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Abstract: Deep learning has made significant strides, driving advances in areas like computer vision,
natural language processing, and autonomous systems. In this paper, we further investigate the
implications of the role of additive shortcut connections, focusing on models such as ResNet, Vision
Transformers (ViTs), and MLP-Mixers, given that they are essential in enabling efficient information
flow and mitigating optimization challenges such as vanishing gradients. In particular, capitalizing on
our recent information bottleneck approach, we analyze how additive shortcuts influence the fitting
and compression phases of training, crucial for generalization. We leverage Z-X and Z-Y measures
as practical alternatives to mutual information for observing these dynamics in high-dimensional
spaces. Our empirical results demonstrate that models with identity shortcuts (ISs) often skip the
initial fitting phase and move directly into the compression phase, while non-identity shortcut (NIS)
models follow the conventional two-phase process. Furthermore, we explore how IS models are still
able to compress effectively, maintaining their generalization capacity despite bypassing the early
fitting stages. These findings offer new insights into the dynamics of shortcut connections in neural
networks, contributing to the optimization of modern deep learning architectures.

Keywords: deep learning; neural networks; transformer; shortcut connections; information bottleneck
theory

1. Introduction

Machine learning, especially deep learning, has made significant strides in recent
years, providing exceptional performance across a variety of tasks and domains [1]. Deep
learning has been particularly outstanding in fields like computer vision [2–4], natural
language processing [5], and autonomous systems [6], where the capacity to model complex
patterns from data has revolutionized traditional approaches [1]. These advancements have
been driven by increasingly sophisticated neural network architectures, which continue to
evolve to address new challenges [7,8].

One of the central innovations within deep learning architectures is the use of different
neural network structures designed to optimize performance and efficiency. From the early
multi-layer perceptrons (MLPs) [9] to the more advanced convolutional neural networks
(CNNs) [3], recurrent neural networks (RNNs) [10], and attention-based architectures like
Transformers [5], the evolution of these models has unlocked new capabilities for machine
learning systems.

Among these developments, additive shortcut connections have emerged as a funda-
mental architectural feature that enhances the training of deep neural networks. Introduced
to mitigate issues like the vanishing gradient problem, shortcut connections enable the
flow of information across layers more efficiently [4]. These connections, particularly in
architectures like ResNet [4] and its derivatives, allow neural networks to bypass interme-
diate layers, facilitating the learning process and improving the performance. Shortcut
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structures are now the go-to choice for most state-of-the-art (SOTA) models, especially
in vision-based tasks, and are integral to architectures such as Vision Transformers and
MLP-Mixers [11,12].

However, despite the widespread success of these models, our understanding of
how these shortcut connections influence the training process remains incomplete. While
shortcuts help alleviate optimization challenges, they introduce complexities into how
neural networks learn and generalize [13]. Specifically, the way networks with shortcut
connections navigate the fitting and compression phases commonly observed in the training
process—as described by the information bottleneck theory [14]—remains unclear. This
gap in understanding is particularly pronounced for networks like Transformers, where the
presence of identity shortcuts allows information to bypass layers, potentially altering the
traditional pathways to generalization [5]. The mechanisms through which these models
retain and compress information, and the effect of shortcut connections on these processes,
have yet to be fully explored.

This paper focuses on exploring the role of additive shortcut connections in modern
neural networks, particularly their effect on the training dynamics of models such as ResNet
and Transformers. Specifically, we aim to investigate how models equipped with these
shortcuts behave during the fitting and compression phases of training, which are critical for
the model’s generalization ability. This exploration is grounded in information bottleneck
theory [14], which suggests that neural networks aim to increase the information relevant to
the ground-truth labels in their representations while reducing irrelevant information [15].
When examining neural network training dynamics through the information bottleneck
framework, it has been found that the training process typically involves two key phases:
an initial fitting phase, where relevant information is captured, followed by a compression
phase, where irrelevant details are discarded [16].

However, the information bottleneck theory and its dynamics are based on mutual
information (MI) measures, which are notoriously difficult to estimate for high-dimensional
random variables. Our previous work [17] introduced practical measures for analyzing
these phases using Z-X and Z-Y metrics, which are based on the minimal mean squared
error (MMSE) and conditional entropy, respectively. These metrics allow for a more reliable
analysis of the generalization pathways, circumventing the computational challenges of
traditional MI-based approaches. In this study, we leverage this framework to examine how
these dynamics are affected by the presence of additive shortcut connections, specifically
focusing on architectures such as ResNet, Vision Transformers, and MLP-Mixers.

1.1. Contributions

This paper makes the following key contributions to the study of neural networks
with additive shortcut connections, particularly in the context of understanding their
training dynamics:

1. Identification of distinct fitting and compression behaviors: We demonstrate that
models with non-identity shortcuts (such as traditional ResNet architectures) follow the
conventional two-phase training process, consisting of an initial fitting phase followed
by a subsequent compression phase, similar to the behavior seen in traditional feed-
forward networks [17].
In contrast, models with identity shortcuts, such as Vision Transformers and MLP-
Mixers, deviate from this pattern by skipping the initial fitting phase and moving
directly into the compression phase. This deviation represents a significant chal-
lenge to traditional views of neural network optimization, where both fitting and
compression are typically expected phases of training.

2. Analysis of the mechanisms underlying the absence of a fitting phase: We conjecture
that models with identity shortcuts are able to skip the fitting phase because the
shortcut structure enables the model to propagate all necessary information for the
classification task to deeper layers without the need for early-stage fitting.



Entropy 2024, 26, 974 3 of 27

This conjecture is validated empirically by comparing Z-Y measures at initialization.
These comparisons show that models with identity shortcuts retain sufficient informa-
tion for the task even without requiring an explicit fitting phase, indicating that the
network can bypass the typical initial training process.

3. Analysis of the mechanisms driving compression: We also explore the mechanisms
that drive compression in models with identity shortcuts. Through extensive empirical
experiments, we identify two distinct mechanisms:

• In ResNet-like models with identity shortcuts, compression is caused by the
canceling effect between the so-called functional and informative components
(which we will define later) of the network’s representations.

• In Transformers and MLP-Mixers, compression occurs when the functional com-
ponent of the network representations overwhelms the informative component,
leading to a pronounced compression phase.

1.2. Organization of the Paper

The paper is organized as follows:

• Section 1 provides an overview of the relevance of deep learning architectures and
the importance of additive shortcut connections. It introduces the motivation behind
studying the fitting and compression phases in these architectures.

• Section 2 discusses the Transformer architecture, state-of-the-art deep learning models,
and shortcut structures in neural networks, with a focus on understanding their
generalization and training dynamics.

• Section 3 introduces the Z-X and Z-Y measures adopted in this work, providing a
background on their use to observe fitting and compression phases in neural networks.

• Section 4 presents empirical results comparing neural networks with and without
shortcut connections, with a particular focus on ResNet, ViT, and MLP-Mixer models.
The Z-X dynamics of models with identity and non-identity shortcuts are explored
in detail.

• Section 5 analyzes the empirical findings, particularly the reasons why IS models
skip the fitting phase and how they manage to compress effectively. This section
further explores the interaction between the functional and informative components
in network representations.

• Section 6 summarizes the key findings of the paper and outlines potential directions
for future research.

1.3. Notations

The mathematical notations used in this paper are summarized as follows: We use
capital letters such as X and Y to represent matrices or tensors, where X typically denotes
input data, and Y denotes the corresponding labels or targets. Throughout this paper,
we refer to layers in a neural network with subscripted notations, such as Zl , where l
refers to the layer index and Z represents the intermediate representation at that layer.
The notation fθ is used to denote functions or transformations parameterized by a set of
learnable parameters θ within the neural network.

2. Related Work
2.1. The Transformer as a State-of-the-Art Deep Learning Architecture

The Transformer model has rapidly become one of the most influential architectures in
the field of deep learning, particularly in natural language processing (NLP) [5]. Its success
lies in its ability to capture complex dependencies in data using self-attention mechanisms,
which allow the model to attend to different parts of an input sequence or image without
the limitations of fixed-size receptive fields.

In recent years, the Transformer architecture has been extended beyond NLP into
the domain of computer vision, most notably through the development of the Vision
Transformer (ViT) [11]. The ViT leverages the same self-attention mechanism to process



Entropy 2024, 26, 974 4 of 27

image patches, treating them as sequences, thereby bypassing the need for convolutional
layers. ViT has shown state-of-the-art (SOTA) performance on several vision benchmarks,
particularly in classification tasks, where it competes with or even surpasses traditional
CNN-based architectures like ResNet [4,18].

Despite their widespread adoption, Transformers also present new challenges in
terms of training and generalization [19]. Their high computational demand, reliance on
large datasets, and potential susceptibility to overfitting raise important questions about
their efficiency and scalability [20]. These challenges make it crucial to further investigate
the internal mechanisms of Transformers, especially in how they navigate the fitting
and compression phases during training. Understanding these dynamics is particularly
important as Transformers incorporate identity shortcuts, which may influence the way
they handle information compared to more traditional architectures like CNNs.

Understanding Transformers

As the Transformer architecture has risen to prominence, a growing body of research
has aimed to understand its inner workings, particularly the mechanisms that enable it to
generalize so effectively across tasks and domains. These efforts have primarily focused
on explaining how the self-attention mechanism and multi-layer structure contribute to
the model’s performance and how they differ from more traditional architectures such as
CNNs and RNNs [5,21].

One line of research has investigated the self-attention mechanism itself, seeking to
explain how it captures long-range dependencies and the role of multi-head attention in
learning diverse representations. Studies have shown that attention heads in Transformers
often learn different patterns, with some focusing on local relationships while others
capture more global dependencies [11,21,22]. This versatility allows Transformers to model
complex interactions in the data, but the exact contributions of individual attention heads
and layers to the overall learning process remain topics of active investigation.

Another important research direction has focused on the positional encoding com-
ponent, which provides the necessary ordering information in a model that inherently
lacks a sense of sequence [5,23]. Positional encoding is critical for the model’s ability to
handle sequential data like language or structured inputs like images (in the case of Vision
Transformers). Researchers have explored different types of positional encoding—learned
versus fixed—and their impact on the model’s ability to generalize across different types of
data [23–26].

In addition, several studies have attempted to visualize and interpret the internal
representations learned by Transformers. Some works have used attention visualization
techniques to map out which parts of an input are considered most important by the
model [27]. These visualizations help to demystify how Transformers make decisions
but also highlight a key challenge: unlike CNNs, where activations can often be linked to
specific spatial features, attention maps can be more abstract and harder to interpret in terms
of direct feature relationships [28]. This makes understanding the fitting and compression
phases of training in Transformers particularly challenging, as their mechanisms for storing
and discarding information are less intuitive than those of CNNs.

Finally, the presence of identity shortcuts in Transformers—similar to those found in
ResNet—adds another layer of complexity to understanding these models’ generalization
dynamics. These shortcuts allow information to flow directly to deeper layers without it un-
dergoing transformation in every block, potentially bypassing important fitting processes
that occur in other architectures. The question of how these shortcuts impact the compres-
sion of information and what role they play in the model’s overall training dynamics is a
central focus of this paper.

2.2. Exploring Shortcut Structures in Neural Networks

The introduction of shortcut connections into neural networks was a groundbreaking
development that aimed to address the challenges of training deep models, particularly the
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issue of vanishing gradients. Early neural networks suffered from the inability to propagate
gradients effectively across multiple layers, leading to poor optimization, especially in
very deep architectures. Shortcut connections, also known as skip connections, were first
popularized by the ResNet architecture, which allowed gradients to flow more freely
through layers by bypassing intermediate transformations.

In ResNet [4], the key innovation was the use of additive shortcuts, which merge the
input of one layer with a deeper layer additively. This architectural modification proved to
be crucial in enabling the training of very deep networks with hundreds or even thousands
of layers, leading to significantly improved performance on a wide range of tasks. The
success of ResNet sparked further exploration into different types of shortcut structures
and their implications for network training and performance.

Subsequent research has explored other forms of shortcut connections, such as the
concatenation shortcuts used in DenseNet [29]. Unlike the identity shortcuts in ResNet,
DenseNet’s concatenation shortcuts combine the outputs of all previous layers, allowing
each layer to access not only its immediate predecessors but also distant layers’ outputs.
This creates a more densely connected architecture that encourages feature reuse and leads
to more compact models, as fewer parameters are needed to achieve the same performance
levels. These concatenation shortcuts have been shown to enhance the learning efficiency
of networks, particularly in scenarios with limited data.

Beyond ResNet and DenseNet, modern architectures like Vision Transformers (ViTs)
and MLP-Mixers have also incorporated shortcut connections, though in different
ways [11,12,30]. In these models, shortcut connections play a critical role in maintain-
ing stability and enabling the effective training of very deep networks. The additive
shortcuts in Vision Transformers, for instance, allow information to be passed across layers
without any transformation, which we later referred to as identity shortcuts.

While shortcut connections have undeniably eased the training process and improved
the performance of deep networks, their role in the fitting–compression dynamic remains
an area of active research. Understanding how these connections impact the flow of
information through networks, and how they affect the model’s ability to fit and compress
data during training, is crucial to optimizing these architectures for different tasks.

2.3. Methodologies for Understanding Neural Networks

In the effort to demystify the behavior of neural networks, several methodologies
have been developed and applied to gain insights into their operations. These methods can
be categorized into three primary approaches: explainable deep learning, generalization
bound analysis, and network dynamics analysis.

2.3.1. Explainable Deep Learning

Explainable deep learning focuses on making neural network decisions more trans-
parent by visualizing the internal representations or learned features at different layers
of the model. Early studies in this area predominantly centered on feature visualization,
where methods like saliency maps and activation mapping were used to highlight which
parts of an input, such as an image, had the greatest influence on the network’s predic-
tion [31]. Techniques such as Grad-CAM and its variants have been widely adopted for
this purpose, offering a glimpse into which regions of an input are emphasized during
inference [27,32–35].

However, these visual explanations are often limited to specific input examples and do
not provide a complete understanding of the network’s behavior across the entire dataset or
in different operational conditions. As a result, while explainability techniques contribute
valuable insights into how networks handle individual samples, they are insufficient for
analyzing the broader generalization capabilities of the model. This has led to the pursuit
of more comprehensive methods for understanding neural networks from a probabilistic
or statistical perspective.
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2.3.2. Generalization Bound Analysis

Generalization bounds provide a more theoretical approach, using statistical learning
theory to describe how well a model trained on a given dataset is likely to perform on
unseen data. This method relies on concepts such as the Vapnik–Chervonenkis (VC)
dimension and PAC learning to derive the bounds on a model’s performance [36–39]. These
approaches help quantify the ability of a model to generalize by estimating how much
information a model retains from the training data and how that affects its performance on
new data.

While generalization theory has yielded important insights, there are several limi-
tations to its practical application. For instance, deriving tight bounds for deep neural
networks, especially large models with many layers, remains a challenge [40]. Additionally,
while generalization bounds can describe the potential behavior of a model, they do not
fully capture the dynamic process of training, particularly how models transition from
fitting the data to effectively generalizing across unseen instances.

2.3.3. Information Bottlenecks and Network Dynamics Analysis

The information bottleneck (IB) theory has emerged as a powerful framework for un-
derstanding the learning dynamics of neural networks, providing insights into how models
generalize by balancing the retention of relevant information (fitting) and the discarding of
irrelevant details (compression) [14,15]. Initially developed in the context of information
theory, the IB principle posits that neural network learning can be conceptualized as a
process of capturing and retaining only essential information for the task at hand while
compressing redundant or irrelevant features [14]. This two-phase dynamic, marked by
an initial fitting phase followed by a compression phase, is crucial to understanding how
neural networks transition from learning to generalizing on unseen data [15].

A growing body of research has used the IB framework to analyze how information
flows through layers during training. A notable study by Tishby et al. [16] introduced
mutual information as a tool for tracking the information flow within neural networks,
illustrating that they generally exhibit an early period of fitting, where useful information
is retained, followed by an extended phase of compression, where unnecessary details are
discarded. This framework has provided theoretical support for why deeper networks often
generalize better despite their higher capacity to overfit, suggesting that effective compres-
sion enhances their generalization capabilities. However, estimating mutual information in
high-dimensional spaces, as required for complex networks with many parameters and
layers, poses significant challenges [41–43]. These challenges have led to varying findings in
the literature, with some studies observing strong compression phases and others reporting
minimal or even absent compression [13,16,44–47].

To address these limitations, recent work has proposed more computationally feasible
alternatives to mutual information, such as MMSE-based Z-X measures and conditional-
entropy-based Z-Y measures [17]. These metrics offer a practical way to observe the network
dynamics without the complexities associated with mutual information estimation. Studies
leveraging Z-X and Z-Y measures have reaffirmed the presence of fitting and compression
phases in simpler architectures like feed-forward neural networks while also extending
this analysis to complex structures such as CNNs and MLPs.

Building on these foundations, this paper explores how additive shortcut connections
in architectures like ResNet and Transformers influence the generalization dynamics. While
the IB theory has helped reveal how deep networks generally manage information retention
and compression, the impact of shortcut connections on these processes is less understood.
By extending IB analysis to models with additive shortcuts, this work aims to clarify how
these connections affect the training dynamics, particularly in modern architectures such as
Vision Transformers and MLP-Mixers. Additionally, the use of Z-X and Z-Y measures offers
a practical framework for overcoming some of the computational challenges associated
with traditional IB approaches, facilitating a more detailed examination of how shortcut
connections navigate the fitting and compression phases to improve generalization [17].
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3. Recap: The Z-X Measure and the Z-Y Measure for Observing the Fitting and
Compression Phases

In this paper, we adopt the Z-X and Z-Y measures proposed in our previous work [17]
to study the dynamics of neural networks with additive shortcuts. As defined in [17], we
refer to the networks under investigation (such as CNNs, Transformers, and MLP-Mixers)
as the subject networks. This section briefly introduces the definitions of Z-X and Z-Y
measures and their associated dynamics.

We focus on image classification problems, using X to represent the image input and
Y as the ground-truth labels. The intermediate representation of layer l is denoted as Zl .
Formally, we model the classification with a Markov chain as follows:

Y → X → Z1 → · · · → Zl → · · · → ZL

The representation at the last layer ZL corresponds to the network’s prediction.
In this Markov chain structure, Y is positioned at the beginning because it represents

the target label information that flows through the network. This setup reflects the pro-
gression of information from the ground-truth label Y to the input X and subsequently
through each layer’s representation Zl . Placing Y at the start of the chain is essential in the
IB theory and related analyses, as it ensures that ZL (and all intermediate representations
Zl) encodes information about Y derived through X. This Markov chain structure captures
the dependency relationships needed for IB analysis, where the information learned by Zl
is traceable to Y via X, reinforcing that each layer’s representation gradually refines the
information needed for classification.

3.1. The Z-X Measure and the Z-Y Measure

In our previous work, we introduced two key measures—Z-X and Z-Y measures—to
provide more reliable insights into neural network dynamics, specifically focusing on
the fitting and compression phases. These measures serve as alternatives to mutual
information (MI), which is difficult to estimate in high-dimensional settings. The Z-X and
Z-Y measures are computationally feasible.

3.1.1. The Z-X Measure

The Z-X measure is the MMSE (minimum mean squared error) between the neural net-
work representation Z and the input data X, estimated by a neural-network-based estimator
in a data-driven manner. More specifically, given a dataset D = (X1, Y1), . . . , (X|D|, Y|D|),
we estimate the Z-X measure mZ;X as follows:

mZ;X = mmse(Z|X)

≈ min
ϕ

1
|D|

|D|

∑
k=1

( fϕ(Zl;k)− Xk)
⊤( fϕ(Zl;k)− Xk) (1)

=
1
|D|

|D|

∑
k=1

( fϕ∗(Zl;k)− Xk)
⊤( fϕ∗(Zl;k)− Xk)

=
1
|D|

|D|

∑
k=1

( fϕ∗ ◦ fθ1:l (Xk)− Xk)
⊤( fϕ∗ ◦ fθ1:l (Xk)− Xk) ,

where fθ1(Xk) represents the subject network’s forward pass from layer 1 to layer l for the
input sample Xk, and Zl;k is the corresponding representation generated by the subject net-
work at layer l for the input sample Xk. fϕ is a separate estimator network, parameterized
by ϕ, trained to reconstruct the input Xk from the intermediate representation of the subject
network Zl;k. The Z-X measure quantifies how much of the original input information is
retained by the network at layer l.
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3.1.2. The Z-Y Measure

The Z-Y measure captures how well the neural network representation Zl at layer
l can predict the target label Y. It is defined as the conditional entropy H(Y|Z), which
quantifies the uncertainty in predicting label Y given representation Zl . The Z-Y measure is
estimated similarly to the Z-X measure, using a neural-network-based predictor fψ(Zl;k)
for the label Yk. Specifically, it is defined as follows:

mZ;Y = H(Y|Z)

≈ min
ψ

1
|D|

|D|

∑
k=1

ℓCE( fψ(Zl;k), Yk) (2)

=
1
|D|

|D|

∑
k=1

ℓCE( fψ∗(Zl;k), Yk)

=
1
|D|

|D|

∑
k=1

ℓCE( fψ∗ ◦ fθ1:l (Xk), Yk),

where fψ is a separate estimator network parameterized by ψ, trained to predict the label
Yk from the internal representation Zl;k. ℓCE represents the cross-entropy loss function.

3.2. Estimating the Z-X and Z-Y Measures

The estimation of the Z-X and Z-Y measures involves training separate neural net-
works to minimize the squared loss (for the Z-X measure) and the cross-entropy loss (for
the Z-Y measure). These processes are shown in Figure 1 and can be described as follows:

Z-X estimation: For each input Xk, the subject network’s forward pass generates
the representation Zl;k at layer l. This representation is passed through the Z-X estimator
network fϕ, which is trained to reconstruct Xk by minimizing the mean squared error (MSE)
between fϕ(Zl;k) and the original input Xk, as shown in Equation (1).

Z-Y estimation: Similarly, to estimate the Z-Y measure, the representation Zl;k is
passed through the Z-Y estimator network fψ, which is trained to predict the target label Yk
by minimizing the cross-entropy loss, as shown in Equation (2).

subject network

Z-X estimator network

Z-Y estimator network

Figure 1. The framework for estimating the Z-X and Z-Y measures. This figure is adapted from
Figure 1 in [17] . ℓSE refers to the squared loss, and ℓCE represents the cross-entropy loss.

To address potential overfitting, we split the datasetD used for Z-X and Z-Y estimation
into two subsets: Dtrain and Dvalid (Unless otherwise specified, we split the dataset D into
Dtrain and Dvalid with a 7:3 ratio in this study). The training subset Dtrain is used to train
the estimator networks, while the validation subset Dvalid ensures that the estimators do
not overfit. The final Z-X and Z-Y measures are computed based on the validation set,
ensuring robust estimation. Both estimators are trained using a gradient-descent-based
algorithms until convergence, identified when the estimated measures on the validation set
cease to decrease. At this point, the final Z-X and Z-Y measures are obtained based on the
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validation set for each layer l of the subject network. The complete training procedure for
estimating the Z-X and Z-Y measures is outlined in Algorithm 1.

Algorithm 1: Estimate the Z-X measure and the Z-Y measure with the validation
set.

Input: fθ the subject network at checkpoint t, random seed s, patience τ ∈ N+

Data: D = {(Xk, Yk)}
|D|
k=1

Output: {mZ1;X , . . . , mZL ;X}, {mZ1;Y, . . . , mZL ;Y}
Split D into Dtrain and Dvalid;

Obtain subject network representations {{Zl,k}
|D|
k=1}

L
l=1 ← { fθ({Xk}

|D|
k=1)}

L
l=1;

l ← 1;
while l ≤ L do

Initialize fϕl , fψl with random seed s;
p← 0 m∗ ← ∞, update_ f lag← True;
while p < τ ; // Estimating the Z-X measure.
do

if update_ f lag then
Train fϕl on Dtrain to minimize mZl ;X = 1

|Dtrain| ∑
|Dtrain|
k=1 ℓx( fϕl (Zl,k); Xk);

Evaluate mZl ;X on Dvalid;
if Validation mZl ;X < m∗ then

m∗ ← Validation mZl ;X , p← 0;
end
else

p← p + 1;
end

end
if p ≥ τ then

update_ f lag← False;
end

end
p← 0, m∗ ← ∞, update_ f lag← True;
while p < τ ; // Estimating the Z-Y measure.
do

if update_ f lag then
Train fψl on Dtrain to minimize mZl ;Y = 1

|Dtrain| ∑
|Dtrain|
k=1 ℓy( fψl (Zl,k); Yk);

Evaluate mZl ;Y on Dvalid;
if Validation mZl ;Y < m∗ then

m∗ ← Validation mZl ;Y, p← 0;
end
else

p← p + 1;
end

end
if p ≥ τ then

update_ f lag← False;
end

end
end

Specific details regarding the estimator network architecture and training setups will
be provided in the relevant sections.
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3.3. Z-X Dynamics and Z-Y Dynamics

By plotting the Z-X and Z-Y measures for each layer across different stages of training,
we can gain valuable insights into how the subject network’s internal representations
evolve during training. In doing so, at various checkpoints during the training of the
subject network, we freeze the parameters of the subject network. We estimate the Z-X
and/or Z-Y measures for the current state of the network. Each checkpoint provides a
point in the Z-X/Z-Y space, representing the network’s ability to retain input information
(with the Z-X measure) and predict labels (with the Z-Y measure) during training.

Tracking the Z-X and Z-Y measures over multiple checkpoints allows us to plot the
Z-X dynamics and Z-Y dynamics of the subject network. This will reveal how the network
transitions between the fitting and compression phases.

3.4. The Fitting Phase and the Compression Phase

As highlighted in our previous work [17], neural networks generally undergo two
distinct phases during training: the fitting phase and the compression phase.

3.4.1. The Fitting Phase

In the early part of training, the network typically undergoes a fitting phase, where
it captures as much information about the input data as possible. During this phase, the
Z-X measure decreases as the network’s intermediate layers are learning to retain more
information about the input X, while the Z-Y measure decreases as the network learns to
predict the labels effectively.

3.4.2. The Compression Phase

After the fitting phase, the network enters the compression phase, where it discards
unnecessary information. This phase is marked by an increase in the Z-X measure, indicat-
ing reduced retention of input information, while the Z-Y measure stabilizes as the network
retains the most relevant features for accurate label prediction.

The presence of these two phases during neural network training, as theorized by the
information bottleneck theory, has been a topic of much discussion and debate [13,16,44–47].
In this work, we extend the exploration of these phases, focusing specifically on neural
networks with additive shortcuts.

4. The Fitting and Compression Phases in Models with Additive Shortcuts
4.1. Identity Shortcuts and Non-Identity Shortcuts

We categorize additive shortcuts into two types: identity shortcuts (ISs) and non-
identity shortcuts (NISs). Figure 2 illustrates the structure of both types.

Identity Shortcut (IS) Non-Identity Shortcut (NIS)

Figure 2. An illustration of identity and non-identity shortcuts. The representations at different stages
are labeled in pink.

Identity shortcuts (ISs) refer to connections where the input is passed directly to a
deeper layer without any transformation. These shortcuts “skip” layers, allowing the input
to flow through the network unmodified, preserving information across multiple layers.
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ISs can only be used in models where the input and output dimensions of a layer are the
same, enabling seamless addition to the output. ISs are fundamental in architectures such
as Transformers and MLP-Mixers. Mathematically, an IS can be expressed as

Zl = f (Zl−1) + Zl−1 = Z′l + Zl−1,

where f (Zl−1) represents the transformation in the main path.
Non-identity shortcuts (NISs), in contrast, apply transformations to the input before

passing it to deeper layers. Such transformations, like convolutions or linear operations, are
often necessary when the input and output are in different dimensions, as seen in models
like ResNet [4]. For instance, in ResNet, NISs are used when downsampling layers reduce
the spatial dimensions. In these cases, a convolutional transformation ensures the shortcut
can be added to the main path’s output without dimension mismatches.

Mathematically, a NIS can be written as

Zl = f (Zl−1) + g(Zl−1) = Z′l + Z′′l .

where g(Zl−1) is the transformation applied to the input from layer l − 1, and f (Zl−1) is
the main path’s transformation.

In this section, we examine and compare the Z-X dynamics of five neural networks:

• (NS) CNN: A VGG-like CNN serves as the control group with no shortcuts (NS).
• (NIS) ResCNN: A ResCNN model incorporating NISs, similar to ResNet [4].
• (IS) iResCNN: A modified ResCNN, incorporating ISs throughout.
• (IS) Vision Transformer (ViT): A ViT model that uses ISs by design.
• (IS) MLP-Mixer: A MLP-Mixer model also with ISs by design.

4.2. The CNN and ResCNN
4.2.1. Setup

Subject network setup: We begin by analyzing the Z-X dynamics of a CNN and
a residual CNN (ResCNN). Figure 3 (left and middle) illustrates the architectures. This
experiment aims to compare the dynamics of networks without shortcuts (NS) and with
NISs, laying the foundation for analyzing models with ISs.

As shown in Figure 3, both models feature three modules, each doubling the depth
while halving the representation shape. The ResCNN’s main path shares the CNN’s archi-
tecture, with each module adopting a NIS. The shortcut in the ResCNN uses a convolutional
layer (with a kernel size of 1) to align the input’s shape, allowing for additive merging.

We investigate the Z-X dynamics of Z1, Z2, and Z3 in the CNN and the corresponding
Zl layers in the ResCNN.

Both models are trained on the CIFAR-10 dataset [48] (The information bottleneck
theory has traditionally faced difficulties in estimating mutual information for high-
dimensional representations, leading many studies to rely on synthetic data [16] or simpler
datasets such as MNIST [49]. In contrast, the MMSE-based Z-X measure and conditional-
entropy-based Z-Y measure adopted in this paper are more computationally feasible,
allowing us to work with higher-dimensional data.) for 50 epochs, with a batch size of 256.
The training uses cross-entropy loss with the AdamW optimizer, with a weight decay of 1.0
and a learning rate of 0.0001. No data augmentation is applied. This configuration ensures
an efficient training process without pronounced overfitting.

Z-X estimator setup: To estimate Z-X measures, the estimator must map the repre-
sentation back to the input image space. We use the design shown in Figure 4. This setup
ensures stable and swift estimation of the Z-X measures.

To track the Z-X dynamics, we freeze the subject network’s parameters at various
checkpoints, feed the full CIFAR-10 training set through the network to obtain representa-
tions, and then optimize the Z-X estimator. The Z-X estimator is trained using the Adam
optimizer with a learning rate of 0.0001 for up to 200 epochs, with early stopping after
10 epochs of no test loss improvement.
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Figure 3. Architecture of the CNN (left), ResCNN (middle), and iResCNN (right). “Conv” refers to
convolutional layers, “ReLU” to rectified linear unit activation, and “FC” to fully connected layers.
The convolutional kernel and weight matrix shapes are noted in gray, and the tensor/matrix/vector
shapes are labeled in blue.
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Figure 4. Z-X estimator design for convolutional networks. “TConv” stands for transposed convolu-
tion, used to upscale feature maps, and “tanh” represents the hyperbolic tangent activation function.

4.2.2. The Z-X Dynamics of the CNN and ResCNN

The Z-X dynamics of the CNN and ResCNN are shown in Figure 5 (left and middle).
Both networks exhibit a fitting phase (where Z-X measures decrease), followed by a com-
pression phase (where the Z-X measures increase), consistent with previous observations
in feed-forward neural networks [17].
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Figure 5. The Z-X dynamics of the CNN (left), ResCNN (middle), and iResCNN (right). The Z-X
measures are estimated at corresponding modules in Figure 3.

4.3. The iResCNN
4.3.1. Setup

Subject network setup: The architecture of the iResCNN is detailed as follows: Firstly,
the number of channels is increased from 3 to 64 by cyclically repeating the red, green, and
blue channels. This approach ensures that there is no information loss when increasing the
dimensional representation at the beginning of the neural network. Subsequently, within
each residual module, the number of channels and the feature map size remain unchanged,
allowing for the implementation of identity shortcuts, as the feature maps consistently
maintain a 64× 32× 32 dimension. Each residual block includes two convolutional layers,
each succeeded by a tanh activation function. The feature maps are eventually flattened,
followed by fully connected layers functioning as the classification head, similar to the
ResCNN. The precise architecture of the iResCNN is depicted in the right panel in Figure 3.

The iResCNN is trained and validated on the standard CIFAR-10 dataset, with all the
training hyper-parameters mirroring those used for the CNN and ResCNN.

Z-X estimator setup: The architecture of the estimator network for the Z-X dynam-
ics and the training setups for the estimator adhere to the configuration established for
the ResCNN.

4.3.2. The Z-X Dynamics of the iResCNN

The right panel in Figure 5 displays the Z-X dynamics of Zl from various residual
modules in the specially designed iResCNN.

Notably, this configuration of the residual network largely skips the initial fitting
phase, launching directly with a compression phase. In comparison with the control
group—the Z-X dynamics of the CNN and ResCNN presented in the left and middle panels
in Figure 5—it is safe to conjecture that this behavior is primarily due to the inclusion of ISs
within the network.

Following the initial compression, a decline in the Z-X measure in Zl of modules 2
and 3 is observed. This subsequent fitting phase, however, coincides with the network
exhibiting mild signs of overfitting, as indicated by an increase in the validation set loss.

Overall, during the decrease in the subject network’s validation loss, replacing the
NISs in the ResCNN with ISs appears to result in Z-X dynamics that bypass the initial
fitting phase and commence with a compression phase.

4.4. ViTs and MLP-Mixers

ViTs and MLP-Mixers diverge significantly in their structure from CNNs and MLPs.
Both of them initially tokenize the input data and then process them through a series
of modules featuring ISs. In particular, the ViTs are composed of a sequence of MHSA
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and FF modules, while MLP-Mixers are composed of a sequence of token-mixers and
channel-mixers. The representation maintains a consistent shape throughout the ViTs and
MLP-Mixers, up to the classification head, comprising a tensor with n tokens, each of d
dimensions. Hence, the additive shortcuts applied to the MHSA, FF, token-mixer and
channel-mixer modules in ViTs and MLP-Mixers qualify as ISs.

4.4.1. Setup

Subject network setup: The ViT implemented is constituted of six Transformer mod-
ules, and the architecture is shown in the left panel in Figure 6.

Data Input 3×32×32
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Figure 6. Architecture of ViT (left) and MLP-Mixer (right). “MHSA” represents multi-head self
attention modules, “FF” indicates feed-forward modules, and “GAP” represents global average
pooling layers.

The model first segments the image input into patches (64 patches per image,
4× 4 pixels per patch), which are subsequently embedded into tokens (each with a length
of 512) through a learnable embedding module. Additive sine–cosine positional encoding
is then utilized. Each MHSA module accommodates eight heads and maintains a dropout
rate of 0.1. Note that the ViT does not use a class token. Instead, it adopts global average
pooling (GAP) to reduce the token dimensions before feeding it to a linear classification
head, as implemented in [18].

The MLP-Mixer—as shown in the right panel in Figure 6—employs the same tokeniza-
tion as the ViT model and contains six token-mixer and channel-mixer modules, with the
token dimensions also fixed at 512. The token-mixer and channel-mixer setups are aligned
with the original implementation in [12].

Both the ViT and the MLP-Mixer are trained from scratch on the standard CIFAR-10
dataset using the same recipe: Using the Adam optimizer, the learning rate is initially
set to 0.001 and is gradually reduced to 0 following a cosine scheduling pattern [50]. The
training period spans 500 epochs, and the batch size is configured to 2048. To augment
the training data, an initial application of random augmentation [51] is employed, with
the number of operations set to 2 and the magnitude at 14. This is followed by padding
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the image with 4 pixels on each side and randomly cropping it back to the original size
(32× 32). A random horizontal flip is also performed. For regularization, we implement
Mixup regularization [51] with a hyper-parameter of 0.2, CutMix regularization [52] is also
set at a hyper-parameter of 0.2, and label smoothing [53] is used with a hyper-parameter of
0.3. The weight decay parameter is set to 0.001.

This training setup enables the ViT and MLP-Mixer models to be trained from scratch
on the CIFAR-10 dataset, achieving performance levels that approach the state-of-the-art
benchmarks [54]. Specifically, our ViT model reached an accuracy of 86.14%, while the
MLP-Mixer achieved 83.76%, demonstrating effective training and meaningful representa-
tion learning.

Z-X estimator setup: Compared with the subject networks previously examined that
use convolutional layers as the main building blocks, the ViT and MLP-Mixer architectures
are more memory-intensive in their implementation [11]. The tokenized representations
in the ViT, with a dimensionality of 64 × 512 = 32,768, require full matrix multiplications
for each pairwise token interaction. This contrasts with convolutional networks, which
are more memory-efficient due to their ability to use shared kernels across spatial loca-
tions, reducing the memory intensity and allowing for dimensionality reduction through
operations like pooling.

As a result, it is crucial to design the estimators for measuring the Z-X dynamics of
ViTs and MLP-Mixers to be lightweight. Otherwise, it would be challenging to efficiently
implement both the ViT and MLP-Mixer subject networks and the associated estimators on
a server to estimate the Z-X measures effectively.

As depicted in Figure 7, the Z-X estimator for the ViT and MLP-Mixer begins with
reordering of the tokens. Since each token in the ViT and MLP-Mixer representation is
initially flattened and embedded from an image patch, this approach intuitively aligns
each token with its corresponding image patch. In particular, the tokenize module in the
ViT and MLP-Mixer subject networks divides the square CIFAR-10 input image into 64
patches, each embedded into vectors with a length of 512. Consequently, the reordered
representation has a shape of 1× 1× 8× 8× 512.

Z-X estiamtor for tokenized input

Conv2dTConv2d
kernel size

stride
tanh

Figure 7. Architecture of Z-X estimators for token-based models. For the tokenized representation of
the ViT and MLP-Mixer in this paper, n = 64, p = 8, and d = 512.

This step is followed by the application of a transposed convolution operation [55],
designed to increase the height and width of the representation to match those of the input
data. More specifically, for the ViT and MLP-Mixer models trained on the CIFAR-10 dataset,
the initial patch size is 4× 4. Therefore, the output of the transposed convolution operation
is shaped as 4× 4× 8× 8× 512.

Then, a tanh activation function is applied, followed by a convolutional layer aiming
to adjust the channel of the representation to ensure the output of the estimator matches
the original input data. This design considers the shape of the representation, making the
estimator network lightweight yet stable for optimization.

4.4.2. The Z-X Dynamics of the ViT and MLP-Mixer

It can be observed from the upper panels in Figure 8 that the ViT, when trained from
scratch, also skips the initial fitting phase, commencing instead with an immediate compres-
sion phase. Following this, some of the layers experience a mild fitting phase, subsequently
leading into another phase of compression observable across all layers, characterized by a
slow increase in the Z-X measure. Notably, the Z-X measure corresponding to the output of
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the first Transformer module remains near zero throughout the duration of training. This
stability can be attributed to its direct connection to the input embeddings via an IS.
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Figure 8. The Z-X dynamics of the ViT (top) and MLP-Mixer (bottom). The Z-X measures are
estimated at the corresponding modules in Figure 6.

When compared with the iResCNN (the right panel in Figure 5), which is also trained
on the CIFAR-10 dataset, the Z-X dynamics of the ViT begin from a comparable value at
epoch 0 but exhibit a much more aggressive increase than those of the iResCNN.

In the lower panels of Figure 8, the findings within the MLP-Mixer parallel those
noted in the ViT, where the network demonstrates an initial compression phase rather than
a fitting phase. Following this initial compression, the early layers transition into a fitting
phase, whereas the deeper layers persist in their compression efforts. Both channel-mixers
and token-mixers follow similar trends.

Overall, models with ISs generally skip the initial fitting phase and instead exhibit a
pronounced compression phase, distinguishing them from neural networks that do not
implement shortcuts or that use NISs. Meanwhile, we observe that while ViT models
display a milder fitting phase, MLP-Mixer models exhibit a more pronounced fitting phase
in their shallower layers. Although the cause of this difference is not entirely clear, we have
documented it here for transparency. Despite these variations, all models with ISs retain
the ability to compress, suggesting that compression remains essential for generalization in
neural networks with ISs.

5. Why Does the Behavior of IS-Based Models Differ from the Behavior of
NIS-Based Models?

The investigation of the Z-X dynamics in models with additive shortcuts—particularly
those with identity shortcuts (ISs)—has highlighted two distinct phenomena: (1) models
with ISs tend to skip the initial fitting phase during training, and (2) models with ISs still
exhibit pronounced compression phases.
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This section further explores these findings by addressing two key questions: (1) why
do models with ISs skip the initial fitting phase, and (2) how are models with ISs able to
compress effectively despite skipping the fitting phase?

5.1. On the Absence of the Initial Fitting Phase

We conjecture that the absence of the initial fitting phase is due to the compression of
the nature of the IS: at random initialization, the model featuring an IS is able to pass almost
all the information necessary for the classification task to the deeper layers. This means
the network does not need an explicit fitting phase to help the representation in the deep
layers to gain information about the ground-truth labels and can start the compression
phase directly to achieve generalization.

We designed an experiment to empirically validate our conjecture. The information
captured by the representations about the ground-truth labels can be quantified using
the Z-Y measure, which is estimated by minimizing Equation (2). If the Z-Y measure is
sufficiently low at the random initialization stage (i.e., before any training), we can safely
claim that our conjecture is validated.

But what constitutes a “sufficiently” low Z-Y measure? Fortunately, our Z-Y measure
is based on minimizing the cross-entropy loss between the estimator’s output and the
ground-truth labels. This is directly comparable to the loss function used by the subject
network in the classification task—the subject networks are trained to minimize the cross-
entropy loss between their predictions and the ground-truth labels. Hence, we use the
lowest cross-entropy loss of the subject network, denoted as ℓθ∗(X; Y), as the threshold
for judging the Z-Y measure. If the Z-Y measure, mZl ;Y, is comparable to or lower than
ℓθ∗(X; Y), we assert that the representation has gained sufficient information about the
ground-truth labels.

5.1.1. Estimating Z-Y Measures

We estimate the Z-Y measures for the models at random initialization (i.e., checkpoint
0), with a particular focus on the representations from the deeper layers (closer to the
output). According to the data processing inequality, if the deeper layers possess sufficient
information about the ground-truth labels, the earlier layers should as well.

The Z-Y estimators for the CNN, ResCNN, and iResCNN share similar architectures.
They use the ResCNN architecture shown in the middle panel in Figure 3, with the first
convolutional layer adapting to the representation’s channel dimension. For the ViT and
MLP-Mixer, we employ the ViT model (without the tokenization layer) directly as the
Z-Y estimator.

Regarding the optimization setup, the Z-Y estimators for the CNN, ResCNN, and
iResCNN mirror the training setups (in terms of the choice of optimizer, learning rate,
regularization, and data augmentation) used for the ResCNN subject network. Similarly,
the Z-Y estimators for the ViT and MLP-Mixer follow the same setup as those used for
training the ViT subject network.

5.1.2. Results

Table 1 presents the Z-Y measures for various subject networks at random initialization.
The results support our conjecture. As shown in Table 1, the models without ISs

(i.e., the CNN and ResCNN) show Z-Y measures higher than ℓθ∗(X; Y). In contrast, the
models with ISs (the iResCNN, ViT, and MLP-Mixer) exhibit Z-Y measures lower than
ℓθ∗(X; Y). This empirical validation confirms our conjecture that ISs can propagate sufficient
information about the ground-truth labels at random initialization.
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Table 1. Z-Y measures compared with the best cross-entropy loss in the subject network. Z−1 and
Z−2 refer to the representations from the last module and the second to last module, respectively.
Differences between the Z-Y measure and the lowest subject network loss are shown in red (higher)
and green (lower).

CNN ResCNN iResCNN ViT MLP-Mixer

ℓθ∗ (X; Y) 1.082 1.049 1.393 0.479 0.571

mZ−2;Y 1.354 +0.272 1.252 +0.203 1.376 −0.017 0.326 −0.153 0.446 −0.125

mZ−1;Y 1.470 +0.388 1.313 +0.264 1.380 −0.013 0.328 −0.151 0.448 −0.123

5.2. The Mechanisms Enabling Compression in Models with ISs

As previously outlined, the models equipped with ISs throughout are able to transmit
information from the input data to deeper layers easily. However, pronounced compression
behaviors are evident in the representations generated by these models. Therefore, this
section delves into the composition of these representations, identifying and discussing
various scenarios that might lead to compression behavior.

To begin, we propose decomposing the representations into two components—which
are the functional component and the informative component—in order to understand their
interaction. We then propose several element-wise statistics to investigate the interplay
between the two components and to try to understand the mechanisms behind the com-
pression phenomena of the models featuring ISs.

5.2.1. Methodology

Decomposition of the representation of a sub-network with ISs: Let us formulate a
module with ISs as follows:

Zl = fθl (Zl−1)

= hθl (Zl−1) + Zl−1 (3)

= Z′l + Zl−1. (4)

Consider a sub-network represented as fθ1:l = fθl ◦ · · · ◦ fθ1 , where each module
features identity shortcuts, as formulated in Equations (3) and (4). The representation Zl
can be decomposed in the following manner:

Zl = fθ1:l (I(X))

= fθl ◦ fθl−1
◦ · · · ◦ fθ1(I(X))

= hθl ◦ fθl−1
◦ · · · ◦ fθ1(I(X)) + fθl−1

◦ · · · ◦ fθ1(I(X))

= hθl ◦ fθl−1
◦ · · · ◦ fθ1(I(X)) + hθl−1

◦ fθl−2
◦ · · · ◦ fθ1(I(X)) + · · ·+ hθ1(I(X)) + I(X)

=
l

∑
i=1

hθi (Zi−1) + I(X) (5)

=
l

∑
i=1

Z′i + ZI (6)

= Zl;F + ZI , (7)

where Z0 = ZI . I(X) is a pre-processing function that applies to the input X and does not
reduce any information in X. For example, the tokenization layers in the Transformers can
be viewed as one such function.

In Equation (7), the representation Zl is effectively decomposed into two components:
Zl;F, the functional component, which is the sum of all Z′l processed by the respective residual
branches in the residual modules, and ZI , the informative component, which is a propagation
of the pre-processed input I(X).



Entropy 2024, 26, 974 19 of 27

We now define several element-wise measures to help us investigate the interactions
between the functional component and the informative component.

Element-wise mean and variance: Consider three random tensors X, Y, and Z ∈
Rh×w×c, with Z = X + Y. We use Xi,j,k, Yi,j,k, and Zi,j,k to denote specific elements in the
three-dimensional tensors X, Y and Z, respectively.

Each element in a tensor, such as Xi,j,k, can be treated as a scalar random variable. The
variance in this scalar, denoted as σ2

Xi,j,k
, is defined as the element-wise variance, reflecting

the variability in Xi,j,k across different instances. Similarly, the element-wise mean, µXi,j,k ,
represents the average value of Xi,j,k. Formally, the element-wise mean and variance are
defined as follows:

µXi,j,k = E[Xi,j,k]

σ2
Xi,j,k

= E[(Xi,j,k − µXi,j,k )
2].

Element-wise covariance and the correlation coefficient: To assess the relationship
between corresponding elements in tensors X and Y, the element-wise covariance between
corresponding elements in X and Y is calculated as follows:

Cov(Xi,j,k, Yi,j,k) = E[(Xi,j,k − µXi,j,k )(Yi,j,k − µYi,j,k )].

In turn, the (Pearson’s) correlation coefficient between the corresponding elements in X
and Y is given by

Corr(Xi,j,k, Yi,j,k) =
Cov(Xi,j,k, Yi,j,k)

σXi,j,k σYi,j,k

,

where σXi,j,k and σYi,j,k are the standard deviations of Xi,j,k and Yi,j,k, respectively. This
correlation is a standardized measure of a linear relationship that ranges between −1 and 1.

Given that each Zi,j,k is the sum of Xi,j,k and Yi,j,k, the element-wise variance in Zi,j,l
can be expressed as follows:

σ2
Zi,j,k

= σ2
Xi,j,k

+ σ2
Yi,j,k

+ 2Cov(Xi,j,k, Yi,j,k).

We can also synthesize these element-wise variances in the tensors into overall measures to
capture general trends in these statistics across a representation tensor. This can be achieved
by computing the averaged element-wise variance and covariance across all elements in
tensor Z as follows:

σ2
Z =

1
h · w · c

h,w,c

∑
i=1,j=1,k=1

(
σ2

Xi,j,k
+ σ2

Yi,j,k
+ 2 ·Cov(Xi,j,k, Yi,j,k)

)

=
1

h · w · c

(
h,w,c

∑
i=1,j=1,k=1

σ2
Xi,j,k

+
h,w,c

∑
i=1,j=1,k=1

σ2
Yi,j,k

+ 2
h,w,c

∑
i=1,j=1,k=1

Cov(Xi,j,k, Yi,j,k)

)
= σ2

X + σ2
Y + 2Cov(X, Y), (8)

where σ2
X and σ2

Y are the averaged element-wise variances in all individual elements in
tensors X and Y, respectively, and Cov(X, Y) is the averaged element-wise covariance of
the corresponding elements across tensor X and Y.

Likewise, the averaged element-wise correlation coefficient is defined as follows:

Corr(X, Y) =
1

h · w · c

h,w,c

∑
i=1,j=1,k=1

Corr(Xi,j,k, Yi,j,k).
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Substituting X with Zl,F, the functional component, and Y with ZI , the informative compo-
nent, gives us Z = Zl , the representation of the sub-network hθ1:l with identity shortcuts.

Dynamics of the element-wise statistics: Given the same dataset, the representations
generated by a neural network may change as the parameters are updated through the
learning algorithm. We aim to study how the statistics—the averaged element-wise variance
and the averaged element-wise correlation coefficient—evolve as the network undergoes
training. The dynamics of the element-wise statistics will be analyzed as a function of the
training checkpoints.

More specifically, having decomposed the output of the sub-network with identity
shortcuts Zl into a functional component Zl;F and an informative component ZI , we

introduce the notations Z(t)
l , Z(t)

l;F , and Z(t)
I to represent the values obtained from the neural

network at checkpoint t. The subsequent sections will analyze how the aforementioned
element-wise statistics evolve as a function of t.

5.2.2. Results and Analysis

The iResCNN: First, we analyze the dynamics of the element-wise correlation coeffi-
cient and the element-wise variance in the iResCNN. The results are displayed in Figure 9.
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Figure 9. Dynamics of averaged element-wise correlation coefficients and averaged element-wise
variance in the iResCNN: In the upper row, the curves in a darker color and the left axis show the
dynamics of Corr(Zl;F, ZI), while the lighter curves and the right axis show the Z-X measure (mZl ;X)
obtained from Section 4.2. In the lower row, the dynamics of σ2

Zl
, σ2

Zl;F
, and σ2

ZI
are visualized. The

left, middle, and right panels show the representations of different modules. l is the index for the
modules in the iResCNN shown in the right panel of Figure 3. Panels in the same row or column
share the same axes.

The upper row in Figure 9 shows that Corr(Zl;F, ZI) is closely correlated with the
Z-X dynamics (plotted with mZl ;X), which reflect the magnitude of compression. More
specifically, from epoch 0 to epoch 15, Corr(Zl;F, Zl) decreases as mZl ;X increases. However,
from the 15th epoch onwards, the compression tends to be less pronounced as mZl ;X

decreases mildly, while Corr(Zl;F, ZI) also increases after the 15th epoch. Additionally, the
deeper module (e.g., l = 3) exhibits lower Corr(Zl;F, ZI), corresponding to higher mZl ;X .

From the lower row in Figure 9, we observe that the averaged element-wise variance
in the functional component σ2

Zl;F
is higher in deeper layers and tends to increase as the

network exhibits compression (referencing the upper row in Figure 9). Notably, in the last
module (l = 3), σ2

Zl;F
exceeded σ2

ZI
. This suggests that the functional components Zl;F play
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an increasingly important role in the overall representation Zl as the network deepens and
exhibits compression.

Additionally, we find that the trends in σ2
Zl;F

seem to be negatively correlated with σ2
Zl

,
consistent with the relationship shown in Equation (8) when substituting X, Y, and Z with
ZI , ZI;F, and Zl , respectively. More specifically, Equation (8) states

σ2
Zl

= σ2
ZI

+ σ2
Zl;F

+ 2Cov(ZI , Zl;F).

Here, σ2
ZI

is constant. If σ2
Zl

decreases while σ2
Zl;F

increases, this implies a decrease in

Cov(ZI , Zl;F). In fact, Cov(ZI , Zl;F) has become negative, as indicated by the negative
Corr(Zl ; Zl;F), which essentially is a normalized measure of the covariance.

Finally, σ2
Zl;F

and σ2
Zl

are roughly on the same scale as σ2
ZI

, indicating that the represen-
tation is not dominated by either the functional or informative components. This contrasts
with the trends observed in the ViT and MLP-Mixer, which will be discussed later.

These patterns suggest that the pronounced compression in the iResCNN may be due
to the network learning to make the functional components more negatively correlated
with the informative components, implying a potential canceling effect.

To further validate this conjecture, we examined histograms of the element-wise
correlation coefficient between the functional and informative components across different
modules and network epochs, as shown in Figure 10.
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Figure 10. Histograms of element-wise correlation coefficients in the iResCNN: These histograms
summarize the element-wise coefficients Corr(Zl;F;i, ZI;i), where i indexes the entries of the represen-
tation components.

The histograms corroborate our conjectures. At initialization (epoch 0), the elements in
the functional and informative components can be either positively or negatively correlated,
with the element-wise correlation coefficients spread from −1 to 1. As training progresses
(from epoch 1 to epoch 10), an increasing number of elements show negative correlations.
By epoch 10, when the network exhibits considerable compression (refer to the upper row
in Figure 9, to the curves in a lighter color with the right axis), a significant portion of the
elements displays a correlation close to −1. At the end of training, the level of compression
is less pronounced compared to that at the 10th epoch, with the correlation coefficients for
most elements showing a slight deviation away from −1.

Comparing different layers, the elements in the representations of the deeper layers
show stronger negative correlations, indicating a more significant canceling effect.

Our observations support the hypothesis that canceling effects in the iResCNN, which
we identified as a potential source of compression in the representations generated by sub-
networks with identity shortcuts, play a crucial role. Conventionally, identity shortcuts are
used to facilitate the training of very deep neural networks. However, our results suggest
that these networks may inherently discover a mechanism for compression through cancel-
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lation. This finding is significant, as compression is crucial for enhancing generalization in
neural networks.

The MLP-Mixer: We conducted the same experiments on the MLP-Mixer. In par-
ticular, we chose to present the last three residual modules, as they exhibit the most
pronounced compression.

In the fourth module of the MLP-Mixer (l = 4), the elements in the functional com-
ponents tend to be negatively correlated with the informative component, and as the
representation exhibits more pronounced compression, the correlation decreases. This
pattern is consistent with what was observed in the iResCNN, implying a canceling effect.

However, in the fifth (l = 5) and sixth (l = 6) modules, only in the first five epochs do
the averaged correlation coefficients decrease as compression increases. In later epochs,
while the Z-X measure continues to increase, the correlation coefficient stops decreasing
and stabilizes at a certain negative value.

Referring to the lower row in Figure 11, it is evident that the averaged element-wise
variance in the summed output Zl is dominated by the functional component Zl;F, as σ2

Zl

closely aligns with σ2
Zl;F

, with both being significantly higher in scale than σ2
ZI

. This suggests
that the informative components may be overwhelmed by the functional components,
potentially complicating the reconstruction of the input data from the summed output.
Using a neural-network-based estimator to estimate the MMSE, the dominance of the
functional components may bias the estimation of the true MMSE, resulting in a positive
Z-X measure. Nevertheless, this observation provides insight into why reconstructing
the input data from the representation becomes increasingly difficult: the variance in the
representation is dominated by the functional components, which are processed by neural
network layers.
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Figure 11. Dynamics of the averaged element-wise correlation coefficients and averaged element-wise
variance in the MLP-Mixer: In the upper row, the curves in a darker color and the left axis show the
dynamics of Corr(Zl;F, ZI), while the lighter curves and the right axis show the Z-X measure (mZl ;X)
obtained from Section 4.4. In the lower row, the dynamics of σ2

Zl
, σ2

Zl;F
, and σ2

ZI
are visualized. The

left, middle, and right panels show the representations of different modules. l is the index for the
modules in the MLP-Mixer shown in the right panel in Figure 6. Panels in the same row or column
share the same axes.

In contrast, this dominance of Zl;F in σ2
Zl

was not observed in the iResCNN. More
specifically, the lower row in Figure 9 shows that σ2

Zl;F
and σ2

Zl
are on the same scale as

σ2
ZI

, and the variance in σ2
Zl;F

decreases compared to that of σ2
ZI

, rather than them evolving
in synchronization.
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The ViT: Finally, we examine the ViT model, focusing on the dynamics of averaged the
element-wise covariance, Z-X measure, and averaged element-wise variance, as illustrated
in Figure 12. Particular attention is given to the last three MHSA modules in the ViT, which
exhibit the most pronounced compression phases.
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Figure 12. Dynamics of averaged statistics for the ViT: In the upper row, the curves in a darker color
and the left axis show the dynamics of Corr(Zl;F, ZI), while the lighter curves and the right axis show
the Z-X measure (mZl ;X) obtained from Section 4.4. In the lower row, the dynamics of σ2

Zl
, σ2

Zl;F
, and

σ2
ZI

are visualized. The left, middle, and right panels show the representations of different modules.
l is the index for the modules in the ViT shown in the left panel in Figure 6. Panels in the same row or
column share the same axes.

We can observe from Figure 12 that the fourth, fifth, and sixth MHSA modules display
trends similar to those in the sixth module of the token mixer in the MLP-Mixer. Specifically,
Corr(Zl;F, ZI) decreases during the initial five epochs, implying a canceling effect, and then
increases rapidly and eventually becomes positive during subsequent epochs.

Meanwhile, σ2
Zl

and σ2
Zl;F

increase significantly from the fifth epoch onwards, surpass-

ing σ2
ZI

in magnitude. The trends in σ2
Zl

and σ2
Zl;F

are also well synchronized.
These observations suggest that the initial compression phase is driven by a canceling

effect. However, as the network is trained over more epochs, the element-wise variances in
the functional components overwhelm those of the informative components, indicating a
shift in the network’s internal dynamics.

Both the MLP-Mixer and the ViT make a point similar to that for the iResCNN and
conventional feed-forward neural networks investigated in [17], where the networks dis-
cover a compression mechanism that may be useful for generalization (despite the fact
that they use shortcuts to improve training). This, in effect, means that shortcuts do not
impair generalization.

6. Conclusions

This paper focuses on neural networks with additive shortcuts, examining their fitting
and compression phenomena in learning dynamics. Empirical experiments show that
models with non-identity shortcuts (NISs), such as the ResCNN, exhibit an initial fitting
phase followed by a subsequent compression phase, similar to neural networks without
additive shortcuts examined in the prior literature. However, in neural networks with
identity shortcuts (ISs), such as the iResCNN, ViT, and MLP-Mixer, the initial fitting phase
is notably absent, and these models instead display pronounced compression phases.
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Further analysis in this study investigates the mechanisms underlying the observed
behaviors in models with ISs. We conjecture and empirically validate that the absence of
the initial fitting phase may be due to the ability of ISs to forward sufficient information
about the ground-truth labels even at random initialization of the subject network.

Additionally, the pronounced compression phase in models with ISs appears to arise
from different underlying mechanisms. For the iResCNN, the compression throughout
training primarily results from a cancellation effect within its functional components. In
ViTs and MLP-Mixers, the situation is more complex. Initially, the functional components
also exhibit cancellation effects on the informative components; however, as the training
progresses, the functional components increasingly dominate, overwhelming the informa-
tive components and resulting in significant data compression. These insights are crucial, as
they deepen our understanding of the compression mechanisms in networks with identity
shortcuts and suggest potential strategies, such as compression-oriented regularization, to
enhance the network efficiency and performance.

6.1. Limitations and Future Work

While this study provides valuable insights into information bottleneck dynamics in
networks with additive shortcuts, it has certain limitations that should be addressed in
future work:

• The dataset and task scope: This study uses a single dataset (CIFAR-10) and does
not examine other data types or tasks, such as language or video processing, which
may exhibit different IB dynamics. Testing these findings across larger and more
diverse datasets, especially those with varied data types, is essential to determine the
generality of these dynamics.

• Inductive bias in the ViT and MLP-Mixer: As noted in the comments, the ViT and
MLP-Mixer models are known to have weaker inductive biases than convolutional
models, making them less optimal for small datasets like CIFAR-10 when they are
trained from scratch. While we trained the ViT and MLP-Mixer to competitive levels
of 86.14% and 83.76% accuracy, respectively, these results are still lower than the
benchmarks achieved by convolutional models like ResNet. This limitation highlights
the need for testing on larger datasets or using pre-trained versions of these models to
capture the shortcut path dynamics better.

• Shortcut configurations: This study focuses on additive shortcuts and does not ex-
plore alternative configurations, such as the concatenation shortcuts used in DenseNet
or combinations of identity and non-identity shortcuts. Investigating these differ-
ent shortcut designs may reveal additional dynamics that influence IB behavior in
novel ways.

• Layer-specific analysis: The compression behavior in IS-based models appears to vary
across layers, suggesting that layer-wise analysis could yield more precise insights into
IB dynamics. Future studies could benefit from examining shortcut path dynamics
at the layer-specific level to identify potential opportunities to fine-tune the shortcut
configurations and improve performance.

• Memory constraints and computational intensity: Due to the memory-intensive
nature of the ViT and MLP-Mixer, our study required substantial memory resources
to implement multiple estimations across layers, checkpoints, and measures (Z-X
and Z-Y). Convolutional networks are comparatively more memory-efficient due to
shared kernel use and pooling operations, which reduce the memory intensity. In
contrast, ViTs’ tokenized representation and dense matrix multiplications increase
the computational demands, making these models more challenging to study. Future
work could explore memory-optimized methods for self-attention or alternative ways
to handle large-scale estimations.
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6.2. Summary

In summary, this paper extends the landscape of information bottleneck dynamics by
exploring models with additive shortcuts and their unique learning phenomena. Despite
using a single dataset, the patterns observed align with IB theory and the related literature,
suggesting that they may generalize to broader contexts. Future work could build on this
foundation by addressing the limitations noted here, testing these dynamics across more
datasets, configurations, and applications to deepen our understanding of neural networks
with additive shortcuts.
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