identify best-performing algorithms.

• Reproducibility and documentation: By encapsulating the entire modeling process
within a single framework, caret enhances the reproducibility and allows comprehen-
sive documentation for easy replication and validation.

3.4.2. Implementation of Hyperparameter Optimization with Caret

1. Setting up cross-validation and train control: A ten-fold cross-validation strategy was
established using trainControl within caret. This setup involved the following:

• Method: Cross-validation to partition the data into training and testing sets.
• Number: Ten for ten-fold cross-validation, ensuring that each model was evalu-

ated on ten different data subsets.
• Search: Grid to perform grid search hyperparameter tuning.
• Class Probabilities: Enabled (TRUE) to allow for probability-based metrics.
• Summary Function: multiClassSummary to calculate various performance metrics

suitable for multi-class classification problems.

2. Defining hyperparameter grids for each model: Specific hyperparameter grids were
developed for each algorithm to explore different configurations. The following
are examples:

• RF: Tuned the mtry parameter, representing the number of variables considered
at each split.

• SVM: Adjusted the C (cost) and sigma parameters for the radial basis function kernel.
• GBM: Modified parameters such as n.trees, interaction.depth, shrinkage, and

n.minobsinnode.
• XGBoost: Focused on nrounds, max_depth, eta, gamma, colsample_bytree, min_child_weight,

and subsample.
• C5.0 Decision Tree: Tuned trials, model, and winnow.
• NNET: Tuned size (number of neurons in hidden layers) and decay (weight decay rate).
• k-nearest neighbors (k-NN): Tuned the number of neighbors (k).
• Logistic regression (GLMNET): Tuned the lambda parameter for regularization.

3. Training models with caret: Each ML model was trained using the train function
from caret, which seamlessly integrated the defined hyperparameter grids and cross-
validation strategy. This consistent approach was applied across all models, ensuring
a standardized training process.

4. Evaluating model performance: After training, each model was evaluated using
resampling techniques provided by caret. Metrics such as accuracy, F1 score, precision,
recall, and AUC were calculated to assess their effectiveness [48].

5. Selecting top-performing models: Based on the evaluation metrics, the top-performing
models were identified for further analysis and interpretation. This selection was
crucial for focusing subsequent efforts on models demonstrating the highest potential
for accurate and reliable ASD diagnosis.

3.4.3. Advantages of Using Caret for Hyperparameter Optimization

The use of the caret package in this study provided numerous advantages that signifi-
cantly enhanced the efficiency and effectiveness of hyperparameter optimization:

• Streamlined workflow: Caret’s unified interface enabled a seamless workflow for data
preprocessing, model training, hyperparameter tuning, and evaluation within a single
framework. This reduced the need for switching between different packages and
functions, reducing complexity and potential errors.
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• Comprehensive model tuning: Through grid search, caret enabled exhaustive explo-
ration of hyperparameter spaces, optimizing configurations for each model. This is
crucial for enhancing performance and adapting models to ASD dataset characteristics.

• Consistency across models: By providing a standardized approach, caret ensured
consistency in evaluating and comparing algorithms, vital for unbiased and accurate
model assessments.

• Efficiency and speed: Caret’s ability to parallelize computations accelerated tuning,
especially beneficial for large datasets and complex models requiring extensive tuning.

• Robust evaluation metrics: Caret offers a wide range of performance metrics and sup-
ports multi-class classification evaluations, essential for accurately assessing models
in the context of ASD diagnosis.

• Reproducibility and documentation: Caret facilitates documenting and reproducing
the modeling process, ensuring other researchers can replicate procedures and validate
findings and thus enhancing credibility.

• Flexibility and extensibility: Caret is highly flexible, allowing customization to specific
needs. Its extensibility helps integrate new models and techniques, aligning with the
latest ML advancements.

In summary, caret was instrumental in efficiently managing hyperparameter optimiza-
tion, ensuring meticulous model tuning for optimal performance. Its features and ability
to standardize workflows rendered it an invaluable tool in developing reliable diagnostic
models for ASD.

3.5. Enhancing Model Transparency with XAI

In healthcare, especially when diagnosing complex conditions like ASD, the trans-
parency and interpretability of ML are crucial. Clinicians must not only trust the accuracy
of these models but also understand the rationale behind their predictions to confidently
integrate AI tools into clinical practice. This transparency is particularly important in
high-stakes domains like healthcare, where decisions significantly impact patient out-
comes. Without clear insights into model predictions, clinicians may hesitate to rely on
AI-generated diagnoses. To address the ‘black box’ nature of sophisticated algorithms,
such as NNETs and ensemble methods like XGBoost, this study incorporated various XAI
techniques [68]. XAI provides tools to clarify the internal workings of these models, offer-
ing explanations understandable to clinicians and stakeholders [69]. By leveraging these
techniques, we transformed ML models from opaque decision-makers into transparent and
interpretable tools, enhancing their trustworthiness in clinical settings.

In this study, we employed three main XAI techniques: PFI [70], LIME [71], and
SHAP [72]. Each method contributed to our understanding of the models’ prediction pro-
cesses. Below, we explain each technique and how it was used to enhance model interpretability.
For clarity and transparency in our ML model analysis for ASD diagnosis, we used the following
R packages to implement specific XAI techniques alongside our best models:

• iml package: Used for SHAP scores and PFI, which evaluates the impact of each feature
on model predictions and helps identify the most important predictors.

• lime package: Applied for LIME, which provides local explanations that help clarify
why certain predictions were made by the model.

These tools were integrated after selecting the best performing models based on
accuracy, ensuring that our explanations are relevant and directly applicable to the most
effective models.

3.5.1. PFI

PFI is a model-agnostic technique used to measure feature importance by observing
performance degradation when feature values are randomly shuffled. If shuffling a feature
causes a notable accuracy drop, the feature is crucial for predictions; if not, it likely has little
impact. We applied PFI to identify key variables in predicting ASD. By shuffling values like
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‘Frequency of Eye Contact’ or ‘Family History of ASD’, we gauged accuracy changes, ranking
features by importance (Equation (9)).

Delta Accuracy = Accuracyoriginal − Accuracypermuted. (9)

Our study found behavior-related variables, such as communication patterns and
repetitive actions, to be more influential than demographic factors, like age or gender. This
methodology ensures a comprehensive understanding of the impact of each feature on the
accuracy of the model, thereby enhancing the interpretability of our results.

3.5.2. LIME

While PFI focuses solely on global feature importance, LIME focuses on generating
localized explanations for individual predictions. LIME creates an interpretable surrogate
model, typically a simpler, linear model that approximates the complex model’s behavior
near a particular prediction. This is especially useful for understanding why a model
classified a specific patient as having ASD (Equation (10)).

y = wx + b. (10)

In clinical practice, LIME provides transparent explanations for each diagnosis, helping
clinicians trust the model outputs. For example, if a model identifies a patient with ASD,
LIME can show which features, like limited eye contact or repetitive behaviors, were most
influential. Such case-by-case analyses allow clinicians to cross-check the model reasoning
with their own clinical judgment, building confidence in AI-driven diagnoses.

3.5.3. SHAP

SHAP, rooted in cooperative game theory, provides a unified approach to measure
each feature’s contribution to a model’s prediction. By calculating ‘SHAP values’, it assigns
an importance score to each feature, reflecting its impact on the prediction for a specific
data point. This is especially useful for understanding how variables like behavioral traits,
family history, and demographic information affect the likelihood of an ASD diagnosis.
A key advantage of SHAP is its consistent application across diverse ML models. Whether
applied to tree-based models like RF and XGBoost or complex models like NNETs, SHAP
offers a consistent framework for understanding feature importance. The contribution of
each feature i to a prediction can be expressed quantitatively by Equation (11):

Phi(i) = sum((v(S U {i}) − v(S))). (11)

In this study, we used SHAP to analyze key variables, such as behavioral indicators
(e.g., repetitive actions or communication challenges), and their effect on the model’s
ASD classification decisions. SHAP provided both global explanations, highlighting the
most influential features across the dataset, and local explanations, offering insights into
individual predictions.

3.5.4. Integrating XAI Techniques for Comprehensive Interpretability

The combination of PFI, LIME, and SHAP provided a comprehensive set of expla-
nations for our ML models. PFI ranked features based on their impact on performance,
providing an initial global understanding. LIME then added local insights, helping clini-
cians understand features that are important for specific diagnoses. Finally, SHAP provided
both global and local explanations, deepening the understanding of model behavior at
multiple levels. Together, these techniques transformed complex models into interpretable
tools that clinicians could trust. This transparency is critical to the adoption of AI-based
diagnostic tools in healthcare, ensuring that predictions are consistent with clinical reason-
ing and real-world observations. In addition, XAI methods emphasized the importance of
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behavioral factors in diagnosing ASD, highlighting the need to prioritize these features in
clinical practice.

4. Results

This section analyzes the experimental results from evaluating multiple ML models for
diagnosing ASD. We set the tuneLength parameter to 10 to optimize the hyperparameters of
each ML model through a comprehensive grid search. The models were assessed using
various performance metrics to compare their predictive capabilities in a robust way. XAI
techniques were also employed to enhance model transparency and interpretability.

4.1. Model Performance Evaluation

Each model’s performance was evaluated using several key metrics: accuracy, F1
score, area under the precision–recall curve (prAUC), precision, and recall. These metrics
offer a comprehensive understanding of each model’s effectiveness in diagnosing ASD.
Accuracy, reflecting the proportion of correct predictions, is critical for understanding
overall model success. The F1 score balances precision and recall, particularly valuable
when class imbalance could skew accuracy calculations. The prAUC metric was vital in
this study, as it evaluates the model ability to distinguish true positives from false positives,
essential for early and accurate ASD detection.

Table 4 summarizes the overall performance metrics of the machine-learning models
evaluated in our study for diagnosing ASD. The NNET and XGBoost models achieved
the highest accuracy scores of 1 and 0.9984, respectively. These models also excelled in
F1 score and prAUC, highlighting their effectiveness in discriminating between ASD and
non-ASD cases. Such high performance suggests that these models are highly reliable for
our diagnostic purposes. To statistically validate the performance differences among the
models and to select the best one for our work, we performed the Wilcoxon signed-rank
test and the Friedman test based on the fold-wise performance metrics obtained from the
10-fold cross-validation. The detailed performance metrics for each fold are presented in
Appendix A (Tables A1–A10).

Table 4. Performance metrics for each model based on 10-fold cross-validation.

Model Accuracy F1 Score prAUC Precision Recall

Random forest 0.9463 0.9642 0.9317 0.9409 0.9891
SVM 0.9874 0.9913 0.9545 0.9892 0.9934
GBM 0.9984 0.9989 0.9601 1 0.9978
XGBoost 0.9984 0.9989 0.9103 1 0.9978
C5.0 0.9701 0.9796 0.5358 0.9705 0.9892
NNET 1 1 0.9601 1 1
k-NN 0.8883 0.9231 0.5984 0.9156 0.9331
Logistic regression 0.9858 0.9903 0.9576 0.9873 0.9935

The Wilcoxon signed-rank test is a nonparametric statistical method used to compare
two related samples to determine whether their population mean ranks differ [73,74]. In
this context, it was used to compare the NNET model with each of the other models across
all folds, testing the null hypothesis that there is no significant difference in performance
between NNET and the compared model. Table 5 presents the p-values from the Wilcoxon
signed-rank test comparing the NNET model to each of the other models on various
performance metrics. A p-value less than 0.05 indicates a statistically significant difference
in favor of the NNET model.

The results show that NNET significantly outperforms RF, C5.0, and k-NN for all
performance metrics, as evidenced by p-values well below 0.05. When compared to SVM,
GBM, XGBoost, and LR, the differences are not statistically significant for certain metrics,
suggesting that these models perform comparably to NNET in some aspects. The Friedman
test is another nonparametric test used to detect differences in treatments across multiple
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trials, especially when comparing more than two groups [74,75]. It assesses whether there
are significant differences in the performance of all models across all folds. Table 6 shows
the results of the Friedman test for each performance metric. The extremely low p-values
(all less than 0.05) indicate that there are statistically significant differences between the
models for each metric evaluated.

Table 5. Wilcoxon signed-rank test results (p-values) with NNET with other models based on
fold-wise performance metrics.

Model Accuracy F1 Score prAUC Precision Recall

Random forest 0.003 0.003 0.001 0.027 0.003
SVM 0.049 0.049 0.140 0.500 0.087
GBM 0.500 0.500 0.047 0.500 1.000
XGBoost 0.500 0.500 0.007 1.000 0.500
C5.0 0.007 0.007 0.001 0.024 0.007
k-NN 0.003 0.001 0.001 0.003 0.001
Logistic regression 0.091 0.087 0.248 0.500 0.186

Table 6. Friedman test results across all models based on fold-wise performance metrics.

Metric Chi Squared df p-Value

Accuracy 56.161 7 8.775 × 10−10

F1 Score 57.058 7 5.822 × 10−10

prAUC 57.416 7 4.942 × 10−10

Precision 42.265 7 4.623 × 10−7

Recall 57.377 7 5.030 × 10−10

These statistical analyses reinforce the results presented in Table 4, confirming that
the NNET model consistently outperforms other models, especially RF, C5.0, and k-NN.
The significant p-values from the Wilcoxon signed-rank test highlight the robustness of
NNET’s performance across multiple metrics. In addition, the Friedman test indicates
overall significant differences among all models tested, further justifying the selection of
NNET as the most effective model for our work. By demonstrating statistically significant
improvements in key performance metrics, the NNET model proves to be highly effective
in discriminating between ASD and non-ASD cases.

To achieve these optimal performance metrics, different neural network architectures
were systematically tested, resulting in the architecture shown in Table 7 and Figure 3.
Through a grid search on the NNET model, we found that a hidden layer size of 5 neurons
and a decay of 0.1 provided the best performance and learning speed. The results for each
combination of size and decay are detailed in Table 7. In addition, Figure 3 illustrates the
architecture of the neural network used, which consists of an input layer with 45 nodes, a
hidden layer with 5 nodes, and an output layer with 1 node.

Table 7. Optimization results for neural network (NNET) hyperparameters.

Size Decay Accuracy F1 Score prAUC Precision Recall

5 0.01 1 1 0.9600 1 1
5 0.1 1 1 0.9601 1 1
7 0.01 1 1 0.9524 1 1
7 0.1 1 1 0.9600 1 1
10 0.01 1 1 0.9600 1 1
10 0.1 1 1 0.9600 1 1
15 0.01 1 1 0.8900 1 1
15 0.1 1 1 0.9600 1 1
20 0.01 1 1 0.7354 1 1
20 0.1 1 1 0.9526 1 1



Diagnostics 2024, 14, 2504 18 of 36

Diagnostics 2024, 14, x FOR PEER REVIEW 19 of 38 
 

 

Table 7. Optimization results for neural network (NNET) hyperparameters. 

Size Decay Accuracy F1 Score prAUC Precision Recall 
5 0.01 1 1 0.9600 1 1 
5 0.1 1 1 0.9601 1 1 
7 0.01 1 1 0.9524 1 1 
7 0.1 1 1 0.9600 1 1 
10 0.01 1 1 0.9600 1 1 
10 0.1 1 1 0.9600 1 1 
15 0.01 1 1 0.8900 1 1 
15 0.1 1 1 0.9600 1 1 
20 0.01 1 1 0.7354 1 1 
20 0.1 1 1 0.9526 1 1 

 
Figure 3. Neural network (NNET) architecture for ASD diagnosis. 

GBM also demonstrated strong performance, achieving similarly high accuracy and 
precision, marking it another top-performing model. Conversely, k-NNs and C5.0 DTs 
demonstrated lower performance, particularly in prAUC and F1 scores, indicating that 
they may not be as suitable for ASD diagnosis within this dataset. Despite these differ-
ences, all models contributed valuable insights into handling ASD data complexities. To 
further understand the varying performance of k-NN, we analyzed how different k-values 
affect its accuracy, which helped to identify the optimal configuration for ASD diagnosis. 

Table 8 provides a detailed analysis of the performance metrics of the k-NN model, 
including the accuracy, F1 score, and prAUC, for different k-values. The analysis shows 
that k = 7 achieves the best balance of sensitivity and specificity, establishing it as the op-
timal setting for the k-NN model in this study. Although k = 7 shows the best performance 
among the k-NN settings, it inherently lacks the robust predictive power of models such 
as XGBoost, NNET, and GBM, primarily due to its simpler, proximity-based algorithm, 
which may not capture complex patterns as effectively. 

Table 8. Detailed evaluation of k-NN performance across different k-values. 

k Accuracy F1 Score prAUC Precision Recall 
1 0.8380 0.8802 0.1145 0.8971 0.8672 
2 0.8284 0.8749 0.1765 0.8829 0.8695 
3 0.8680 0.9024 0.3057 0.9092 0.8977 
4 0.8517 0.8890 0.3815 0.8994 0.8998 
5 0.8695 0.9049 0.4465 0.8987 0.9127 
6 0.8618 0.8983 0.4770 0.8976 0.9019 
7 0.8883 0.9231 0.5984 0.9156 0.9331 

Figure 3. Neural network (NNET) architecture for ASD diagnosis.

GBM also demonstrated strong performance, achieving similarly high accuracy and
precision, marking it another top-performing model. Conversely, k-NNs and C5.0 DTs
demonstrated lower performance, particularly in prAUC and F1 scores, indicating that
they may not be as suitable for ASD diagnosis within this dataset. Despite these differences,
all models contributed valuable insights into handling ASD data complexities. To further
understand the varying performance of k-NN, we analyzed how different k-values affect
its accuracy, which helped to identify the optimal configuration for ASD diagnosis.

Table 8 provides a detailed analysis of the performance metrics of the k-NN model,
including the accuracy, F1 score, and prAUC, for different k-values. The analysis shows that
k = 7 achieves the best balance of sensitivity and specificity, establishing it as the optimal
setting for the k-NN model in this study. Although k = 7 shows the best performance
among the k-NN settings, it inherently lacks the robust predictive power of models such as
XGBoost, NNET, and GBM, primarily due to its simpler, proximity-based algorithm, which
may not capture complex patterns as effectively.

Table 8. Detailed evaluation of k-NN performance across different k-values.

k Accuracy F1 Score prAUC Precision Recall

1 0.8380 0.8802 0.1145 0.8971 0.8672
2 0.8284 0.8749 0.1765 0.8829 0.8695
3 0.8680 0.9024 0.3057 0.9092 0.8977
4 0.8517 0.8890 0.3815 0.8994 0.8998
5 0.8695 0.9049 0.4465 0.8987 0.9127
6 0.8618 0.8983 0.4770 0.8976 0.9019
7 0.8883 0.9231 0.5984 0.9156 0.9331
8 0.8670 0.8969 0.5573 0.8905 0.9150
9 0.8601 0.8894 0.5818 0.8807 0.8993
10 0.8602 0.8893 0.6005 0.8834 0.9071

4.2. Results of XAI

In addition to evaluating performance metrics, we applied XAI techniques—specifically
SHAP, LIME, and PFI—to our top-performing models, including GBM, XGBoost, and
NNET, to improve our understanding of their decision-making processes. These techniques
are used to interpret and explain the predictions made by these models. By using methods
such as SHAP scores and variable importance scores provided by LIME and PFI, we can
determine which variables significantly influence predictions. A higher value assigned to
a variable indicates that it is more important to the model and therefore plays a critical
role in the outcome of the predictions. This approach ensures a comprehensive analysis,
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providing a deeper insight into how these models process and analyze data and eliminating
any ambiguity about their function.

Figure 4 shows the results of the PFI analysis, where the x-axis represents the ‘Feature
Importance (loss: ce)’. This figure illustrates the extent to which the cross-entropy loss
of the model is amplified when the values of one feature are randomly shuffled while
the values of other features remain unchanged. A higher value on the x-axis indicates
that a given feature has a greater impact on the model’s predictions. The y-axis displays
the features in descending order of importance, with the most critical features listed first.
The dots represent the estimated importance of each feature, while the horizontal lines
show the variability, indicating the uncertainty in the importance of the feature across
different permutations. Detailed explanations of the GBM, XGBoost, and NNET models
are provided below:

• In the GBM model, as shown in Figure 4a, behavioral characteristics such as A8.0,
A10.0, A9.0, and A4.0 were the most influential, while demographic variables such as
gender and ethnicity had little impact. A8.0 emerged as the top variable, while other
behavioral indicators played key roles.

• Similarly, as shown in Figure 4b, XGBoost highlighted significant behavioral variables
such as A7.0 and A5.0, while clinical and demographic variables such as CARS, Fam-
ily_mem_with_ASD, and gender had little impact on model predictions, reinforcing the
emphasis on behavioral characteristics.

• In the NNET model, as shown in Figure 4c, behavioral variables such as A9.0, A10.1,
A8.1, and A2.0 significantly influenced predictions, while traditional clinical variables such
as CARS, SRS, and Family_mem_with_ASD were rarely used. Variables A10.1 and A6.0
contributed with a wide range of uncertainty, suggesting context-dependent importance.

• Behavioral characteristics are consistently shown to be highly influential in all models,
while demographic variables have a comparatively small impact. The longer bars
indicate greater uncertainty in the importance of some characteristics, but overall, the
results highlight the critical role of behavioral characteristics in driving model predictions.
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LIME provides localized explanations for individual diagnoses, showing probability
and explanation fit. This helps to assess the reliability of the model predictions. When
evaluating NNET and XGBoost with LIME, similar to the PFI and SHAP results, variables
A1 through A10 have a high weight and contribute to the prediction of variables. In general,
the likelihood and explanation fit were high, but occasionally they were low, and the feature
contributions differed from SHAP and PFI, as shown in Figures 5 and 6.
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In this context, the term ‘case’ is used to denote a specific observation derived from
the dataset under consideration. The assignment of a case number represents a specific
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instance. For example, ‘Case 1’ denotes the first observation. The ‘label’ denotes the class
predicted by the model, where ‘label X2’ indicates that the model assigned this instance to
category X2. The ‘probability’ value represents the degree of confidence the model has in
its prediction. Thus, a probability of 0.99 means that the model is 99% certain that the case
belongs to the class X2. The ‘explanation fit’ metric quantifies the extent to which LIME’s
explanation matches the model’s behavior for a given case. A higher value, approaching 1,
indicates that LIME has a satisfactory fit to the model’s decision.

Figure 5 shows the LIME for six cases using the NNET model. Below is a summary of
each case, highlighting the main factors that support or contradict the model’s predictions:

• In Case 1, the model predicted label X2 with an accuracy of 0.99 and an explana-
tion fit of 0.26, indicating a moderate level of interpretability. The LIME explanation
shows that the most influential features in supporting the prediction are Rater, Fam-
ily_mem_with_ASD, and CARS. These features played a significant role in the model’s
decision, with Rater being the most significant contributor. However, characteristics
A10 and A1 slightly contradict the prediction, although their influence is less significant
compared to the supporting factors.

• In Case 31, the model predicted label X2 with an accuracy of 1 and an explanation fit of
0.21, showing lower interpretability. The LIME results indicate that Ethnicity was the
most influential feature, followed by Family_mem_with_ASD, Rater, and Gender. The
combination of these features primarily drove the model’s prediction toward label X2,
with Ethnicity being particularly influential. On the other hand, some ethnicity vari-
ables, as well as lower scores on traits A8 and A7, contradict the prediction, although
they have relatively small effects.

• In Case 182, the model also predicted Label X2 with an accuracy of 1 and an ex-
planation fit of 0.23, which is relatively low. According to the LIME results, Fam-
ily_mem_with_ASD, Ethnicity, and Rater were the main contributors to this prediction.
The high importance of Family_mem_with_ASD and Ethnicity strongly biased the model
toward the X2 label. However, some ethnicity traits and lower scores on trait A8 act as
opposing factors, but their influence is comparatively weaker.

• In Case 271, the model predicted label X2 with an accuracy of 1 and an explanation fit
of 0.26, similar to Case 182. The LIME explanation shows that Family_mem_with_ASD,
Ethnicity, and Rater were again the most influential features. This consistency across
cases suggests that these features are critical to the model’s decision to predict label X2.
Conversely, certain ethnicity characteristics and a lower score on trait A7 contradict
the model’s decision, although their influence is relatively small.

• In Case 7, the model predicted label X1 with an accuracy of 1 and a relatively low
explanation fit of 0.11. Here, Gender was a positive contributor to the prediction of
X1, while A2 and Rater were negative contributors, making the interpretation more
complex due to the mixed influences of these features.

• In Case 13, the model, again, predicted label X1 with an accuracy of 1 and an expla-
nation fit of 0.095, indicating low interpretability. In this case, Gender contributed
positively to the prediction, but A2 and Rater had negative effects. This combination
of opposing influences presents additional challenges in interpreting the model’s
decision for label X1.

Figure 6 shows the LIME for six cases using the XGBoost model. Below is a summary of
each case, highlighting the main factors that support or contradict the model’s predictions:

• For Case 1, the label is X2, the probability is 0.99, and the explanation fit is 0.7. The
LIME explanation shows that several features, such as A5, A6, and A4, contribute
significantly to the prediction of class X2. These features have the highest positive
weights, supporting the model’s decision. Although some smaller features, shown in
red, contradict the prediction, their impact is negligible. The model has a very high
confidence of 99%, and the explanation fit is relatively strong at 0.7, indicating that the
LIME explanation for this case is in good agreement with the model’s behavior.
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• For Case 31, the label is also X2, with a probability of 1 and an explanation fit of 0.67.
As in Case 1, the top features supporting classification into X2 include A5, A6, and A4.
Although a few features related to ethnicity and CARS scores have a small negative
impact on the prediction, their contribution is minimal compared to the top supporting
features. The model’s confidence is perfect, with a probability of 100%, although the
explanation fit is slightly lower than in Case 1, at 0.67.

• In Case 182, the label remains X2 with a probability of 1 and an explanation fit of 0.69.
The same key features as in the previous cases, such as A5, A6, and A7, play a large
role in supporting the model’s decision. There are small negative contributions from
features such as ethnicity, but these are overshadowed by the stronger supporting fea-
tures. The model’s confidence is absolute, with a probability of 1, and the explanation
fit is moderate, at 0.69, indicating reasonable agreement between LIME’s explanation
and the model’s prediction.

• For Case 271, the label is X2, the probability is 1, and the explanation fit is 0.68. As
with the other cases predicting X2, features A5, A6, and A4 contribute the most to the
prediction. While some features related to ethnicity have a small negative influence,
the overall prediction is overwhelmingly supported by the positively contributing
features. The model again shows perfect confidence with a probability of 1, and the
explanation fit is close to 0.7, indicating a high level of interpretability for this case.

• In contrast, Case 7 predicts label X1 with a probability of 1 and an explanation fit
of 0.15. The low explanation fit of 0.15 suggests that LIME’s explanation does not fit
well with the model’s decision process for this case. Several features, such as AQ10
and Ethnicity, contribute positively to the prediction of class X1, but there are also
significant negative contributions from features such as Age_Years and Rater. This mix
of support and contradiction makes the explanation more ambiguous and difficult to
interpret compared to the earlier X2 cases.

• Finally, for Case 13, the model also predicts class X1 with a probability of 1 and
an explanation fit of 0.14. Like Case 7, this case has a low explanation fit, which makes
it more difficult to interpret the model’s decision with confidence. The top features,
such as AQ10 and Gender, provide strong positive support for the prediction of X1.
However, many other features, particularly those related to Rater and Age_Years, provide
negative contributions, complicating the overall explanation. This case, similar to Case 7,
is less straightforward compared to the higher explanation fits seen in the X2 cases.

The LIME results for the NNET and XGBoost models show clear differences in feature
influence and interpretability. In the NNET model, predictions for the X2 label are strongly
influenced by demographics such as Family_mem_with_ASD, Ethnicity, and Rater, but expla-
nation fits are generally lower, indicating moderate interpretability and some ambiguity in
understanding the model’s decision process. For X1 predictions, mixed positive and nega-
tive contributions from traits such as Gender and A2 add complexity to interpretation. In
contrast, the XGBoost model’s LIME results for label X2 consistently show high explanation
fits (around 0.7), with top traits such as A5, A6, and A4 providing strong support, making
these explanations more interpretable and consistent with the model’s decisions. However,
for label X1 predictions, XGBoost has lower explanation fits (around 0.15), indicating less
agreement with the model’s decision and a more difficult interpretation, similar to NNET’s
X1 cases. In summary, while both models highlight key features for each label, XGBoost
generally provides clearer explanations with higher fits for label X2, while NNET has more
variation and lower overall interpretability.

Among the SHAP packages provided by R, shapviz [76] is notable for visualizing
SHAP values, but it is limited to certain models, such as XGBoost and LightGBM. We
applied the SHAP technique using the XGBoost model available in the built-in caret library.
The visualization results of SHAP are shown in Figures 7–10. The SHAP summary plot,
shown in Figure 7, highlights A7.0, A10.0, and A9.0 as having the strongest positive effects
on XGBoost predictions, while variables such as gender and ethnicity had minor effects.
The SHAP swarm plot, shown in Figure 8, visually summarizes the feature contributions
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across data points. Positive SHAP values increase predictions, while negative values decrease
predictions. The features at the top, such as A7.0, A5.0, and A1.0, significantly affect predictions,
with A7.0 typically decreasing and A5.0 typically increasing the predicted value.
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importance, with the most influential features at the top. The color of the dots represents the value of
the feature, from low (purple) to high (yellow).
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to 11.5, while features A1.0 = 1 and A6.0 = 0 had a negative influence. The SHAP force plot 
shown in Figure 10 illustrates the predicted value of the model along the x-axis, with the 
feature contributions divided into positive or negative effects on the final predicted value 
(f(x)). E[f(x)] is the standard predicted value, the average value when the model is pre-
dicted without features. The final predicted value of XGBoost is −5.13, influenced by fea-
tures that either increase or decrease this value. Starting with a default of 1.25, features 
such as A1.1 = 1 and A1.0 = 0 increase the predicted value, while A7.0 = 1 and AQ10 = 7 
decrease it to −5.13. 

When comparing PFI, LIME, and SHAP, we see that PFI provides a broad, global 
understanding of the meaning of features throughout the model. However, it lacks the 
detailed, instance-specific explanations that SHAP provides. SHAP values provide a more 
granular interpretation that clearly shows the contribution of each feature to each predic-

Figure 9. SHAP waterfall plot. The x-axis represents the cumulative contribution of each feature
to the model’s prediction, starting from the base value to the final prediction. The y-axis lists the
features in descending order based on their contribution to the prediction for a given instance.
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Figure 10. SHAP force plot. The x-axis represents the model’s prediction, showing how different
features contribute to the final predicted value. The y-axis is not explicitly labeled, but the plot
visually shows the positive and negative contributions of each feature, represented by the color and
direction of the forces.

The SHAP waterfall plot in Figure 9 shows the sequential feature contributions. For
example, features A5.0 = 1, A7.0 = 0, and A8.0 = 0 positively influenced the predicted value
to 11.5, while features A1.0 = 1 and A6.0 = 0 had a negative influence. The SHAP force
plot shown in Figure 10 illustrates the predicted value of the model along the x-axis, with
the feature contributions divided into positive or negative effects on the final predicted
value (f (x)). E[f (x)] is the standard predicted value, the average value when the model is
predicted without features. The final predicted value of XGBoost is −5.13, influenced by
features that either increase or decrease this value. Starting with a default of 1.25, features
such as A1.1 = 1 and A1.0 = 0 increase the predicted value, while A7.0 = 1 and AQ10 = 7
decrease it to −5.13.

When comparing PFI, LIME, and SHAP, we see that PFI provides a broad, global
understanding of the meaning of features throughout the model. However, it lacks the
detailed, instance-specific explanations that SHAP provides. SHAP values provide a more
granular interpretation that clearly shows the contribution of each feature to each prediction,
allowing for both local and global interpretability. While LIME is useful for generating
localized explanations for individual predictions, it lacks the consistency and additive
properties of SHAP scores. SHAP’s ability to explain both local and global behavior, while
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maintaining consistency with the model’s overall predictions, makes it more reliable than
LIME for understanding both feature importance and decision-making processes.

By integrating SHAP, LIME, and PFI, this study provides a comprehensive analysis
of the inner workings of ML models. These techniques improve both model accuracy and
interpretability, providing critical insights into the most influential features for predicting
ASD outcomes. Among them, SHAP stands out for providing more comprehensive and
reliable explanations compared to PFI and LIME. It excels at explaining both global and
local model behavior, making it the preferred choice for understanding complex decision-
making processes in the context of ASD prediction. For non-experts, this means that we
can not only trust the predictions but also understand how these predictions are made,
ensuring transparency in AI-driven healthcare.

5. Discussion

Because of the exceptionally high-performance metrics observed in our initial model
evaluations, we were concerned about the potential for overfitting. To thoroughly investi-
gate this possibility, we conducted additional cross-validation experiments using 2-fold,
4-fold, and 5-fold cross-validation, as detailed in Tables 9–11. These additional experiments
were essential to ensure that the excellent performance of models such as NNET, XGBoost,
and GBM was not simply a result of overfitting to the specific dataset used in this study.

Table 9. Model performance metrics using 2-fold cross-validation.

Model Accuracy F1 Score prAUC Precision Recall

Random forest 0.9463 0.9642 0.9665 0.9408 0.9891
SVM 0.9605 0.9729 0.9832 0.9739 0.9718
GBM 0.9889 0.9924 0.9900 0.9913 0.9935
XGBoost 0.9968 0.9978 0.9871 1 0.9956
C5.0 0.9621 0.9741 0.7893 0.9679 0.9805
NNET 0.8691 0.9109 0.4091 0.9023 0.9199
k-NN 0.8691 0.9109 0.4091 0.9023 0.9199
Logistic regression 0.9684 0.9785 0.9882 0.9702 0.9870

Table 10. Model performance metrics using 4-fold cross-validation.

Model Accuracy F1 Score prAUC Precision Recall

Random forest 0.9431 0.9623 0.9483 0.9374 0.9891
SVM 0.9842 0.9891 0.9821 0.9912 0.9870
GBM 0.9950 0.9967 0.9838 0.9957 0.9978
XGBoost 0.9952 0.9967 0.9506 0.9957 0.9978
C5.0 0.9526 0.8678 0.7735 0.9556 0.9804
NNET 1 1 0.9245 1 1
k-NN 0.8927 0.9273 0.6730 0.9157 0.9393
Logistic regression 0.9889 0.9924 0.9828 0.9914 0.9935

Table 11. Model performance metrics using 5-fold cross-validation.

Model Accuracy F1 Score prAUC Precision Recall

Random forest 0.9385 0.9586 0.9353 0.9380 0.9804
SVM 0.9889 0.9923 0.9782 0.9934 0.9913
GBM 0.9984 0.9989 0.9800 1 0.9978
XGBoost 0.9968 0.9978 0.9700 0.9978 0.9870
C5.0 0.9763 0.9838 0.6667 0.9800 0.9870
NNET 1 1 0.9216 1 1
k-NN 0.8896 0.9259 0.6847 0.9100 0.9436
Logistic regression 0.9921 0.9946 0.9791 0.9914 0.9978
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Table 9 shows the results of the 2-fold cross-validation. XGBoost achieved an im-
pressive accuracy of 0.9968, an F1 score of 0.9978, and perfect precision and recall values
of 1 and 0.9956, respectively. GBM also performed exceptionally well, with an accuracy
of 0.9889 and an F1 score of 0.9924. In contrast, the NNET model showed an accuracy
of 0.8691, indicating variability in performance depending on the cross-validation fold.

Table 10 details the results of the 4-fold cross-validation. Here, XGBoost maintained a
high accuracy of 0.9952 and an F1 score of 0.9967, while GBM reached an accuracy of 0.9950
and an F1 score of 0.9967. Notably, the NNET model achieved perfect performance metrics
(accuracy = 1; F1 score = 1) in this setting, raising concerns about potential overfitting to
the specific data characteristics present in this fold.

Table 11 shows the performance metrics for a 5-fold cross-validation. XGBoost contin-
ued to show a strong performance, with an accuracy of 0.9968 and an F1 score of 0.9978.
GBM continued to improve, with an accuracy of 0.9984 and an F1 score of 0.9989. The
NNET model again showed perfect performance (accuracy = 1; F1 score = 1), consistent
with the 4-fold results.

These consistent performance metrics across different cross-validation approaches
suggest that XGBoost, NNETs, and GBM have some degree of generalizability, maintaining
a stable performance despite variations in training and testing splits. However, the excep-
tionally high performance of the NNET model in certain folds, achieving perfect scores,
indicates a potential risk of overfitting to specific data characteristics within those folds.
This concern is further supported by the identical performance metrics observed in some
cases for the NNET and k-NN models, as shown in Tables 7 and 8, which may indicate
redundancy or overfitting in the model implementation or data processing.

The XGBoost and GBM models displayed a robust predictive performance, with
high prAUC values, yet it is essential to acknowledge that their success may still be
influenced by unique features of the dataset used in this study. To ensure that these models
perform reliably in diverse real-world scenarios, future research should include validation
on independent datasets with different demographic and clinical characteristics. This
additional validation will help confirm the generalizability and reliability of the models
outside of the specific dataset used in this study.

While this study demonstrates the effectiveness of ML models in diagnosing ASD,
several limitations should be acknowledged. First, despite the extensive nature of our
dataset, it may not be representative of all populations, as ASD symptoms vary widely
across demographic groups. A larger, more diverse dataset would likely improve the gen-
eralizability and applicability of the models to broader clinical settings. Another important
limitation concerns class imbalance: although we used prAUC to handle imbalanced data,
models such as k-NN and C5.0 struggled to effectively discriminate between ASD and
non-ASD cases. Future studies could employ techniques such as synthetic minority over-
sampling technique (SMOTE) or cost-sensitive learning to further improve performance
with unbalanced data.

Moreover, while our study focused on using R due to its accessibility and widespread
use in the medical field, we did not use the advanced deep-learning frameworks available
in Python, such as TensorFlow, Keras, or PyTorch. This decision was primarily influenced by
our emphasis on tabular datasets rather than image-based data, such as MRI scans, which
were not available in our dataset. Complex models such as NNET and XGBoost achieved
high accuracy but posed interpretability challenges even with XAI techniques. To mitigate
this, we used SHAP and LIME, which provided valuable insights; however, simpler models
such as logistic regression may be preferred where interpretability is critical, even at the
expense of some accuracy.

Furthermore, we recognize the need for further discussion on the practical adoption
and use of these tools, including the development of user-friendly interfaces and addressing
potential clinician or caregiver resistance. This would facilitate a smoother integration
of AI-based diagnostic tools into clinical practice. Integrating AI-driven diagnostic tools
into clinical practice presents significant challenges beyond model performance, requiring
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a focus on user-friendly interface design and extensive clinician training. Developing
intuitive interfaces ensures that healthcare professionals can easily navigate and interpret
model output without requiring extensive technical expertise.

Overcoming clinician resistance requires demonstrating the practical utility and relia-
bility of AI tools through evidence-based validation and aligning model predictions with
established clinical guidelines. While XAI techniques such as SHAP and LIME increase
model transparency by explaining feature contributions, these explanations must also be
clinician-centric, translating complex model insights into actionable clinical knowledge.
Balancing the computational complexity of advanced models with the need for real-time
applicability in busy clinical environments is essential.

Finally, our current reliance on R limited our ability to implement more sophisticated
deep-learning models that Python’s libraries facilitate, particularly those that could handle
multimodal data integration. Therefore, future efforts should prioritize the creation of
seamless integration workflows to ensure that AI tools complement, rather than disrupt,
existing clinical processes. In addition, fostering collaboration between data scientists and
clinicians can facilitate the development of models that are both technically robust and
clinically relevant, ultimately promoting the widespread adoption and effective use of
AI-driven diagnostic tools in healthcare settings.

Future research directions should emphasize the integration of multimodal data,
including genetic, neuroimaging, and clinical data, to enrich datasets and provide a com-
prehensive view of ASD in children, thereby improving both diagnostic accuracy and
personalized care. Incorporating imaging data, such as MRI scans, would likely improve
the performance of both ML and DNN models by providing valuable structural and func-
tional information about the brain. However, our current study did not include such data
and instead focused on survey-based assessments. Another focus could be the real-time
implementation of models in clinical settings, especially for childcare, which requires the
development of user-friendly interfaces and mobile applications for healthcare profes-
sionals. Addressing class imbalance in rare conditions such as ASD through advanced
methods such as SMOTE and ensemble learning could lead to more balanced and accurate
results during model training. In addition, improving the interpretability of AI models
for non-experts, such as parents and caregivers, is essential. Simplified AI output and
visual aids can help these stakeholders understand and effectively use advanced models to
support their child’s care.

Future research should prioritize the development of AI-driven systems that facilitate
early, personalized interventions for children with ASD. While R was used in this study
due to its accessibility and widespread use in the medical field, we intend to explore Python
in future studies to take advantage of its extensive libraries and community support, such
as TensorFlow, Keras, and PyTorch for deep learning, and to incorporate a wider range of
data, including MRI images [77,78], voice recordings, and video analysis. Additionally, we
plan to integrate genetic expression data [79] and gut microbiome data [80]. This transition
will enable the use of more advanced machine-learning and deep neural-network models,
thereby expanding the scope and applicability of our research in clinical settings. While R
was used in this study due to its accessibility and widespread use in the medical field, we
are committed to exploring Python in future research to take advantage of its extensive libraries
and community support. This transition will enable the use of more advanced machine-learning
libraries and foster greater collaboration within the childcare research community.

6. Conclusions

This study was guided by four primary research questions, which we addressed
through a comprehensive ML framework using R and the caret package.

• First, to evaluate the impact of a rigorous data-preprocessing pipeline—including
outlier removal, missing data handling, and expert-driven feature selection—we
meticulously implemented these steps to improve the performance, robustness, and
generalizability of ML models for ASD diagnosis. This approach was particularly
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critical in the context of data heterogeneity and imbalance, ensuring that the models
could effectively handle diverse and imbalanced datasets.

• Second, we compared different ML algorithms (e.g., SVMs, RFs, XGBoost, and NNETs)
in terms of accuracy, interpretability, and computational efficiency, using R. The
results highlighted trade-offs between model complexity and practical usability in
clinical settings. For example, while complex models such as NNET and XGBoost
showed superior accuracy, simpler models such as logistic regression offered greater
interpretability, which is essential for clinical decision-making.

• Third, we integrated advanced XAI techniques (e.g., PFI, LIME, and SHAP) to improve
the interpretability of ML models for ASD diagnosis. These methods revealed that
some features traditionally emphasized in clinical assessments, such as CARS, SRS,
and AQ10, were less significant in the ML models, likely due to data imbalance,
with a higher number of ASD patient interviews. This finding helps to improve
communication between clinicians and AI models, promoting trust and usability.

• Finally, we developed accessible ML tools using R and the caret package to facilitate
the adoption of AI-driven diagnostic methods by clinicians. By leveraging R’s acces-
sibility and widespread use in the medical field, we aimed to ensure that these tools
could be used effectively without requiring extensive programming expertise, thereby
improving the effectiveness and reliability of ASD diagnosis in clinical practice.

A major contribution of this study is the use of XAI techniques, which provided clearer
insights into the decision-making processes of the models. These techniques revealed
that specific behavioral characteristics, such as social communication patterns, were more
important than demographic factors or family history in diagnosing ASD in children. This
finding is consistent with the multifaceted nature of ASD, where individual behavioral
indicators in children are critical. By increasing transparency, XAI enabled clinicians to
better understand the models’ predictions, thereby increasing confidence in AI-based
diagnostic tools. This study demonstrates the potential of ML models to improve early
diagnosis of ASD in children by emphasizing both interpretability and accuracy.

Moving forward, it is imperative to validate these models in diverse clinical settings,
particularly pediatric-care settings, to ensure robustness and generalizability. In addition,
the exploration of advanced regularization techniques and the use of cross-validation
methods will be critical to further improve accuracy and reduce the risk of overfitting. By
refining these models, we can significantly improve diagnostic tools for ASD in children,
leading to more effective intervention planning and improved quality of life for children
and their families. These efforts will not only advance healthcare analytics but also foster
greater trust in AI applications in childcare, contributing to emotionally intelligent, child-
focused clinical practices.
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Appendix A

The following tables present the detailed performance metrics for each cross-validation
fold used in the evaluation of multiple ML models for diagnosing ASD. These metrics
complement the main text and provide comprehensive insights necessary to understand
and replicate the research. In addition, these detailed results facilitate the application of
statistical tests to assess the significance of performance differences between models.

Table A1. Performance metrics for fold 1.

Model Accuracy F1 Score prAUC Precision Recall

Random forest 0.9523 0.9677 0.9405 0.9782 0.9574
SVM 0.9687 0.9791 0.9493 1 0.9591
GBM 1 1 0.9597 1 1
XGBoost 1 1 0.9287 1 1
C5.0 1 1 0.6323 1 1
NNET 1 1 0.9599 1 1
k-NN 0.8281 0.8705 0.7232 0.8043 0.9487
Logistic regression 1 1 0.9597 1 1

Table A2. Performance metrics for fold 2.

Model Accuracy F1 Score prAUC Precision Recall

Random forest 0.9523 0.9684 0.9271 1 0.9387
SVM 1 1 0.9599 1 1
GBM 0.9841 0.9890 0.9557 0.9782 1
XGBoost 0.9682 0.9787 0.9340 1 0.9583
C5.0 0.9687 0.9782 0.5509 0.9782 0.9782
NNET 1 1 0.9597 1 1
k-NN 0.8095 0.8750 0.5080 0.9130 0.8400
Logistic regression 0.9841 0.9892 0.9578 1 0.9787

https://www.kaggle.com/datasets/uppulurimadhuri/dataset
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Table A3. Performance metrics for fold 3.

Model Accuracy F1 Score prAUC Precision Recall

Random forest 0.9687 0.9791 0.9117 1 0.9591
SVM 1 1 0.9613 1 1
GBM 1 1 0.9613 1 1
XGBoost 1 1 0.9599 1 1
C5.0 0.9843 0.9892 0.7222 1 0.9787
NNET 1 1 0.9613 1 1
k-NN 0.9375 0.9583 0.6450 0.9787 0.9387
Logistic regression 1 1 0.9597 1 1

Table A4. Performance metrics for fold 4.

Model Accuracy F1 Score prAUC Precision Recall

Random forest 0.9523 0.9684 0.9587 1 0.9387
SVM 0.9841 0.9892 0.9597 1 0.9787
GBM 1 1 0.9597 1 1
XGBoost 1 1 0.9597 1 1
C5.0 0.9682 0.9782 0.6953 0.9782 0.9782
NNET 1 1 0.9597 1 1
k-NN 0.8730 0.9111 0.6264 0.8913 0.9318
Logistic regression 1 1 0.9597 1 1

Table A5. Performance metrics for fold 5.

Model Accuracy F1 Score prAUC Precision Recall

Random forest 0.9375 0.9583 0.9291 0.9787 0.9387
SVM 1 1 0.9597 1 1
GBM 1 1 0.9194 1 1
XGBoost 1 1 0.9173 1 1
C5.0 0.9523 0.9648 0.6030 1 0.9387
NNET 1 1 0.9615 1 1
k-NN 0.9206 0.9462 0.6924 0.9565 0.9361
Logistic regression 0.9843 0.9892 0.9560 0.9787 1

Table A6. Performance metrics for fold 6.

Model Accuracy F1 Score prAUC Precision Recall

Random forest 0.9047 0.9361 0.8983 0.9565 0.9166
SVM 1 1 0.9597 1 1
GBM 1 1 0.9597 1 1
XGBoost 1 1 0.9271 1 1
C5.0 0.9531 0.9684 0.6547 0.9787 0.9583
NNET 1 1 0.9597 1 1
k-NN 0.9206 0.9450 0.6106 0.9347 0.9555
Logistic regression 1 1 0.9599 1 1

Table A7. Performance metrics for fold 7.

Model Accuracy F1 Score prAUC Precision Recall

Random forest 0.9682 0.9787 0.9162 1 0.9583
SVM 0.9841 0.9892 0.9560 1 0.9787
GBM 1 1 0.9198 1 1
XGBoost 1 1 0.9597 1 1
C5.0 1 1 0.4561 1 1
NNET 1 1 0.9597 1 1
k-NN 0.9062 0.9361 0.6021 0.9565 0.9166
Logistic regression 1 1 0.9613 1 1
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Table A8. Performance metrics for fold 8.

Model Accuracy F1 Score prAUC Precision Recall

Random forest 0.9365 0.9574 0.9201 0.9782 0.9375
SVM 1 1 0.9597 1 1
GBM 1 1 0.9613 1 1
XGBoost 1 1 0.9488 1 1
C5.0 0.9682 0.9782 0.6529 0.9782 0.9782
NNET 1 1 0.9597 1 1
k-NN 0.9206 0.9473 0.6730 0.9782 0.9183
Logistic regression 1 1 0.9597 1 1

Table A9. Performance metrics for fold 9.

Model Accuracy F1 Score prAUC Precision Recall

Random forest 0.9687 0.9787 0.9437 1 0.9583
SVM 1 1 0.9597 1 1
GBM 1 1 0.9305 1 1
XGBoost 1 1 0.8836 1 1
C5.0 0.9682 0.9787 0.7966 1 0.9583
NNET 1 1 0.9597 1 1
k-NN 0.9365 0.9565 0.5708 0.9565 0.9565
Logistic regression 0.9687 0.9787 0.9613 1 0.9583

Table A10. Performance metrics for fold 10.

Model Accuracy F1 Score prAUC Precision Recall

Random forest 0.9531 0.9677 0.9015 0.9782 0.9574
SVM 0.9843 0.9890 0.9613 0.9782 1
GBM 1 1 0.9597 1 1
XGBoost 1 1 0.9178 1 1
C5.0 0.9365 0.9574 0.6453 0.9782 0.9375
NNET 1 1 0.9597 1 1
k-NN 0.8750 0.9200 0.5928 0.9787 0.8679
Logistic regression 1 1 0.9597 1 1
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