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Simple Summary: Breast cancer is the most common cancer in women worldwide, and strategic
efforts are required to reduce its mortality. Past studies have usually focused on a limited number
of clinical or demographic factors to predict breast cancer prognosis. However, we used thirty-one
features, including demographic characteristics, laboratory results, pathology, and treatment infor-
mation, to predict breast cancer mortality. In addition, the Shapley Additive Explanation (SHAP)
method, an explainable artificial intelligence technique, was used. This approach allows us to identify
and interpret the key features that have a significant impact on breast cancer mortality. Key predictors
of the mortality classification model included occurrence in other organs, age at diagnosis, N stage,
T stage, curative radiation treatment, and Ki-67(%). Accurate breast cancer mortality prediction
and detection of risk factors based on machine learning may provide opportunities for appropri-
ate therapeutic interventions such as early chemotherapy, surgery, and other measures that may
reduce mortality.

Abstract: Background/Objectives: Breast cancer is the most common cancer in women worldwide,
requiring strategic efforts to reduce its mortality. This study aimed to develop a predictive classifi-
cation model for breast cancer mortality using real-world data, including various clinical features.
Methods: A total of 11,286 patients with breast cancer from the National Cancer Center were in-
cluded in this study. The mortality rate of the total sample was approximately 6.2%. Propensity score
matching was used to reduce bias. Several machine learning models, including extreme gradient
boosting, were applied to 31 clinical features. To enhance model interpretability, we used the SHapley
Additive exPlanations method. ML analyses were also performed on the samples, excluding patients
who developed other cancers after breast cancer. Results: Among the ML models, the XGB model
exhibited the highest discriminatory power, with an area under the curve of 0.8722 and a specificity of
0.9472. Key predictors of the mortality classification model included occurrence in other organs, age at
diagnosis, N stage, T stage, curative radiation treatment, and Ki-67(%). Even after excluding patients
who developed other cancers after breast cancer, the XGB model remained the best-performing, with
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an AUC of 0.8518 and a specificity of 0.9766. Additionally, the top predictors from SHAP were similar
to the results for the overall sample. Conclusions: Our models provided excellent predictions of
breast cancer mortality using real-world data from South Korea. Explainable artificial intelligence,
such as SHAP, validated the clinical applicability and interpretability of these models.

Keywords: breast cancer; artificial intelligence; machine learning; explainable artificial intelligence;
mortality

1. Introduction

Breast cancer in women is a major public health problem with the highest incidence
among cancers and the highest cancer disability-adjusted life-years [1,2]. According to the
World Health Organization (WHO), over 2.3 million women were diagnosed with breast
cancer in 2020, resulting in 685,000 deaths [3]. The mortality rate of breast cancer is expected
to increase, reaching 1 million worldwide by 2040 [4]. Therefore, at the time of initial
diagnosis, it is very important to identify the risk factors related to recurrence or survival for
each patient and to provide appropriate management plans and treatments, such as surgery,
radiation therapy, and chemotherapy. Therefore, predicting mortality and identifying risk
factors for breast cancer patients are essential for improving clinical decision-making,
controlling the patient’s environment, and enabling appropriate interventions. At the
time of initial diagnosis, identifying risk factors related to recurrence or survival for each
patient is crucial, allowing for tailored management plans and treatments, such as surgery,
radiation therapy, and chemotherapy [5,6].

Traditionally, statistical analyses have been used to investigate breast cancer mortality
rates. Recently, novel machine learning (ML) models have demonstrated superior predictive
capabilities compared to traditional methods such as logistic regression or Cox regression
analysis [7–9]. Several studies have demonstrated that ML models have good predictive
abilities in identifying patients with breast cancer [10–13]. Many previous studies have
mainly focused on considering only one risk factor, such as BRCA1/2 pathogenic variants,
neo-adjuvant chemotherapy, or mammography, to predict breast cancer prognosis [5,14,15].
However, considering the differences in individual mortality rates, even for the same type
of cancer, it is important to predict the prognosis using various clinical characteristics for
personalized treatment [16–20]. For this reason, more recent studies have reported models
for predicting personalized prognosis using various clinical characteristics [17–23]. In
addition, many studies using large cohort datasets such as the Surveillance, Epidemiology,
and End Results Program (SEER) [24–28] and the National Cancer Data Base (NCDB)
10–14 [29–31] have been instrumental in studying predicting prognoses and proposing
treatment methods for breast cancer. These studies have demonstrated risk variables
by integrating data on demographic information with clinical and pathologic factors in
breast cancer patients. Despite many research advancements, applying findings from
Western datasets to the Korean population is limited by genetic, environmental, and other
differences, requiring cautious generalization.

Thus, in this study, we developed predictive classification models for breast cancer
mortality, identified risk factors, and confirmed the most optimized ML model by using
real-world data. We used 31 risk factors, including occurrence in other organs, N stage,
chemotherapy, histologic grade, and tumor subtype, to predict breast cancer survival rates.

In addition, we used the SHapley Additive exPlanation (SHAP) method, an explain-
able artificial intelligence (XAI) technique, for more detailed model interpretation. Conse-
quently, we can overcome the limitations of ML characteristics, which are black-box models,
and discover and interpret key features that significantly affect breast cancer mortality
(Figure 1).
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Figure 1. The scheme of the study flow.

2. Materials and Methods
2.1. Materials
2.1.1. Study Population and Data Collection

This retrospective study analyzed data from patients diagnosed with breast cancer
between January 2005 and December 2020, sourced from the National Cancer Center
(NCC), Korea database, a prospectively collected archive of breast cancer treatments at the
NCC [32]. Mortality data, including causes of death until 2021, were obtained from Statistics
Korea and linked to the NCC database to identify survival status. Initially, 13,165 patients
were screened for eligibility, as shown in Figure 2. Given that our study focused on female
patients diagnosed with breast cancer, we excluded 1879 patients based on the following
criteria: male patients (N = 1), patients without a breast cancer disease code (N = 1), foreign
patients (N = 166), patients diagnosed with other cancers before breast cancer (N = 324),
patients with benign tumors (N = 858), patients with missing information on histologic
grade and TNM stage (N = 167), and patients receiving radiation therapy for palliative
treatment (N = 362). After these exclusions, 11,286 patients with a first diagnosis of breast
cancer remained, with 695 deaths (6%) and 10,591 survivors (94%). We analyzed the data
and found that the occurrence of cancer in other organs after breast cancer diagnosis had
the greatest impact on predicting breast cancer mortality. Accordingly, this study was
divided into two groups to understand the effect of other variables on mortality prediction.
One group included all patients with breast cancer, while the other excluded patients
who developed other cancers after a breast cancer diagnosis (n = 1071), leaving a total
of 10,215 patients. Among them, 426 (4%) died and 9789 (96%) survived. These were
calculated using covariates such as age at diagnosis, height, alcohol consumption, p53(%),
Ki-67(%), and human epidermal growth factor receptor 2 (HER2).

2.1.2. Variables

Of the 64 raw data features constructed in the NCC registry shown in Table S1, 33 were
excluded. Date-related variables were deemed unnecessary for this study’s model imple-
mentation (N = 7), and there were a large number of missing values and data imbalances
between groups (N = 10). Furthermore, variables were excluded to prevent multicollinear-
ity based on clinical experts’ opinions and data (N = 16). Thus, we used 31 features in five
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main groups, including patient’s health and demographic information, laboratory results,
treatment types, pathology, and other variables, as summarized in Table S2. Operative
features refer to the types of surgical procedures performed for cancer removal, such as
breast-conserving surgery (BCS) and mastectomy. Radiotherapy treatment status was de-
termined based on its use for purely curative purposes. Chemotherapy was classified as
adjuvant, neoadjuvant, or none. Additional treatments were categorized based on hor-
mone levels and targeted therapy. Experienced breast surgeons from the NCC Pathology
Department evaluated the pathological data, which included tumor location (bilateral or
unilateral) and type (synchronous or metachronous). Tumor subtypes were classified by
hormone receptor and HER2 status as follows: Luminal A (ER+ and/or PR+, and HER2−),
Luminal B (ER+ and/or PR+, and HER2+), HER2-overexpressing (ER− and PR−, and
HER2+), and basal-like (ER− and PR−, and HER2−). The p53(%) and Ki-67(%) molecular
pathology results were used as prognostic markers for early breast cancer to determine
the need for further adjuvant chemotherapy. TNM stage was assigned according to the
American Joint Committee on Cancer (AJCC) Cancer Staging Manual, 7th edition. The
T and N stages, not described in the TNM stage classification, were defined under the
guidance of an experienced clinician according to the AJCC criteria, using the size of the
primary tumor and the number of lymph nodes.
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2.2. Methods
2.2.1. Data Pre-Processing

Prior knowledge about raw data can significantly impact the performance of optimized
classifiers, highlighting the importance of data pre-processing in effective mortality classifi-
cation using machine learning algorithms. The dataset used in this study comprised clinical
patient treatment records, where a few outliers—resulting from incorrect entries by medical
staff in the electronic medical records (EMR)—were removed. Missing values for features
such as age at diagnosis, height, alcohol consumption, smoking status, age at menarche
and menopause, and family history were imputed. Continuous variables were imputed
with means, while categorical variables were imputed using their respective modes. This
approach ensured consistent and efficient handling of missing data. Although mean and
mode imputation may not capture all data complexities, they offer a straightforward and
effective method for minimizing the risk of introducing additional biases. The number of
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cases where imputation was performed for each feature is detailed in Table S3. Given the rel-
atively high missing data rate, we selected the mean for continuous variables and the mode
for categorical variables [33–35]. Continuous variables such as height (mean = 157.35), age
at menarche (mean = 14.79), and age at menopause (mean = 49.51) were imputed with
their respective means. Categorical variables such as alcohol consumption (mode = 0
[No]), smoking status (mode = 0 [No]), and family history (mode = 0 [No]) were imputed
with their respective modes. Mode-based imputation, which fills missing values with the
most frequent category, maintains consistency when a majority of observations share a
common feature. Sensitivity analyses showed that this strategy did not adversely impact
model performance. Furthermore, data from pathology reports were used to impute T- and
N-stage data. The T stage was supplemented with pathologic stage and tumor size, while
the N stage was supplemented with pathologic stage information. Additionally, skewness
and kurtosis methods were employed to identify variables with biased distributions and
potential outliers. Log transformation was applied to fasting glucose levels and white blood
cell counts, followed by normality tests for each variable. Finally, min-max normalization
was conducted on all input variables to prevent issues arising from differences in data scale,
enhancing model performance. This normalization step was crucial, as features with larger
scales could disproportionately influence the machine learning model compared to those
with smaller values [34].

2.2.2. Machine Learning

Four ML models, such as LR, random forest (RF), extreme gradient boosting (XGB),
and light gradient boosting machine (LGB), were constructed to classify mortality in breast
cancer patients. LR is a traditional probabilistic statistical model widely used in the medical
sciences [35]. RF is an ensemble method in ML that constructs numerous decision trees
during training and outputs a class, with the final classification determined by the mode
or mean of individual tree outcomes [36]. XGB is a tree-based ensemble ML algorithm
that combines multiple decision trees and employs classification and regression techniques
based on gradient descent. It expands decision trees horizontally (i.e., level-wise) to
reduce their depth and works well on imbalanced datasets with excellent accuracy and
speed [37]. LGB is an algorithm similar to XGB but can learn faster on large datasets [38].
These classifiers were trained using 31 features, including demographic characteristics,
laboratory results, pathology, and treatment information. Mortality prediction was based
on the presence or absence of other carcinomas after breast cancer diagnosis. All ML
programming for this study was performed using Python (version 3.8.10), with the models
constructed using Scikit-learn (version 1.2.0). Hyperparameter tuning was performed using
Optuna (version 3.3.0), a hyperparameter optimization framework.

2.2.3. Model Algorithm Development and Evaluation

Of the total data, 80% were allocated to training, while the remaining 20% were
used for testing. Validation data were used for 20% of the total training set. For each
of the four classification methods, 20% of the selected participant data were completely
removed from the cross-validation (CV)-based hyper-parameter value estimates. Strati-
fied k-fold CV (k = 5) was conducted to avoid label distortions during model generation
and to maintain stability. The performance measures included accuracy, precision, re-
call, F1 score, area under the receiver operating characteristic curve (AUC), specificity,
Brier score, Matthews correlation coefficient (MCC), and area under the precision–recall
curve (AUPRC) [39–42]. Recall was calculated as true positive (TP)/(TP + false negative
(FN)) and specificity as true negative (TN)/(TN + false positive (FP)). The F1 score is
the harmonic mean of precision and recall, where precision equals TP/(TP + FP). These
criteria are commonly used to report model evaluations [43–45]. Additionally, the Brier
score offers a direct measure of the accuracy of probabilistic predictions by assessing
both calibration and sharpness. It ranges from 0 to 1, with lower values indicating a
model that produces more precise predictions [46]. The MCC provides a balanced met-
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ric that accounts for true and false positives and negatives, calculated using the formula
(TP × TN − FP × FN)/((TP + FP)(TP + FN)(TN + FP)(TN + FN))1/2. The AUPRC empha-
sizes performance in imbalanced datasets by focusing on precision and recall. In addition,
model classification predictions were elucidated using SHAP, a model explanation method
based on feature importance. SHAP utilizes cooperative game theory to determine how
each feature contributes to ML model predictions, allowing for the interpretation of model
performance [47,48]. SHAP assumes independence between features, and correlated fea-
tures could potentially affect the reliability of SHAP values. To address this, we analyzed
the correlations among features used in the model. A correlation heatmap was generated to
visually inspect feature relationships, showing that the features were not highly correlated
with each other, allowing us to reasonably assume independence. The correlation heatmap
is provided in the Supplementary Material (Figure S4). We used Pearson correlation co-
efficients and observed that no pairs of features exceeded a correlation threshold of 0.7,
indicating minimal multicollinearity.

2.2.4. Statistical Analysis

To enhance the robustness and generalizability of our primary findings and balance the
baseline covariates, we employed an exposure-driven 1:3 propensity score matching (PSM)
analysis while minimizing a logistic regression model with the implications of potential
confounders [49]. The quality of the match was evaluated through the standardized
mean difference (SMD), with an SMD < 0.1 indicating a negligible difference between the
groups (Table S4) [50]. All patient characteristics are presented as means with standard
deviations or counts (%). An independent t-test was performed to assess the differences
in the mean between the alive and death groups for continuous variables. Categorical
variables are compared between two groups using Chi-squared (χ2) tests. Considering
the multiple testing of the same cohort, we used a Bonferroni correction based on the
number of tested samples in the same cohort [significance threshold of α = 0.05/2(number
of tested samples in the same cohort) = 0.025]. In addition, the Cox proportional hazards
regression model was fitted after verifying the proportional hazards assumption using
the log-log plot (Figure S5). We assessed the hazard ratio (HR) of all variables, using
univariate and multivariate Cox regression analysis. We selected the high-impact variables
identified consistently across the four ML models and used them in Kaplan–Meier (KM)
analysis to assess their effects on survival. For survivors, the duration was calculated from
the initial breast cancer diagnosis to the end of the observation period, while for those
who passed away, it was calculated from the diagnosis to the date of death. The KM
analysis provided insights into survival rates over the entire observation period, tracking
changes in breast cancer patient survival. To determine the statistical significance of the top
variables identified by SHAP, we performed KM analysis, allowing us to both visually and
statistically evaluate the influence of each variable on survival and mortality. The analysis
yielded significant p-values for each variable [51], with all statistical tests conducted at a
significance level of p < 0.001. All analyses were performed using R software (version 3.6.3).

3. Results
3.1. Patient Characteristics

In this study, we developed predictive ML classification models to predict mortality
in patients with breast cancer. We formed two groups: (1) all patients with breast cancer
(overall breast cancer group) and (2) excluding patients who developed other cancers
after breast cancer (breast-cancer-only group). The first group comprised 11,286 patients
(10,591 alive and 695 deceased), and the second group included 10,215 patients (9789 alive
and 426 deceased), as shown in Table S5. Using 1:3 PSM, we analyzed 2780 cases (2085 alive
and 695 deceased) in the overall breast cancer group and 1704 cases (1278 alive and
426 deceased) in the breast-cancer-only group.

Table 1 presents the characteristics of the two groups. In the overall group, the
incidence of cancer in areas other than the breast was 38.7% (p < 0.001) among the deceased,
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which was approximately five times higher than that among the survivors. The T stage
(p < 0.001) and N stage (p < 0.001) showed higher rates among the deceased as the disease
progressed. For tumor subtypes (p < 0.05), Luminal A (63.0%), basal (16.1%), Luminal B
(13.8%), and HER2 overexpression (7.1%) were observed among the deceased. Additionally,
78.8% (p < 0.001) of survivors received adjuvant chemotherapy at a higher rate than the
deceased. In the second group, T stages 2–4 and N stages 1–3 showed higher rates among
the deceased as the disease progressed compared to the survivors. Adjuvant chemotherapy
was administered to 78.7% (p < 0.001) of survivors, which was higher than that of the
deceased. Furthermore, the rate of hormone treatment (p < 0.001) among the survivors was
high at 79.2%.

Table 1. Description of participant attributes after propensity score matching.

Overall Breast Cancer Group Breast-Cancer-Only Group

Total
(N = 2780)

Death
(N = 695)

Alive
(N = 2085) p Total

(N = 1704)
Death

(N = 426)
Alive

(N = 1278) p

Age at diagnosis 51.4 ± 11.4 54.7 ± 14.0 50.3 ± 10.1 <0.001 52.1 ± 12.0 57.0 ± 14.6 50.5 ± 10.5 <0.001
Height 157.1 ± 5.8 155.6 ± 6.2 157.5 ± 5.6 <0.001 156.8 ± 6.0 155.2 ± 6.3 157.4 ± 5.8 <0.001
BMI 23.9 ± 3.5 24.3 ± 3.6 23.8 ± 3.5 <0.05 23.9 ± 3.6 24.4 ± 3.7 23.8 ± 3.6 <0.05
Smoking 0.058 0.518

No 2605 (93.7) 638 (91.8) 1967 (94.3) 1607 (94.3) 397 (93.2) 1210 (94.7)
Yes 175 (6.3) 57 (8.2) 118 (5.7) 97 (5.7) 29 (6.8) 68 (5.3)

Drinking <0.001 <0.001
No 2214 (79.6) 600 (86.3) 1614 (77.4) 1335 (78.3) 373 (87.6) 962 (75.3)
Yes 566 (20.4) 95 (13.7) 471 (22.6) 369 (21.7) 53 (12.4) 316 (24.7)

Age at menarche 14.9 ± 1.5 15.1 ± 1.5 14.8 ± 1.5 <0.001 14.9 ± 1.6 15.2 ± 1.5 14.8 ± 1.5 <0.001
Age at menopause 49.5 ± 3.3 49.3 ± 3.8 49.5 ± 3.1 0.160 49.5 ± 3.5 49.3 ± 4.0 49.5 ± 3.3 0.566
Parturition experience 0.907 0.969

No 327 (11.8) 85 (12.2) 242 (11.6) 218 (12.8) 53 (12.4) 165 (12.9)
Yes 2453 (88.2) 610 (87.8) 1843 (88.4) 1486 (87.2) 373 (87.6) 1113 (87.1)

Experience of oral
contraceptives 0.522 0.963

No 2507 (90.2) 619 (89.1) 1888 (90.6) 1526 (89.6) 380 (89.2) 1146 (89.7)
Yes 273 (9.8) 76 (10.9) 197 (9.4) 178 (10.4) 46 (10.8) 132 (10.3)

Hormone Replacement
Therapy 0.399 0.821

No 1943 (93.2) 637 (91.7) 2580 (92.8) 1547 (90.8) 390 (91.5) 1157 (90.5)
Yes 142 (6.8) 58 (8.3) 200 (7.2) 157 (9.2) 36 (8.5) 121 (9.5)

Family history <0.05 <0.001
No 2587 (93.1) 667 (96.0) 1920 (92.1) 1575 (92.4) 414 (97.2) 1161 (90.8)
Yes 193 (6.9) 28 (4.0) 165 (7.9) 129 (7.6) 12 (2.8) 117 (9.2)

Parents’ cancer history <0.001 <0.001
Paternity 273 (9.8) 40 (5.8) 233 (11.2) 145 (8.5) 23 (5.4) 122 (9.5)

Maternal line 158 (5.7) 16 (2.3) 142 (6.8) 124 (7.3) 10 (2.3) 114 (8.9)
Parental 53 (1.9) 6 (0.9) 47 (2.3) 32 (1.9) 3 (0.7) 29 (2.3)

None 2296 (82.6) 633 (91.1) 1663 (79.8) 1403 (82.3) 390 (91.5) 1013 (79.3)
Cancer history 0.986 0.884

No 2665 (95.9) 667 (96.0) 1998 (95.8) 1654 (97.1) 415 (97.4) 1239 (96.9)
Yes 115 (4.1) 28 (4.0) 87 (4.2) 50 (2.9) 11 (2.6) 39 (3.1)

Total cholesterol 194.8 ± 36.6 194.3 ± 39.2 195.0 ± 35.8 0.907 195.0 ± 36.7 196.4 ± 40.2 194.5 ± 35.5 0.671
Fasting glucose 113.2 ± 41.6 122.8 ± 54.4 110.0 ± 35.7 <0.001 113.7 ± 40.6 124.2 ± 54.6 110.2 ± 34.0 <0.001
WBC 6.5 ± 2.2 6.8 ± 2.5 6.3 ± 2.1 <0.001 6.5 ± 2.3 6.9 ± 2.8 6.4 ± 2.1 <0.05
Surgical type <0.001 <0.001

None 40 (1.4) 9 (1.3) 31 (1.5) 23 (1.3) 5 (1.2) 18 (1.4)
BCS 2395 (86.2) 529 (76.1) 1866 (89.5) 1450 (85.1) 322 (75.6) 1128 (88.3)

Mastectomy 345 (12.4) 157 (22.6) 188 (9.0) 231 (13.6) 99 (23.2) 132 (10.3)
Tumor location 0.920 0.330

Left 1359 (48.9) 350 (50.4) 1009 (48.4) 833 (48.9) 224 (52.6) 609 (47.7)
Right 1296 (46.6) 313 (45.0) 983 (47.1) 796 (46.7) 189 (44.4) 607 (47.5)
Both 125 (4.5) 32 (4.6) 93 (4.5) 75 (4.4) 13 (3.1) 62 (4.9)

Tumor location index 0.831 0.613
Single 2655 (95.5) 663 (95.4) 1992 (95.5) 1629 (95.6) 413 (96.9) 1216 (95.1)

Bilateral and synchronous 83 (3.0) 24 (3.5) 59 (2.8) 47 (2.8) 9 (2.1) 38 (3.0)
Bilateral and metachronous 42 (1.5) 8 (1.2) 34 (1.6) 28 (1.6) 4 (0.9) 24 (1.9)

Bilateral 0.764 0.348
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Table 1. Cont.

Overall Breast Cancer Group Breast-Cancer-Only Group

Total
(N = 2780)

Death
(N = 695)

Alive
(N = 2085) p Total

(N = 1704)
Death

(N = 426)
Alive

(N = 1278) p

No 2688 (96.7) 675 (97.1) 2013 (96.5) 1645 (96.5) 416 (97.7) 1229 (96.2)
Yes 92 (3.3) 20 (2.9) 72 (3.5) 59 (3.5) 10 (2.3) 49 (3.8)

Occurrence in other organs <0.001 - - - -
No 2348 (84.5) 426 (61.3) 1922 (92.2) - - - -
Yes 432 (15.5) 269 (38.7) 163 (7.8) - - - -

Histologic grade <0.001 <0.001
1 241 (8.7) 32 (4.6) 209 (10.0) 153 (9.0) 24 (5.6) 129 (10.1)
2 1282 (46.1) 246 (35.4) 1036 (49.7) 786 (46.1) 153 (35.9) 633 (49.5)
3 1257 (45.2) 417 (60.0) 840 (40.3) 765 (44.9) 249 (58.5) 516 (40.4)

p53(%) 29.9 ± 24.7 33.4 ± 26.5 28.8 ± 24.0 <0.001 29.8 ± 24.3 33.1 ± 26.2 28.7 ± 23.5 <0.05
Ki-67(%) 27.3 ± 22.5 33.1 ± 26.5 25.3 ± 20.6 <0.001 28.1 ± 23.0 32.7 ± 26.3 26.6 ± 21.5 <0.001
T stage <0.001 <0.001

0 134 (4.8) 17 (2.4) 117 (5.6) 70 (4.1) 11 (2.6) 59 (4.6)
1 1569 (56.4) 278 (40.0) 1291 (61.9) 987 (57.9) 166 (39.0) 821 (64.2)
2 950 (34.2) 316 (45.5) 634 (30.4) 567 (33.3) 196 (46.0) 371 (29.0)
3 95 (3.4) 58 (8.3) 37 (1.8) 60 (3.5) 33 (7.7) 27 (2.1)
4 32 (1.2) 26 (3.7) 6 (0.3) 20 (1.2) 20 (4.7) 0 (0.0)

N stage <0.001 <0.001
0 1862 (67.0) 315 (45.3) 1547 (74.2) 1140 (66.9) 199 (46.7) 941 (73.6)
1 641 (23.1) 213 (30.6) 428 (20.5) 410 (24.1) 131 (30.8) 279 (21.8)
2 200 (7.2) 110 (15.8) 90 (4.3) 105 (6.2) 61 (14.3) 44 (3.4)
3 77 (2.8) 57 (8.2) 20 (1.0) 49 (2.9) 35 (8.2) 14 (1.1)

Tumor subtype <0.05 <0.001
Luminal A 1850 (66.5) 438 (63.0) 1412 (67.7) 1136 (66.7) 260 (61.0) 876 (68.5)
Luminal B 363 (13.1) 96 (13.8) 267 (12.8) 205 (12.0) 52 (12.2) 153 (12.0)

Basal 347 (12.5) 112 (16.1) 235 (11.3) 213 (12.5) 83 (19.5) 130 (10.2)
HER2 overexpressing 220 (7.9) 49 (7.1) 171 (8.2) 150 (8.8) 31 (7.3) 119 (9.3)

Radiation treatment for
curative <0.001 <0.001

No 724 (26.0) 267 (38.4) 457 (21.9) 479 (28.1) 178 (41.8) 301 (23.6)
Yes 2056 (74.0) 428 (61.6) 1628 (78.1) 1225 (71.9) 248 (58.2) 977 (76.4)

Chemotherapy <0.001 <0.001
None 211 (7.6) 45 (6.5) 166 (8.0) 146 (8.6) 39 (9.2) 107 (8.4)

Adjuvant 2056 (74.0) 412 (59.3) 1644 (78.8) 1266 (74.3) 260 (61.0) 1006 (78.7)
Neoadjuvant 513 (17.1) 238 (34.2) 275 (13.2) 292 (17.2) 127 (29.8) 165 (12.9)

Anti-HER2 <0.001 <0.001
No 2253 (81.0) 479 (68.9) 1774 (85.1) 1440 (84.5) 334 (78.4) 1106 (86.5)
Yes 527 (19.0) 216 (31.1) 311 (14.9) 264 (15.5) 92 (21.6) 172 (13.5)

Anti-hormone <0.001 <0.001
No 656 (23.6) 210 (30.2) 446 (21.4) 416 (24.4) 150 (35.2) 266 (20.8)
Yes 2124 (76.4) 485 (69.8) 1639 (78.6) 1288 (75.6) 276 (64.8) 1012 (79.2)

BMI, body mass index; WBC, white blood cell; BCS, breast-conserving surgery; HER2, human epidermal growth
factor receptor 2.

3.2. Cox Proportional Hazard Model

Table 2 presents the results of the univariate and multivariate analyses. In the uni-
variable results for overall breast cancer, age at diagnosis was associated with the outcome
(HR 1.03, 95% confidence incidence (CI) [1.03, 1.04]). Other significant predictors included
height (HR 0.96, 95% CI [0.95, 0.97]), age at menarche (HR 1.08, 95% CI [1.03, 1.13]), fasting
glucose (HR 1.01, 95% CI [1.00, 1.01]), and occurrence in other organs (HR 3.84, 95% CI
[3.30, 4.48]). For the breast-cancer-only group, age at diagnosis was also associated with the
outcome (HR 1.05, 95% CI [1.04, 1.06]). Other significant predictors included height (HR
0.94, 95% CI [0.92, 0.96]), age at menarche (HR 1.17, 95% CI [1.09, 1.26]), fasting glucose
(HR 1.00, 95% CI [1.00, 1.01]), and WBC (HR 1.07, 95% CI [1.03, 1.11]).
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Table 2. Results of univariate and multivariate analyses.

Overall Breast Cancer Group Breast-Cancer-Only Group

Univariable Multivariable Univariable Multivariable

HR (95% CI) p-Value HR (95% CI) p-Value HR (95% CI) p-Value HR (95% CI) p-Value

Age at diagnosis 1.03 [1.03, 1.04] <0.001 1.03 [1.02, 1.04] <0.001 1.05 [1.04, 1.06] <0.001 1.04 [1.03, 1.05] <0.001
Height 0.96 [0.95, 0.97] <0.001 0.99 [0.97, 1.00] 0.056 0.94 [0.92, 0.96] <0.001 1.00 [0.98, 1.02] 0.785
BMI 1.04 [1.02, 1.06] <0.001 0.98 [0.96, 1.01] 0.138 1.05 [1.02, 1.08] 0.002 1.01 [0.98, 1.03] 0.717
Smoking

No - - -
Yes 1.38 [1.05, 1.81] 0.019 1.36 [1.02, 1.82] 0.037 1.25 [0.86, 1.82] 0.251

Drinking
No - - - -
Yes 0.63 [0.51, 0.78] <0.001 0.77 [0.61, 0.97] 0.027 0.52 [0.39, 0.69] <0.001 0.52 [0.39, 0.69] <0.001

Age at menarche 1.08 [1.03, 1.13] 0.001 0.96 [0.91, 1.02] 0.168 1.17 [1.09, 1.26] <0.001 1.08 [1.01, 1.14] 0.017
Age at menopause 0.99 [0.97, 1.01] 0.387 0.98 [0.95, 1.01] 0.287
Parturition experience

No - -
Yes 1.03 [0.82, 1.29] 0.801 1.12 [0.84 1.50] 0.426

Experience of oral
contraceptives

No - -
Yes 1.09 [0.86, 1.38] 0.492 1.05 [0.73, 1.49] 0.784

Hormone replacement therapy
No - -
Yes 1.13 [0.86, 1.48] 0.367 0.86 [0.61, 1.22] 0.400

Family history
No - -
Yes 0.73 [0.50, 1.06] 0.101 0.44 [0.25, 0.78] 0.005 0.60 [0.33, 1.09] 0.095

Parents’ cancer history
Paternity - - -

Maternal line 0.58 [0.32, 1.03] 0.065 0.45 [0.22, 0.95] 0.037 0.61 [0.28, 1.31] 0.202
Parental 0.70 [0.30, 1.64] 0.408 0.66 [0.20, 2.19] 0.495 0.33 [0.00, 1.15] 0.082

None 1.26 [0.92, 1.74] 0.154 1.25 [0.82, 1.90] 0.309 1.07 [0.69, 1.65] 0.776
Cancer history

No - -
Yes 1.35 [0.93, 1.98] 0.118 1.11 [0.61, 2.01] 0.743

Total cholesterol 1.00 [1.00, 1.00] 0.471 1.00 [1.00, 1.00] 0.092
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Table 2. Cont.

Overall Breast Cancer Group Breast-Cancer-Only Group

Univariable Multivariable Univariable Multivariable

HR (95% CI) p-Value HR (95% CI) p-Value HR (95% CI) p-Value HR (95% CI) p-Value

Fasting glucose 1.01 [1.00, 1.01] <0.001 1.00 [1.00, 1.00] 0.005 1.00 [1.00, 1.01] <0.001 1.00 [1.00, 1.01] 0.140
WBC 1.09 [1.06, 1.12] <0.001 1.04 [1.00, 1.07] 0.028 1.07 [1.03, 1.11] <0.001 1.01 [0.97, 1.05] 0.691
Surgical type

None - -
BCS 0.90 [0.47, 1.75] 0.764 0.62 [0.29, 1.32] 0.212 1.34 [0.56, 3.25] 0.513 1.34 [0.56, 3.25] 0.513

Mastectomy 1.99 [1.02, 3.89] 0.045 0.53 [0.24, 1.15] 0.108 2.74 [1.12, 6.73] 0.028 2.74 [1.12, 6.73] 0.028
Tumor location

Left - -
Right 0.94 [0.81, 1.09] 0.425 0.89 [0.74, 1.08] 0.251 0.62 [0.23, 1.65] 0.340
Both 0.93 [0.65, 1.33] 0.685 0.61 [0.35, 1.07] 0.086 0.49 [0.18, 1.32] 0.158

Tumor location index
Single - -

Bilateral & synchronous 1.26 [0.84, 1.89] 0.268 0.87 [0.45, 1.69] 0.687
Bilateral & metachronous 0.55 [0.28, 1.11] 0.098 0.41 [0.15, 1.09] 0.075

Bilateral
No - -
Yes 0.88 [0.57, 1.38] 0.583 0.70 [0.38, 1.32] 0.273

Occurrence in other organs
No - -
Yes 3.84 [3.30, 4.48] <0.001 2.57 [2.17, 3.04] <0.001

Histologic grade
1 - - - -
2 1.49 [1.03, 2.16] 0.033 0.89 [0.59, 1.34] 0.581 1.37 [0.89, 2.11] 0.152 0.98 [0.62, 1.56] 0.936
3 2.79 [1.95, 3.99] <0.001 1.14 [0.75, 1.74] 0.527 2.45 [1.61, 3.73] <0.001 1.00 [0.61, 1.63] 0.991

p53(%) 1.01 [1.00, 1.01] <0.001 1.00 [0.99, 1.00] 0.152 1.01 [1.00, 1.01] <0.001 1.00 [1.00, 1.00] 0.825
Ki-67(%) 1.02 [1.02, 1.02] <0.001 1.01 [1.01, 1.02] <0.001 1.02 [1.01, 1.02] <0.001 1.01 [1.00, 1.01] <0.001
T stage

0 - - - -
1 1.57 [0.96, 2.56] 0.072 1.28 [0.75, 2.17] 0.363 1.02 [0.56, 1.89] 0.937 0.88 [0.46, 1.68] 0.699
2 2.92 [1.79, 4.75] <0.001 1.62 [0.94, 2.77] 0.082 2.15 [1.17, 3.95] 0.013 1.20 [0.62, 2.33] 0.596
3 6.52 [3.80, 11.20] <0.001 2.38 [1.30, 4.34] 0.005 4.08 [2.06, 8.08] <0.001 1.53 [0.71, 3.27] 0.276
4 15.89 [8.60, 29.33] <0.001 2.65 [1.34, 5.22] 0.005 18.15 [8.66, 38.03] <0.001 2.85 [1.25, 6.53] 0.013

N stage
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Table 2. Cont.

Overall Breast Cancer Group Breast-Cancer-Only Group

Univariable Multivariable Univariable Multivariable

HR (95% CI) p-Value HR (95% CI) p-Value HR (95% CI) p-Value HR (95% CI) p-Value

0 - - - -
1 2.05 [1.72, 2.44] <0.001 1.47 [1.22, 1.78] <0.001 2.07 [1.66, 2.59] <0.001 1.64 [1.28, 2.09] <0.001
2 3.50 [2.82, 4.35] <0.001 1.99 [1.55, 2.56] <0.001 3.90 [2.93, 5.19] <0.001 2.83 [2.03, 3.96] <0.001
3 6.07 [4.57, 8.05] <0.001 3.25 [2.40, 4.40] <0.001 4.90 [3.42, 7.02] <0.001 2.89 [1.92, 4.37] <0.001

Tumor subtype
Luminal A - - - -
Luminal B 1.09 [0.87, 1.35] 0.470 0.62 [0.48, 0.81] <0.001 1.18 [0.87, 1.58] 0.286 0.95 [0.67, 1.35] 0.772

Basal 1.53 [1.25, 1.89] <0.001 0.46 [0.33, 0.66] <0.001 2.08 [1.62, 2.66] <0.001 0.93 [0.60, 1.45] 0.745
HER2 overexpressing 1.05 [0.78, 1.41] 0.735 0.26 [0.17, 0.40] <0.001 1.00 [0.69, 1.45] 0.989 0.52 [0.30, 0.91] 0.021

Radiation treatment for curative
Yes - - -
No 1.89 [1.62, 2.20] <0.001 1.80 [1.53, 2.13] <0.001 2.03 [1.67, 2.46] <0.001 2.21 [1.70, 2.64] <0.001

Chemotherapy
None - -

Adjuvant 0.85 [0.63, 1.16] 0.315 0.62 [0.48, 0.81] <0.001 0.70 [0.50, 0.98] 0.040 1.35 [0.87, 2.08] 0.177
Neoadjuvant 2.88 [1.62, 5.06] <0.001 0.26 [0.17, 0.40] <0.001 2.33 [1.62, 3.35] <0.001 3.43 [2.10, 5.61] <0.001

Anti-HER2
No - - -
Yes 2.22 [1.89, 2.61] <0.001 1.48 [1.19, 1.85] <0.001 1.73 [1.37, 2.18] <0.001 1.09 [0.80, 1.49] 0.566

Anti-hormone
No - - -
Yes 0.60 [0.51, 0.71] <0.001 0.34 [0.24, 0.47] <0.001 0.49 [0.40, 0.60] <0.001 0.50 [0.33, 0.76] 0.001

HR, hazard ratio; CI, confidence incidence; BMI, body mass index; WBC, white blood cell; BCS, breast-conserving surgery; HER2, Human epidermal growth factor receptor 2.
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In the multivariable results for overall breast cancer, age at diagnosis was associated
with the outcome (HR 1.03, 95% CI [1.02, 1.04]). Other significant predictors included
height (HR 0.99, 95% CI [0.97, 1.00]), age at menarche (HR 0.96, 95% CI [0.91, 1.02]), fasting
glucose (HR 1.00, 95% CI [1.00, 1.00]), and occurrence in other organs (HR 2.57, 95% CI
[2.17, 3.04]). For the breast-cancer-only group, age at diagnosis was also associated with the
outcome (HR 1.04, 95% CI [1.03, 1.05]). Other significant predictors included height (HR
1.00, 95% CI [0.98, 1.02]), age at menarche (HR 1.08, 95% CI [1.01, 1.14]), fasting glucose
(HR 1.00, 95% CI [1.00, 1.01]), and WBC (HR 1.01, 95% CI [0.97, 1.05]).

3.3. Model Performance and Evaluation

Four ML algorithms (LR, RF, XGB, and LGB) were used to construct predictive models
for breast cancer mortality. The results for both groups are presented separately. The model
was trained using the 31 finally selected features (Table S2). Model performance is presented
in Table 3.

Table 3. Performance of the four machine learning algorithms.

Accuracy Precision Recall F1 Score AUC Specificity Brier Score MCC AUPRC

Overall
breast
cancer
group

LR 0.7950 0.5691 0.7410 0.6438 0.8467 0.8129 0.2050 0.5119 0.6662
RF 0.8058 0.6566 0.4676 0.5462 0.8624 0.9185 0.1942 0.4370 0.6679

XGB 0.8381 0.7634 0.5108 0.6121 0.8722 0.9472 0.1619 0.5314 0.7130
LGB 0.8094 0.6093 0.6619 0.6345 0.8677 0.8585 0.1906 0.5066 0.7059

Breast-
Cancer-

only
group

LR 0.7507 0.5000 0.7529 0.6009 0.8338 0.7500 0.2493 0.4493 0.6928
RF 0.7859 0.6579 0.2941 0.4065 0.8043 0.9492 0.2141 0.3345 0.5648

XGB 0.8504 0.8696 0.4706 0.6107 0.8518 0.9766 0.1496 0.5662 0.7013
LGB 0.8270 0.6857 0.5647 0.6194 0.8482 0.9141 0.1730 0.5128 0.6676

AUC, area under the curve; MCC, Matthews correlation coefficient; AUPRC, area under the precision–recall curve;
LR, logistic regression; RF, random forest; XGB, extreme gradient boosting; LGB, light gradient boosting machine.

In the overall breast cancer group, XGB exhibited the highest discriminative ability,
with an AUC of 0.8722, an F1 score of 0.6121, and an AUPRC of 0.7130, followed by
LGB with an AUC of 0.8677, an F1 score of 0.6345, and an AUPRC of 0.7059, as shown
in Figure 3A. XGB also had the highest accuracy of 0.8381 among the four ML models,
followed by LGB with an accuracy of 0.8094 and RF with an accuracy of 0.8058.
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Figure 3. (A) ROC curve for the overall breast cancer group, (B) ROC curve for the breast-cancer-only
group. ROC, Receiver operating characteristic.
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In the breast-cancer-only group, XGB showed the highest discriminative ability, with
an AUC of 0.8518, an F1 score of 0.6107, and an AUPRC of 0.7013, followed by LGB with
an AUC of 0.8482 and an accuracy of 0.8270, as shown in Figure 3B. In addition, XGB
demonstrated the highest accuracy of 0.8504, followed by LGB with an accuracy of 0.8270
and RF with 0.7859.

However, although XGB presents the best performance with regards to its AUC,
accuracy, and AUPRC, when considering model performance for imbalanced data and
minority classes in both groups, it does not show the best performance, with an F1 score
lower than LGB for both groups.

3.4. Feature Importance and Interpretation

SHAP values indicate the contributions of individual variables to the predictive
classification model results. They help interpret the influence and importance of each
feature in the model’s decision-making process. The x-axis represents the SHAP value,
which indicates the effect of a feature on the prediction outcome, and the y-axis lists the
features. Figure 4 illustrates the XAI results for XGB for each group. The other models’
results are presented in Figure S1. The SHAP summary plot provides an information-dense
summary of the effects of the top features of a dataset on the model results (Figure 4). For
each instance, the explanation is represented by a single dot for each feature flow. The
distribution of points on the plot for each variable across the SHAP value axis indicates the
degree of the impact of this feature on the output of the model. Each point represents an
individual data point in the dataset.
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In the overall breast cancer group, variables such as occurrence in other organs, age
at diagnosis, N stage, radiation treatment for curative purposes, height, Ki-67(%), and T
stage had a significant impact on the XGB model, which exhibited the highest performance
among all variables.
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The top four variables, occurrence in other organs, N stage, age at diagnosis, and
radiation treatment for curative purposes, were found to have a significant influence
on individual model results, which was consistent across the other models as well. The
interpretation of SHAP values suggests that the occurrence of other cancers after breast
cancer, older age at diagnosis, higher N stage, performance of radiation treatment for
curative purposes, and higher Ki-67(%) values are more important in determining the
model results. These features are meaningful indicators of mortality predictions.

Similarly, in the breast-cancer-only group, variables such as N stage, age at diagnosis,
T stage, p53(%), and Ki-67(%) had a significant impact on the XGB model, which exhibited
the highest accuracy among all variables. The variables of T and N stages, age at diagnosis,
and Ki-67(%) were found to have a significant influence on the individual model results,
consistent with other models. In particular, p53(%) and WBC were included as important
variables, compared to the overall breast cancer group.

SHAP analysis revealed that certain high-impact variables significantly contribute to
the model’s predictions, indicating their influence on patient outcomes. Specifically, these
findings suggest a positive correlation between these variables and survival rates, imply-
ing that an increase in their frequency or grade may positively affect survival outcomes.
Figure S2 shows the KM survival curves for high-impact variables in the ML models applied
to the overall breast cancer group. Furthermore, Figure S3 shows the KM survival curves
for the high-impact variables in the ML models applied to the breast-cancer-only group.

4. Discussion

In this study, we developed and evaluated ML models to predict mortality in patients
with breast cancer using a comprehensive dataset from the NCC in Korea. Our findings
demonstrate the efficacy of ML-based predictive models in accurately classifying patient
mortality and highlight the importance of XAI in enhancing the interpretability of these
models for clinical decision support systems. Breast cancer remains a significant public
health challenge with high incidence rates globally [1–3]. Accurate prediction of mortality
in patients with breast cancer is crucial for timely intervention and personalized treat-
ment planning. Traditional methods, such as LR and Cox regression analysis, have been
widely used but often fall short in terms of predictive performance. Our study showed
that advanced ML techniques, including XGB and LGB, outperform traditional methods,
providing higher accuracy and specificity for mortality prediction. In our study, the results
indicate that the XGB model exhibited the highest discriminative ability, with an AUC
of 0.8722 for the overall breast cancer group and 0.8518 for the breast-cancer-only group.
The LGB model also showed robust performance, particularly in the second group, with
an accuracy of 0.8270. Compared with the existing literature, we utilized advanced ML
models and comprehensive data. Hou et al. [52], Nguyen et al. [17], and Allugunti [53] used
advanced ML models to improve predictive survival performance. Similar to these studies,
we conducted predictive classification for the mortality of patients with breast cancer using
advanced models, such as XGB and LGB, achieving high predictive accuracy. A notable
strength of our study is the feature selection and importance analysis. Similar to previous
studies [54], we emphasized feature importance analysis using SHAP values, providing
deeper insights into how individual variables influence mortality predictions with high ac-
curacy. Additionally, KM analysis was used to confirm the survival rates for each category
of high-impact variables identified by the ML models. An essential aspect of our study is
the application of SHAP values to interpret the model predictions. SHAP values provide
insights into the contribution of individual variables, such as age at diagnosis, N stage, T
stage, and treatment modalities (e.g., radiation and chemotherapy), to the model’s decision-
making process [55]. Interestingly, height was included as an important variable, which
may somewhat support the association between height and breast cancer risk reported
in previous studies [56,57]. In particular, p53 (%) and WBC were identified as important
variables in the breast-cancer-only group. In general, somatic mutations in the p53 gene are
common in triple-negative breast cancer with a poor prognosis. However, since the p53
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used in this study was based on immunohistochemistry results, it was difficult to identify
the association with gene expression or mutation. Further studies are needed to prove the
link between them. In addition, our WBC results suggest that additional studies may be
needed to identify the relationship between the neutrophil/lymphocyte ratio and poor
prognoses. This level of interpretability is crucial for clinicians to understand the factors
driving mortality predictions and make informed decisions regarding subject management.

This study had several strengths and unique contributions. First, we used PSM to
create a balanced dataset to ensure robust model training and evaluation [58,59]. PSM
helped minimize the bias commonly associated with observational studies and improved
the reliability of our model predictions. Rajendran et al. [59] addressed class imbalance
in breast cancer prediction using techniques such as the synthetic minority oversampling
technique [60], under-sampling [61], and hybrid methods. However, although these data
augmentation and reduction methods can increase the learning effect of the model, they
can be detrimental to the error values that exist in real data, such as outliers. Therefore,
we applied the PSM method to ensure that data features and labels were adequately
balanced [62–64]. Unlike simple oversampling or under-sampling techniques, PSM allowed
us to match patients based on key covariates, minimizing selection bias and creating a
realistic dataset for training. This approach handled real-world variability more effectively
and improved model generalizability by reducing class overrepresentation, resulting in a
more balanced view of patient outcomes. In summary, PSM improved model performance
while mitigating biases and maintaining data integrity, leading to more reliable predictions,
especially in observational datasets.

Second, unlike other studies that primarily focused on predictive performance, our
study emphasized the interpretability of model predictions using SHAP values [65]. This
approach provides a transparent view of how each feature influences the model’s decisions,
which is essential for clinical applications [58]. SHAP values offer a detailed explanation
by considering the offsets among all variables and using permutation calculations. This
approach ensures that our ML models are accurate and interpretable, making them practical
for real-world clinical implementation. Third, we used a dataset that included a wide range
of features, including demographic, clinical, pathological, and treatment-related variables,
ensuring a holistic approach to mortality prediction. Fourth, our study utilizes real-world
data from the NCC, providing a realistic and practical basis for model development and
evaluation. Using real-world clinical data offers several advantages, including greater
diversity in subject demographics, treatment protocols, and disease progression patterns.
In addition, real-world data reflect actual clinical conditions and variations, making the
models more applicable and reliable for routine clinical decision-making. This enhances
the applicability and relevance of our findings to clinical practice.

However, this study had a few limitations. First, the retrospective nature of this study
and data from a single NCC may limit the generalizability of our findings. Moreover, the
imbalance between survivors and deaths could introduce bias, although we addressed this
issue using PSM. To the best of our knowledge, there is currently no established standard
for the optimal ratio of PSM, as long as the case-to-control ratio is not too large (e.g., 1:5
or more). In general, PSM has been performed with a 1:1 ratio, which is also the default
value for most PSM tools. However, in this study, the number of deaths among breast
cancer patients was relatively small (n = 695, 6% of the total); therefore, we thought that the
number of samples included in the machine learning model would be very small if PSM is
performed with a ratio of 1:1. For this reason, we considered a 1:3 PSM ratio, referring to
previous studies that used a 1:3 PSM ratio for analyses related to the survival of breast cancer
patients [66–68]. We used approximately 20% of the total data for ML training. Future
studies should consider a multimodal approach that combines structural and nonstructural
data, such as biosignals and images. Second, this study was cross-sectional, with a focus on
mortality prediction and without longitudinal data. Longitudinal studies are needed to
design more precise and personalized treatments and validate the utility of these models in
continuous subject monitoring. Second, we were unable to perform an external validation
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of our models, which is crucial for confirming the generalizability and robustness of our
findings across different populations. Third, this study included a large number of imputed
data using the mean or mode of the variables due to the high rate of missing variables in
the EMR data. In addition to the large amount of missing data, this simple imputation
approach for missing data could potentially be a major limitation of this study. Recently,
various statistical inference methods for missing data (e.g., inference based on maximum
likelihood estimates) have been reported, and further research is needed on how actual
model results differ between various imputation approaches. In addition, future studies
need to make additional efforts to reduce the rate of missing data in datasets. Fourth,
the recall of the XGB model was notably lower compared to other performance metrics.
Recall was calculated as TP/(TP + FN). In other words, recall is the ratio of the correctly
predicted positive class to all classes. In imbalanced datasets, where the positive class
(1:death) is often the minority, models tend to predict most data points as belonging to
the majority class (0:alive). This leads to an increase in false negatives, as the model
misses a significant portion of the minority class. As a result, the sensitivity (or recall)
tends to decrease. Therefore, in imbalanced datasets, models are more likely to overlook
positive cases, causing sensitivity to drop. To address this limitation, we introduced the
Area Under the Precision–Recall Curve (AUPRC) as an additional performance metric. The
AUPRC can effectively complement the F1 score, as it evaluates the model’s precision and
recall performance across all thresholds rather than just one. This additional measure is
particularly useful in imbalanced datasets, where understanding model performance across
a range of decision thresholds can reveal nuances that the single-point F1 score may miss.
In future studies, to improve this limitation, techniques such as class weighting or using
loss functions that focus on recall (such as focal loss) will be used [69]. Fifth, interpretation
through SHAP has potential issues because the attribution of feature importance is typically
based on random permutations. High correlations among the predictors can lead to SHAP
values that may not accurately represent the importance of each feature. In future studies,
we plan to implement Kernel SHAP, a method that employs a weighted sampling strategy
to calculate each SHAP value, considering the intercorrelations among features. Finally,
we used data classified based on whether cancer had occurred in other organs after breast
cancer diagnosis to understand its impact on survivors. However, we could not definitively
determine whether the malignancies in other organs were new cancers that developed after
the breast cancer diagnosis or metastases from the original breast cancer. Future studies
are required to establish more precise criteria for patient classification to ensure a clearer
distinction between metastatic diseases and new primary malignancies. Given the current
data limitations, we included patients with the involvement of other organs; however,
future work should aim to more meticulously exclude these cases to differentiate between
metastasis and new cancer development accurately.

5. Conclusions

This study demonstrated the predictive classification of breast cancer mortality using
cause of death information from Statistics Korea. By utilizing real-world data, such as
clinical diagnosis and treatment information, our results are more reliable. We constructed
four ML models and achieved high accuracy and AUC using 31 risk factors for breast cancer.
Furthermore, through XAI, we identified key variables affecting breast cancer mortality,
such as occurrence in other organs, age at diagnosis, N stage, and T stage. Our study results
may help physicians determine treatment for the prognostic management of breast cancer
patients by predicting the prognosis related to survival. However, a multi-center extension
study on representative large-scale data is needed to reduce missing values in EMR data
and to develop a more powerful model.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers16223799/s1, Figure S1. SHAP summary plots for each model:
(A) overall breast cancer group, logistic regression, (B) overall breast cancer group, random forest,
(C) overall breast cancer group, light gradient boosting, (D) breast-cancer-only group, logistic re-
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gression, (E) breast-cancer-only group, random forest, (F) breast-cancer-only group, light gradient
boosting. SHAP, Shapley additive explanations. Figure S2. Kaplan–Meier plots for the overall breast
cancer group: (A) occurrence in other organs, (B) N stage, (C) age at diagnosis, and (D) curative radi-
ation treatment. Figure S3. Kaplan–Meier plots for the breast-cancer-only group: (A) T stage, (B) N
stage, (C) age at diagnosis, and (D) Ki-67(%). Figure S4. Heatmap of variable correlations: (A) overall
breast cancer group, (B) breast-cancer-only group. Figure S5. Log-Log plot for each variable: (A) over-
all breast cancer group, (B) breast-cancer-only group. Table S1. All features from the hospital registry
database. Table S2. Primary features from the hospital registry database. Table S3. Details of imputed
feature information. Table S4. Standardized mean differences before and after PSM in each group.
Table S5. Participant characteristics before propensity score matching.
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