Table 4.
Model | Accuracy | F1 Score | prAUC | Precision | Recall |
---|---|---|---|---|---|
Random forest | 0.9463 | 0.9642 | 0.9317 | 0.9409 | 0.9891 |
SVM | 0.9874 | 0.9913 | 0.9545 | 0.9892 | 0.9934 |
GBM | 0.9984 | 0.9989 | 0.9601 | 1 | 0.9978 |
XGBoost | 0.9984 | 0.9989 | 0.9103 | 1 | 0.9978 |
C5.0 | 0.9701 | 0.9796 | 0.5358 | 0.9705 | 0.9892 |
NNET | 1 | 1 | 0.9601 | 1 | 1 |
k-NN | 0.8883 | 0.9231 | 0.5984 | 0.9156 | 0.9331 |
Logistic regression | 0.9858 | 0.9903 | 0.9576 | 0.9873 | 0.9935 |