Table 11.
Model | Accuracy | F1 Score | prAUC | Precision | Recall |
---|---|---|---|---|---|
Random forest | 0.9385 | 0.9586 | 0.9353 | 0.9380 | 0.9804 |
SVM | 0.9889 | 0.9923 | 0.9782 | 0.9934 | 0.9913 |
GBM | 0.9984 | 0.9989 | 0.9800 | 1 | 0.9978 |
XGBoost | 0.9968 | 0.9978 | 0.9700 | 0.9978 | 0.9870 |
C5.0 | 0.9763 | 0.9838 | 0.6667 | 0.9800 | 0.9870 |
NNET | 1 | 1 | 0.9216 | 1 | 1 |
k-NN | 0.8896 | 0.9259 | 0.6847 | 0.9100 | 0.9436 |
Logistic regression | 0.9921 | 0.9946 | 0.9791 | 0.9914 | 0.9978 |