Table 9.
Model | Accuracy | F1 Score | prAUC | Precision | Recall |
---|---|---|---|---|---|
Random forest | 0.9463 | 0.9642 | 0.9665 | 0.9408 | 0.9891 |
SVM | 0.9605 | 0.9729 | 0.9832 | 0.9739 | 0.9718 |
GBM | 0.9889 | 0.9924 | 0.9900 | 0.9913 | 0.9935 |
XGBoost | 0.9968 | 0.9978 | 0.9871 | 1 | 0.9956 |
C5.0 | 0.9621 | 0.9741 | 0.7893 | 0.9679 | 0.9805 |
NNET | 0.8691 | 0.9109 | 0.4091 | 0.9023 | 0.9199 |
k-NN | 0.8691 | 0.9109 | 0.4091 | 0.9023 | 0.9199 |
Logistic regression | 0.9684 | 0.9785 | 0.9882 | 0.9702 | 0.9870 |