Table 10.
Model | Accuracy | F1 Score | prAUC | Precision | Recall |
---|---|---|---|---|---|
Random forest | 0.9431 | 0.9623 | 0.9483 | 0.9374 | 0.9891 |
SVM | 0.9842 | 0.9891 | 0.9821 | 0.9912 | 0.9870 |
GBM | 0.9950 | 0.9967 | 0.9838 | 0.9957 | 0.9978 |
XGBoost | 0.9952 | 0.9967 | 0.9506 | 0.9957 | 0.9978 |
C5.0 | 0.9526 | 0.8678 | 0.7735 | 0.9556 | 0.9804 |
NNET | 1 | 1 | 0.9245 | 1 | 1 |
k-NN | 0.8927 | 0.9273 | 0.6730 | 0.9157 | 0.9393 |
Logistic regression | 0.9889 | 0.9924 | 0.9828 | 0.9914 | 0.9935 |