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Abstract: In this study, we consider the problem of self-supervised learning (SSL) utilizing the
1-Wasserstein distance on a tree structure (a.k.a., Tree-Wasserstein distance (TWD)), where TWD
is defined as the L1 distance between two tree-embedded vectors. In SSL methods, the cosine
similarity is often utilized as an objective function; however, it has not been well studied when
utilizing the Wasserstein distance. Training the Wasserstein distance is numerically challenging.
Thus, this study empirically investigates a strategy for optimizing the SSL with the Wasserstein
distance and finds a stable training procedure. More specifically, we evaluate the combination of
two types of TWD (total variation and ClusterTree) and several probability models, including the
softmax function, the ArcFace probability model, and simplicial embedding. We propose a simple
yet effective Jeffrey divergence-based regularization method to stabilize optimization. Through
empirical experiments on STL10, CIFAR10, CIFAR100, and SVHN, we find that a simple combination
of the softmax function and TWD can obtain significantly lower results than the standard SimCLR.
Moreover, a simple combination of TWD and SimSiam fails to train the model. We find that the
model performance depends on the combination of TWD and probability model, and that the Jeffrey
divergence regularization helps in model training. Finally, we show that the appropriate combination
of the TWD and probability model outperforms cosine similarity-based representation learning.

Keywords: optimal transport; Wasserstein distance; self-supervised learning

1. Introduction

Unsupervised learning is a widely studied topic, and includes autoencoders [1] and
variational autoencoders (VAEs) [2]. Self-supervised learning (SSL) algorithms, including
SimCLR [3], Bootstrap Your Own Latent (BYOL) [4], MoCo [3,5], SWAV [6], SimSiam [7],
and DINO [8], can also be regarded as unsupervised learning methods.

One of the main self-supervised algorithms adopts contrastive learning, in which
two data points are systematically generated from a common data source, and lower-
dimensional representations are found by maximizing the similarity between the positive
pairs while minimizing the similarity between negative pairs. Depending on the context,
positive and negative pairs can be defined differently. For example, in SimCLR [3], positive
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pairs correspond to images generated by independently applying different visual transfor-
mations, such as rotation and cropping. In multimodal learning, however, positive pairs are
defined as the same examples corresponding in different modalities, such as images and
text [9]. The flexibility of formulating positive and negative pairs also makes contrastive
learning widely applicable beyond the image domain. This is a powerful pre-training
method, because SSL does not require label information and can be trained using several
data points.

In addition to contrastive learning-based SSL, non-contrastive approaches, such as
BYOL [4], SWAV [6], and SimSiam [7], have been widely used. The fundamental concept of
non-contrastive approaches involves the utilization of momentum and/or stop-gradient
techniques to prevent mode collapse, as opposed to relying on negative sampling. Many of
these approaches employ negative cosine similarity as a loss function. However, a limited
number of SSL methods utilize distribution measures, such as cross-entropy, as exemplified
by DINO [8], and simplicial embedding [10].

In this paper, leveraging the idea of distribution measures, for the first time we em-
pirically investigate SSL performance using the Wasserstein distance. The Wasserstein
distance, a widely adopted optimal transport-based distance for measuring distributional
discrepancies, is useful in various machine learning tasks, including generative adversarial
networks [11], document classification [12,13], image matching [14], and algorithmic fair-
ness [15,16]. The 1-Wasserstein distance is also known as the earth mover’s distance (EMD)
and the word mover’s distance (WMD) [12].

In this study, we consider an SSL framework with a 1-Wasserstein distance under a
tree metric (i.e., Tree-Wasserstein distance (TWD)) [17,18]. TWD includes the sliced Wasser-
stein distance [19,20] and total variation as special cases, and can be represented by the /4
distance between two vectors. Due to the fact that TWD is given as a non-differentiable
function, learning simplicial representations through back-propagation of TWD is chal-
lenging. Moreover, because the Wasserstein distance is computed from probability vectors,
and several representations of probability vectors exist, it is difficult to determine which is
most suitable for SSL training. Hence, we investigate a combination of probability models
and the structure of TWD. Specifically, we consider the total variation and ClusterTree
for TWD structure and show that the total variation is equivalent to a robust variant of
TWD. In terms of the probability representations, we propose the combined use of softmax,
an ArcFace-based probability model [21], and simplicial embedding (SEM) [10]. Finally,
to stabilize the training, we propose a Jeffrey divergence-based regularization. Through
SSL experiments, we find that the standard softmax formulation with back-propagation
yields poor results. In particular, the non-contrastive SSL case fails to train the model with
a simple combination of the Wasserstein distance and softmax function. For total variation,
the ArcFace-based model performs well. By contrast, SEM is suitable for ClusterTree,
whereas ArcFace-based models achieve modest performance. Moreover, the proposed
regularization significantly outperforms its non-regularized counterparts.

Contribution: The contributions of this study are summarized below:

e We propose to use the tree Wasserstein distance for self-supervised learning including
SimCLR and SimSiam for the first time.

*  We investigate the combination of probability models and TWD (total variation and
ClusterTree). We find that the ArcFace model with prior information is suited for total
variation, while SEM [10] is suited for ClusterTree models.

*  We propose a robust variant of TWD (RTWD) and show that RTWD is equivalent to
total variation.

e We propose the Jeffrey divergence regularization for TWD minimization, and find that
the regularization significantly stabilizes training.

¢ We demonstrate that the combination of TWD and probability models can obtain better
performance in self-supervised training for CIFAR10, STL10, and SVHN compared to
the cosine similarity in SimCLR experiments, while the performance of CIFAR100 can
be improved further in the future.
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2. Related Work

The proposed method involves unsupervised representation learning and optimal transport.

Unsupervised Representation Learning: Representation learning is an important research
topic in machine learning and involves several methods. The autoencoder [1] and its varia-
tional version [2] are widely employed in unsupervised representation learning methods.
Current mainstream SSL approaches are based on a cross-view prediction framework [22]
and contrastive learning has emerged as a prominent SSL paradigm.

In contrastive learning, a model learns by contrasting positive samples (similar in-
stances) with negative samples (dissimilar instances) using methods such as SImCLR [23].
SimCLR employs data augmentation and similarity metrics to encourage the model to
project similar instances close together while pushing dissimilar instances apart. This
approach has demonstrated efficacy across various domains, including computer vision
and natural language processing, thus enabling learning without explicit labels. SimCLR
employs the InfoNCE loss [24]. Subsequently to SimCLR, several alternative approaches
have been proposed, including the use of Barlow Twins [25]. The Barlow twin loss function
attempts to maximize the correlation between positive pairs while minimizing the cross-
correlation with negative samples. Barlow Twins is closely related to the Hilbert-Schmidt
independence criterion, a kernel-based independence measure [26,27].

One drawback of SimCLR is its reliance on numerous negative samples. To address
this issue, recent research has focused on approaches that eliminate the need for negative
sampling, such as BYOL [4], SwWAV [6], and DINO [8]. For example, BYOL demonstrates
training of representations by minimizing the loss between online and target networks.
The target network is formed by maintaining a moving average of the online network
parameters, and eliminates the need for negative samples. Surprisingly, BYOL showed fa-
vorable results compared with SImCLR. SimSiam, introduced by Chen and He [7], utilizes a
Siamese network to train the estimation by fixing one of the networks using a stop gradient.

Both of these approaches concentrate on learning low-dimensional representations
with real-valued vector embeddings by employing cosine similarity as a similarity measure
in contrastive learning. Recently, Lavoie et al. [10] proposed simplicial embedding (SEM),
which involves multiple concatenated softmax functions and learns high-dimensional
sparse non-negative representations. This innovation significantly enhances classifica-
tion accuracy.

All of these approaches employ either a negative cosine similarity or cross-entropy
as a loss function. In contrast, use of the Wasserstein distance in this context has not
been studied.

Divergence and optimal transport: Measuring the divergence between two probability
distributions is a fundamental research problem in machine learning. It has utility for
various downstream applications, including document classification [12,13], image match-
ing [14], and algorithmic fairness [15,16]. One widely adopted divergence measure is
Kullback-Leibler (KL) divergence [28]. However, KL divergence can diverge to infinity
when the supports of the two input probability distributions do not overlap.

The Wasserstein distance, or, as it is known in the computer vision community, EMD,
can handle differences in supports between probability distributions. Another key advan-
tages of the Wasserstein distance over KL is that it can identify matches between the data
samples. For example, Sarlin et al. [14] proposed SuperGlue, leveraging optimal transport
for correspondence determination in local feature sets.

In NLP, Kusner et al. [12] introduced WMD, a Wasserstein distance pioneer in tex-
tual similarity tasks that is widely utilized, including for text generation evaluation [29].
Sato et al. [13] further studied the properties of WMD. Another interesting approach is
the word rotator distance (WRD) [30], which utilizes the norm of word vectors as a sim-
plicial representation and significantly improves WMD’s performance. However, these
methods incur cubic-order computational costs, rendering them unsuitable for extensive
distribution-comparison tasks.
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The Wasserstein distance can be computed efficiently via linear programming (cu-
bic complexity). However, to speed up EMD and Wasserstein distance computation,
Cuturi [31] introduced the Sinkhorn algorithm, which solves the entropic regularized opti-
mization problem and achieves quadratic order Wasserstein distance computation (O(7?)),
where 7i is the number of data points. Moreover, because the optimal solution from the
Sinkhorn algorithm can be obtained using an iterative algorithm, it can be easily incorpo-
rated into deep learning applications, making optimal transport widely applicable. One
limitation of the Sinkhorn algorithm is that it still requires quadratic-time computation,
and the final solution depends highly on the regularization parameter.

An alternative approach is the sliced Wasserstein distance (SWD) [19,20], which solves
the optimal transport problem within a projected one-dimensional subspace. The algorithm
for Wasserstein distance computation over reals essentially applies sorting as a subroutine;
thus, SWD offers O(7i log 71) computation. SWD’s extensions include the generalized sliced
Wasserstein distance for multidimensional cases [32]; the max-sliced Wasserstein distance,
which determines the optimal transport-enhancing 1D subspace [33,34]; and the subspace-
robust Wasserstein distance [35].

The 1-Wasserstein distance with a tree metric (also known as the Tree-Wasserstein
Distance (TWD)) is a generalization of the sliced Wasserstein distance and total varia-
tion [17,18,36]. The TWD is also known as the UniFrac distance [37] and is assumed to
have a phylogenetic tree beforehand. An important property of TWD is that TWD has
an analytical solution for the L1 distance of tree-embedded vectors.

Originally, TWD was studied in theoretical computer science, known as the QuadTree
algorithm [17]. This has recently been extended by the ML community to include un-
balanced TWD [38,39], supervised Wasserstein training [40], tree barycenters [41], robust
Wasserstein distance [42], unsupervised tree construction [43], and greedy matching [44].
Moreover, graph-based optimal transport has also been studied recently [45,46] and has
been used for many applications including natural language processing [47,48] and single-
cell analysis [49].

These approaches focus on approximating the 1-Wasserstein distance through tree con-
struction and often utilize constant-edge weights. In terms of approaches that consider non-
uniform edge weights, Backurs et al. [50] introduced FlowTree, amalgamating QuadTree
and cost matrix methods, outperforming QuadTree. They guaranteed that QuadTree and
FlowTree approximate nearest neighbors by employing the 1-Wasserstein distance. Dey
and Zhang [51] proposed an L1-embedding for approximating the 1-Wasserstein distance
for persistence diagrams. Finally, Yamada et al. [52] proposed a computationally efficient
tree weight estimation technique for TWD and empirically demonstrated that TWD can
attain comparable performance to the Wasserstein distance, while achieving computational
speeds several orders of magnitude faster than linear programming computation of the
Wasserstein distance.

Most existing studies on TWD have focused on tree construction [17,18,40] and edge
weight estimation [52]. Frogner et al. [53] and Toyokuni et al. [54] considered utilizing the
Wasserstein distance for multi-label classification. These studies focused on supervised
learning by employing softmax as the probability model. In this study, we investigate
the Wasserstein distance by employing an SSL framework and evaluate various probabil-
ity models.

3. Background

3.1. Self-Supervised Learning Methods

SimCLR [3]: Given n input vectors {x;}! ;, where x; € RY, define the data transformation
functions (1) = ¢ (x) € R? and u? = ¢,(x) € RY. In the context of image applications,
uM) and 4 can be understood as two image transformations over a given image: transla-
tion, rotation, blurring, etc. The neural network model is denoted as fo(u) € R%ut, where 6
is a learnable parameter.
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SlmCLR attempts to train the model by learning features such that z(1) = f4(u1)) and

= fo(u?) are close after the feature mapping, while ensuring that both are distant

from the feature map of #/, where #’ is a negative sample generated from a different input
image. To this end, InfoNCE loss [24] is employed in the SImCLR model:

exp (sun( 1(1 ,Z )/T)

(infoNCE (Z,(l), Z,(z)) = —log =

1(1 ,zl(z))/’r +log(Z),

—sim(z

where Z = y 2R, Opti exp(sim(zl{l), %)/ 7) is the normalizer, R is the batch size and sim(z, z’)
is a similarity function that takes a higher positive value when z and z’ are similar and
a smaller (positive or negative) value when z and z’ are dissimilar. 7 is the temperature
parameter, and ¢; is a delta function that takes a value of 1 when k # i and 0 otherwise. In
contrastive learning, we aim to minimize the InfoNCE loss function. To achieve an optimal

1)

solution, we need to maximize the similarity sim(z; ’, z( )) while minimizing log(Z). The

1) 2)

first term aims to make z;* and z;* as similar as possible. The second term is a log-sum-exp
function, which can be interpreted for small T as

2R (1)
log(Z) = 1og<zak¢zexp<s1m< - ,zk>/r>>

k=1

R~ mkax(sim(zgl),ik)).

By minimizing log(Z), we can make 21(1) dissimilar to the negative samples Zx. Due
to the fact that we attempt to minimize the maximum similarity between input z; and its
negative samples, we can make z; and its negative samples dissimilar via the second term.

In SimCLR, the parameters are learned by minimizing the InfoNCE loss.

6 := argmin Y fnfoncE (fe(ul(1>),fe(u§2)))-

6 =1

SimSiam [7]: SimSiam is a non-contrastive learning method; it does not use negative
sampling to prevent mode collapse. In place of negative sampling, SimSiam employs a
stop-gradient method. Specifically, the loss function is given by

1 1
Lsimsiam (0) = ELI(G) + §L2(9)r

1 & h(zi)TZ'{ 12 zTh(z()
LiO)=—=) ———t Lo(0)=—= ) —— T,
1(6) n = [|h(z;)|21| 2|2 © n =\ zill2 k(22

where h(-) is the MLP head, z; is a latent variable, and z; = StopGradient(z;) is a latent
variable with a stop gradient.

3.2. p-Wasserstein Distance

The p-Wasserstein distance between two discrete measures, u = Y. ; 4,6y, and y/ =
YLy ajdy, is given by

1/p
WP(V'V,) = < min 2 27-[1] xzry] ) ’

el(uy') ;= 1j=1

where U(y, 1') denotes the set of transport plans and U(p, ') = {I1 € R : 15 =
a,11"1; = a'}. The Wasserstein distance can be computed using a linear program. How-
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ever, because this includes an optimization problem, the computation of Wasserstein
distance for each iteration is computationally expensive.

3.3. 1-Wasserstein Distance with Tree Metric (Tree-Wasserstein Distance)

Another 1-Wasserstein distance is based (])\In trees [17,18]. The 11\—]Wasserstein distance
between two probability distributions y = Y, a;0x, and p/ =} jzleff a;éy]. with the tree
metric is defined as

Nieaf Nieaf

W. ’ N = i iid irYi)s 1
71 ') nemin ,; ,; i (xi, ;) (1)

where d7(x,y) is the length of the shortest path between x and y on the tree and Ny, is the
number of leaf nodes. TWD can be further represented by the closed form as follows [18]:

Wr (') = ) welu(T(ve)) — ' (T(2e))], (2)

ecE

where ¢ is an edge index, w, € R is the edge weight of edge e, v, is the eth node index,
and p(T'(v,)) is the total mass of the subtree with root v,. This closed form solution can be
further represented as the L1 distance [40]:

Wr(u, ') = ||diag(w)Ba — diag(w)Ba'[|,,

where B € {0, 1}Mode*Nieat is a tree parameter, [B];j = 1if node i is the ancestor node of

leaf node j and zero otherwise, Ny 4. is the total number of nodes of a tree, and w € Ri’“"de
is the edge weight.

For illustration, we provide two examples to demonstrate the B matrix by considering
a tree with a depth of one and a ClusterTree, as shown in Figure 1. If all edge weights
W =Wy =...=WN = % in the left panel of Figure 1, then the B matrix is given as B = I.
By substituting this result into the TWD, we obtain

1
Wr (') = 3lla —a'll = [la = a'llrv.

Thus, the total variation is a special case of TWD. In this setting, the shortest-path
distance in the tree corresponds to the Hamming distance. Note that Raginsky et al. [55]
also assert that the 1-Wasserstein distance with the Hamming metric d(x,y) = 6y, is
equivalent to the total variation (Proposition 3.4.1 in Raginsky et al. [55]).

w1 w2
w w W3\Wwyq4 W Wwaq W We
1 2 3 4 3 4 5 6
€1 €2 €3 €4 €1 €2 €3 €4

Figure 1. Left tree corresponds to the total variation if we set the weight as w; = %, Vi. Right tree is a
ClusterTree (2 class).
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The key advantage of the tree-based approach is that the Wasserstein distance is
written in closed form, which is computationally efficient. A chain is included as a special
case in the tree. Thus, the widely employed sliced Wasserstein distance is also included as
a special case of TWD (Figure 2). Moreover, it has been empirically reported that TWD-
and Sinkhorn-based approaches perform similarly in multilabel classification tasks [54].

Figure 2. Tree for sliced Wasserstein distance for Nj,¢ = 3. The left figure is a chain and the right
figure is the tree representation with internal nodes for the chain (wy = ws = wg = 0).

4. SSL with 1-Wasserstein Distance

In this section, we first formulate SSL using TWD. We then introduce ArcFace-based
probability models and Jeffrey divergence regularization.

4.1. SimCLR with Tree Wasserstein Distance

Let a and a’ be the embedding vectors of x and x’ (i.e.,, 1'a = 1 and 1'a’) with
# = Y ajoe; and y= Y a;éej, respectively. Here, ¢; is the virtual embedding corresponding
to a;j or a;. e is assumed unavailable in the problem setup. The main idea of this paper

is to adopt the negative Wasserstein distance between u and i/’ as the similarity score
for SimCLR.

sim(p, p') = —Wr(u, '),

We assume that B and w are given; that is, both the tree structure and weights are
known. In particular, we consider the trees shown in Figure 1.

Following the original design of the InfoNCE loss and by substituting the similarity
score given by the negative Wasserstein distance, we obtain the following simplified
loss function:

2N

n
0 := argmin Z(WT( () ,yl )/T—l—logZék#,eXp( 7 (p 51),“11]({2))/1’)),

6 i=1

where T > 0 is the temperature parameter for the InfoNCE loss. Although we mainly focus
on the InfoNCE loss, the proposed negative Wasserstein distance as a measure of similarity
can be used in other contrastive losses as well, e.g., the Barlow Twins.

4.2. SimSiam with Tree Wasserstein Distance

Here, we consider a combination of SimSiam and TWD. The loss function of the
proposed approach is expressed as

1 1
LTwDSimSiam (0) = §L1(9) + *Lz(e)/
1 n
L) = Y wr (w7, L ZWT( L),

The distinction to the original SimSiam is that our formulation employs the Wasserstein
distance, whereas the original formulation uses cosine similarity.
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4.3. Robust Variant of Tree Wasserstein Distance

In our setup, it is difficult to estimate the tree structure B and edge weight w because
the embedding vectors eq, ey, .. ., €4, , are unavailable. To address this problem, we consider
a robust estimation of the Wasserstein distance, such as the subspace-robust Wasserstein
distance (SRWD) [35], for TWD. The key idea of SRWD is to solve an optimal transport
problem in a subspace in which the distance is maximized. In the TWD case, we can
consider solving the optimal transport problem for the maximum shortest-path distance.
Specifically, for a given B, we propose the robust TWD (RTWD) as follows:

Nieafs Nieafs
in max ) Y mdr(eej),

RTWD(u, 1') =
(1) Mel(u) wed & =

N —

where B = {w € Riﬁeaf :B'w = 1and w > 0}, dy(ej ¢;) is the shortest-path distance
between e; and ej, and e; and e; are embedded in a tree 7. This constraint implies that the
weights of the ancestor node of leaf node j are non-negative and sum to one.

Proposition 1. The robust variant of TWD (RTWD) is equivalent to total variation:
RTWD(p, ') = [la — a'l|1v,
where ||a — a'||rv = 3||a — a’||1 denotes the total variation.

Proof. Let B € {0,1}N*Neat = [by, by, ..., by, ] and b; € {0,1}N. The shortest-path
distance between leaves i and j can be represented as [52]

dr(e;, e]-) = wT(bi + b]‘ —2b; 0 bj).

That is, d7(e;, e;) is represented by a linear function with respect to w for a given B
and the constraints on w and IT are convex. Thus, strong duality holds, and we obtain the
following representation using the minimax theorem [56,57]:

Nleafs Nleafs
max min Z Z niij(bi +bj —2b; o b;)
i=1

RTWD(p, ) =
('u ‘u) w st BTw=1and w>0 IleU(aa’) ;5 j

max |diag(w)B(a — a')||1,

w s.t. BTw=1 and w>0

Nl—= N~

. N N :
where TWD(p, ) = mingiey(a,) 525" ;25" 7ijd7 (€5, ¢j) = || diag(w)B(a — a’) 1.
Without loss of generality, we consider wy = 0. First, we rewrite the norm ||diag(w)B(a —

a’)|ly as

N
|diag(w)B(a —a')|1 = ) w Y, (m—a)|
j=1 ke[Nleafs]/kede(j)

where de(j) denotes the set of descendants of node j € [N] (including itself). Using the
triangle inequality, we obtain

N
|diag(w)B(a —a')[l1 < ) w ) |ay — ay|
j=1 ke[Nleafs}rkede(/')

= ) lm-al )} w

ke[Nleafs] jE[N],jEpll(k)

where pa(k) is the set of ancestors of leaf k (including itself). By rewriting the constraint
B'w=1as Yjc[N)jepa(k) Wj = 1 for any k € [Nieafs], we obtain
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[diag(w)B(a —a')[1 < ) |ax—ai] = [[a—a'|s.
ke[Nleafs]

The latter inequality holds for any weight vector w. Therefore, considering the vector
such that w; = 11if j € [Nieats] and 0 otherwise, which satisfies the constraint B’ w = 1,
we obtain

Nieafs
|diag(w)B(a—a')[l1 = ) |ax—ai| = [la—a's.
k=1

This completes the proof of the proposition. [

Based on this proposition, RTWD is equivalent to the total variation and does not
depend on the tree structure B. That is, if we do not have prior information about the tree
structure, using the total variation is a reasonable choice.

4.4. Probability Models

In this section, we discuss several choices of probability models for InfoNCE loss and
SimSiam loss.
Softmax: The embedded vector with softmax function is given by

ag(x) = Softmax(fp(x)),

where fg(x) is a neural network model.

Simplicial Embedding: Lavoie et al. [10] proposed a simple yet efficient simplicial embed-
ding method. Assume that the output dimensionality of a neural network model is dqyt.
Then, SEM applies the softmax function to each V-dimensional vector of fy(x), where we
have L = dout/V probability vectors. The ¢th softmax function is thus defined as follows:

ag(x) = [a§l>(x)T, aéz) (x)7",..., a((f) (x)T}

with a((f) (x) = Softmax( y) (x))/L,

where fég) (x)) € RV is the /-th block of a neural network model. We normalize the softmax
function by L because ag(x) must satisfy the sum-to-one constraint. Note that the softmax
function can be regarded as a special case of simplicial embedding (where L = 1). In
simplicial embedding, the softmax function is applied separately to each subset of the
elements. For example, if doyt = 10 and V = 5, the softmax function is applied to each of
the two five-dimensional vectors, and the results are then concatenated.

ArcFace model (AF): In comparison to SEM, we propose to employ the ArcFace probability
model [21]. The ArcFace models employs cosine similarity in addition to softmax.

ag(x) = Softmax (Kng (x) /77),

where K = [ky, ky, ..., ky,] € Rfut*drob js a learning parameter, fp(x) is the normalized
output of a model (fg(x) ' fo(x) = 1), and 7 is the temperature parameter. Note that AF
has a structure similar to that of transformers [58,59]. The key difference from the original
notion of attention in transformers is the normalization of the key matrix K and query

vector fg(x).
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AF with Positional Encoding: To the AF model, one can add one more linear layer and then
apply the softmax function; then, the output is similar to the standard softmax function.

Here, we propose replacing the key matrix with a normalized positional encoding matrix
(k] ki = 1,Vi):

ki = ki/| kil2,

where k%) = sin(i/10,000%/4ut) and k%) = cos(i/10,000% /4ot ).

AF with Discrete Cosine Transform Matrix: Another natural approach would be to utilize
an orthogonal matrix as K. Therefore, we propose adopting a discrete cosine transform
(DCT) [60] matrix as K, where DCT is in general used for data compression for images. The
DCT matrix is expressed as follows [60]:

{1/\/@ (i=0)

2j+1)i . .
2 cos ngéout )Z (1 S l S dOUt)

K _

1

dout

One of the contributions of this study is the finding that combining positional encoding
and the DCT matrix with the ArcFace model significantly boosts performance, whereas the
standard ArcFace model without these additions performs similarly to the softmax function.

4.5. Jeffrey Divergence Regularization

We empirically observed that optimizing the loss function described above is extremely
challenging. In particular, the L1 distance cannot be differentiated at 0. Figure 3b illustrates
the learning curve for standard optimization using the softmax function model.

To stabilize optimization, we propose including the Jeffrey divergence (JD) as a regu-
larization term. JD is an upper bound of the square of the 1-Wasserstein distance.

Proposition 2. For B'w = 1 and probability vectors a; and a;, we have
Wi (pi, 1j) < JD(diag(w)Baj||diag(w)Bay),
where

JD(diag(w)Ba;||diag(w)Ba;) = KL(diag(w)Ba;|/diag(w)Ba;)
+ KL(diag(w)Ba;||diag(w)Ba;)

is a Jeffrey divergence.
Proof. The following holds if B w = 1 with the probability vector a (such that a1 = 1).
1" diag(w)Ba = 1.

Then, using Pinsker’s Inequality, we derive the following inequalities:

W (1, y]-) = ||diag(w)Ba; — diag(w)Ba]-Hl < \/ZKL(diag(w)BaiHdiag(w)Baj),

and

Wi (pi, i) = ||diag(w)Ba; — diag(w)Ba;||; < \/ZKL(diag(w)BajHdiag(w)Ba,-),
Thus,

W7 (pi, ) < KL(diag(w)Ba; | diag(w)Ba;) + KL(diag(w)Ba;| diag(w)Ba;)
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This result indicates that minimizing the symmetric KL divergence (i.e., Jeffrey di-
vergence) can minimize the tree-Wasserstein distance. Due to the fact that the Jeffrey
divergence is smooth, the computation of the gradient of the upper bound is easier. For
presentation, we denote Wy (D), 4?) = wr(aV),a?).

Note that Frogner et al. [53] considered a multilabel classification problem utilizing the
regularized Wasserstein loss. They proposed utilizing Kullback-Leibler divergence-based
regularization to stabilize training. We derive the Jeffrey divergence from the TWD, and
JD regularization includes a simple KL divergence-based regularization as a special case.
Moreover, we propose employing JD regularization for SSL frameworks, which have not
been extensively studied.

11 11 — A=0.0 111 | — A=0.0
10 10 A=0.1 10 A=0.1
9
9
g 8 2 g 9
<] c 8 <]
a7 a Jou
; 8
6
5 6 7
4 5 6
0 50 100150200250300350400 0 50 100150200250300350400 0 50 100150200250300350400
Epochs Epochs Epochs
(a) Loss of Cosine + Real. (b) Loss of TV + Softmax. (c) Loss of TV + AF (DCT).

Figure 3. InfoNCE loss and Top-1 (Train) comparisons on STL10 dataset.

5. Experiments

This section evaluates SSL methods with different probability models.

5.1. Performance Comparison for SimCLR

For all experiments, we employed the Resnet18 model with an output dimension
of (dout = 256) and coded all the methods based on a standard SimCLR implementation
(https:/ /github.com/sthalles/SImCLR (accessed on 7 July 2023). We used the Adam
optimizer and set the learning rate to 0.0003, the weight decay parameter to le-4, and
temperature 7 to 0.07. For the proposed method, we compared two variants of TWD: total
variation and ClusterTree (Figure 1). As part of the model evaluation, we assessed the
conventional softmax function, attention model (AF), and simplicial embedding (SEM) [10]
and set the temperature parameter T = 0.1 for all experiments. For SEM, we set L = 16 and
V =16.

We also evaluated JD regularization, where we set the regularization parameter
A = 0.1 for all experiments. For reference, we compared cosine similarity as a simi-
larity function of SImCLR. For all approaches, we utilized the KNN classifier of the scikit-
learn package (https://scikit-learn.org/stable/modules/generated /sklearn.neighbors.
KNeighborsClassifier.html (accessed on 7 July 2023)), where the number of nearest neigh-
bor was set to K = 50. We utilized the L1 distance for Wasserstein distances and cosine
similarity for non-probability-based models. All the experiments were computed on A6000
GPUs. We ran all experiments three times and report the average scores.

Figure 3 illustrates the training loss and top-1 accuracy for the three methods: cosine
+ real-valued embedding, TV + softmax, and TV + AF (DCT). This experiment revealed
that the convergence speed of the loss function was nearly identical across all methods.
Regarding the training top-1 accuracy, cosine + real-valued embedding achieves the highest
accuracy, followed by the softmax function, and AF (DCT) lags. This behavior is expected
because real-valued embeddings offer the most flexibility, followed by softmax, with AF
models exhibiting the least freedom. For all methods based on the TWD, JD regularization
significantly aids the training process, particularly in the case of the softmax function.
However, for AF (DCT), the improvement was relatively small. This is likely because AF
(DCT) can also be considered a form of regularization.

Table 1 presents the experimental results for the test classification accuracy using
KNN. The first observation is that the simple implementation of the conventional softmax
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function performs poorly (the performance is approximately 10 points lower) compared to
cosine similarity. As expected, AF has only one more layer than the simple softmax model,
and performs similarly to softmax. Compared to softmax and AF, AF (PE), and AF (DCT)
significantly improve the classification accuracy for the total variation and ClusterTree cases.
However, for the ClusterTree case, AF (PE) achieves a better classification performance,
whereas the AF (DCT) improvement over the softmax model is limited. In the ClusterTree
case, SEM significantly improves with the combination of ClusterTree and regularization.
One potential reason of the performance improvement on TV + AF (DCT) combination and
ClusterTree + SEM is that AF (DCT) utilizes the orthonormal DCT transform of the learned
representation, while both SEM and ClusterTree have structures themselves. This means
that each element of the final probability vector ag can be uncorrelated for AF (DCT). As a
result, the tree structure may not provide significant information, and the total variation
(i.e., each leaf node connected to the root node) might be the best fit for the probability
representation. Additionally, the cluster-like structure may conflict with the DCT-based
representation. In contrast, SEM has an inherent structure and is computed without the
DCT transformation (it learns a sum-to-one vector on subtrees). Therefore, the cluster tree
structure and SEM can be a good match.

Table 1. KNN classification result with Resnet18 backbone. In this experiment, we set the number of
neighbors as K = 50 and computed the averaged classification accuracy over three runs. Note that

the Wasserstein distance with (B = I;

out

) is equivalent to total variation.

Similarity ~ Prob Model STL10  CIFAR10 CIFAR100 SVHN
N/A 75.77 £ 047 67.39 +£0.46 32.06 +0.06 76.35 + 039
Cosine Softmax 70.12 £0.04 63.20+0.23 26.88 026 74.46 +0.62
SEM 7133 £045 61.13+£056 26.08+007 7428 +1.13
AF (DCT) 7295+ 031 65.92+065 2596+013 76.51+0.24
Softmax 65.54 £ 047 59.72+£039 26.07 +£0.19 72.67 +0.33
SEM 65.35 £ 031 56.56 +046 24.31+043 7336+1.19
AF 65.61 £0.56 60.92+042 2633+042 75.01+032
AF (PE) 7171 £017 64.68+£033 2638+037 76.44 +0.45
wpy) AFOCD 7328 £027 67.03+£024 2585039 77.62+0.40
Softmax +]D  72.64+027 67.08+0.14 27.82+022 77.69 +0.46
SEM + JD 7179 £092 63.60 £0.50 26.14 +040 75.64 + 0.44
AF +]D 7264 +£037 67.15+027 27.45+037 78.00 +0.15
AF (PE)+]JD 7447 +010 6728 +0.65 27.01+039 78.12 +048
AF (DCT) +]D 7628 £0.07 68.60 +0.36 2649 =024 79.70 £ 0.23
Softmax 69.15 £ 045 62.33 £040 2447 +040 74.87 +0.13
SEM 72.88 +£0.12 63.82+0.32 22554028 77.47 +0.92
AF 7040 £ 040 6328 +£057 2428+0.15 7524 +052
AF (PE) 7237 £028 65.08+074 2333+035 76.67+026
AF (DCT) 7195+ 046 65.89 £0.11 21.87+£0.19 77.92 +0.24
TWD (Clus) Softmax +]JD  7352+0.16 66.76+029 24.96+0.07 77.65+0.53
SEM +JD 75.93 £ 0.14 67.68 £ 046 22.96+028 79.19 +0.53
AF +]D 73.66 £ 023 66.61 +£032 2455+014 77.64+0.19
AF(PE)+JD 7392 +057 67.00+0.13 23.83+042 77.87 029
AF (DCT) +]D 7429 +030 67.50 £0.49 22.89 +0.12 7831 +0.72

Overall, the proposed method performs better than cosine similarity without real-
valued vector embedding when the number of classes is relatively small (i.e., STL10,
CIFAR10, and SVHN). By contrast, the performance of the proposed method degrades
for CIFAR100, and the results for ClusterTree are particularly poor. As the Wasserstein
distance can be minimized even if it cannot overfit, it is natural for the Wasserstein distance
to make mistakes when the number of classes is large. Note that the performances for
CIFAR100 with simplicial representation degrade both cosine and TWD loss functions, and
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the performance degradation seems to come from the softmax operation. Moreover, the
total variation is a robust measure and learning with total variation is generally designed
to create models that are resilient to noise. In our setting, which involves self-supervised
learning, it is likely that similar class representations could become mixed, leading to
performance degradation. Since the proposed method performs well on CIFAR-10, we
believe this could be the reason for the performance issues on larger datasets. To address
this, it may be beneficial to use other types of regularizers or larger deep learning models.

Next, we evaluated the Jeffrey divergence regularization. Surprisingly, simple regular-
ization dramatically improves the classification performance of all the probability models.
These results support the idea that the main problem with Wasserstein distance-based
representation learning is its numerical instability.

Among the methods, the proposed AF (DCT) + JD with total variation achieves the
highest classification accuracy, comparable to the cosine similarity result, and achieves
more than 10% improvement from the naive implementation with the softmax function.
Moreover, all probability model performances with the cosine similarity combination tend
to result in a lower classification error than those with the combination of the TWD and
probability models. Based on our empirical study, we propose utilizing TWD (TV) + AF
models or TWD (ClusterTree) + SEM for representation-learning tasks in probability-based
representation learning.

5.2. Performance Comparison for SimSiam

Next, we evaluated the performance using a non-contrastive setup. For all experiments,
we utilized the Resnet18-Cifar-Variantl model with an output dimension of (doyt = 2048)
and implemented all methods based on a standard SimSiam framework (https://github.
com/PatrickHua/SimSiam). The optimization was performed using the SGD optimizer
with a base learning rate of 0.03, weight decay parameter of 0.00005, momentum parameter
of 0.9, batch size of 512, and a fixed number of epochs set to 800. For the proposed method,
we employed the total variation as a loss function, along with the softmax function and
ArcFace model (AF). The temperature parameter T was set to 0.1 for all experiments.
Additionally, we assessed JD regularization with the regularization parameter A set to 0.1
across all experiments. A100 GPUs were used for all experiments, and each experiment
was run three times, with the reported results being the average scores.

We compared the proposed methods, TWDSimSiam (softmax + JD) and TWDSimSiam
(AF +JD), with the original SimSiam method which employs cosine similarity loss. Upon ex-
amination, we observe that learning the total variation with softmax encounters numerical
issues, even with JD regularization (See Figure 4a,c). Conversely, the AF + JD combination
proved successful in training the models, as shown in Figure 4b,c. One potential reason for
the failure of TWD with softmax is that the total variation can easily become zero because
the softmax function lacks normalization. For TWDSimSiam (AF + JD), normalization
within the AF model prevents convergence to a poor local minimum. From a performance
standpoint as shown in Table 2, the utilization of cosine similarity and total variation (TV)
yield comparable results. However, a key contribution of this study is the introduction of a
practical approach to enhance the model training stability by incorporating Wasserstein dis-
tance, specifically through total variation. This discovery has a potential utility in various
SSL tasks.

Table 2. SimSiam evaluation with CIFAR10 dataset.

Similarity Probability Model Linear Classifier
Cosine N/A 91.13 £0.14
TWD (TV) Softmax + JD 9.99 + 0.00

AF (DCT) +JD 90.60 = 0.02
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Figure 4. TWD loss for SimSiam models.

5.3. Effect of Number of Nearest Neighbors

In this section, we assess the performance of the KNN model by varying the number of
nearest neighbors and setting K to 10 or 50. The results for K = 10 are presented in Table 3, and
Table 4 illustrates a comparison of the best models across different nearest neighbor values. Our
experiments revealed that utilizing K = 50 tends to enhance the performance, and the relative
order of the results remains consistent, regardless of the number of nearest neighbors.

Table 3. KNN classification result with Resnet18 backbone. In this experiment, we set the number of

neighbors as K = 10 and computed the averaged classification accuracy over three runs. Note that

the Wasserstein distance with (B = I;_,) is equivalent to a total variation.

Similarity Prob Model STL10 CIFAR10 CIFAR100 SVHN

N/A 75.44 +0.21 66.96 =045 31.63 +£0.25 74.71 £0.31

Cosine Softmax 7125 +030 63.80+048 26.18+0.36 73.06+0.47

SEM 7134 +£031 61.26 £042 2540 +0.06 73.41 +0.95

AF (DCT) 7215+ 053 6552+045 2493 +£0.24 75.68 =0.13

Softmax 6342 +£024 59.03+058 24.95+031 70.87£0.29

SEM 63.72 +£0.17 5557 +£035 23.40+036 71.69£0.75

AF 63.97 £0.05 5996 £044 2529 +£0.17 73.44 +£0.35

AF (PE) 71.04 £ 037 6428 £0.14 25.71 £0.20 75.70 +0.42

TWD (TV) AF (DCT) 7275 +£0.11 67.01 £0.03 24.95+0.17 76.98 & 0.44

Softmax + JD 72.05+030 66.61 £020 2691 +£0.19 76.65=+0.56

SEM + JD 70.73 £0.89 62.75+0.61 24.83+0.27 74.71 £043

AF +]D 71.74 £0.19 66.74 £020 26.68 +0.35 77.10 £+ 0.04

AF (PE) + JD 7410 £020 66.82 +036 26.17 £0.00 77.55+0.50

AF (DCT)+]JD 76.24 +0.22 68.62+0.40 25.70+0.14 79.28 + 0.22

Softmax 6795 +042 6159 +029 23.34+026 73.88+0.05

SEM 7243 +£0.11 63.63 +£042 21.29+0.28 77.04+0.77

AF 69.09 £0.05 6249 +£045 2256 +0.25 74.31 £0.40

AF (PE) 72.08 +0.07 64.56 031 2251 +029 75.98 +0.23

TWD (Clust) AF (DCT) 71.64 £0.15 6551 £036 21.04£0.10 77.59 £0.25

Softmax + JD 73.07 £0.13 66.38 £0.27 23.97 £0.11 76.82 & 0.50

SEM + JD 75.50 £ 0.15 67.44 +£0.10 21.90£0.19 78.91 +0.30

AF +]D 72.70 £0.08 66.12+026 23.50+0.21 76.92+0.06

AF (PE) + JD 73.66 £ 047 66.58 +£0.01 22.86+0.02 77.44 +0.30

AF (DCT)+]JD 73.79+0.12 67.34+038 21.96+0.34 78.00+ 0.60

Table 4. KNN classification accuracy with different number of neighbors.

Similarity K STL10 CIFAR10 CIFAR100 SVHN
TWD (TV) 10 76.24 +0.22 68.62 + 0.40 25.70 £0.14 79.28 +0.22
50 76.28 + 0.07 68.60 £ 0.36 26.49 4+ 0.24 79.70 +0.23
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5.4. Effect of the Regularization Parameter for Jeffrey Divergence

In this experiment, we evaluated model performance by varying the regularization
parameter, denoted as A. The results indicate a noteworthy improvement in performance
with the introduction of regularization parameters. However, as shown in Table 5, it was
observed that the performance did not exhibit significant changes across different values of
A, and setting A = 0.1 yielded favorable results.

Table 5. KNN classification result with Resnet18 backbone. In this experiment, we set the number of
neighbors as K = 50 and computed the averaged classification accuracy over three runs.

Similarity Function A STL10 CIFAR10 CIFAR100 SVHN
00 7328=+027 67.03+024 25854039 77.62+0.40
TWD (TV) 01 76.28+007 68.60+036 26.49+024 79.70+0.23
02 7740+017 68.48+011 25594016 79.67 +0.26
03 77.67+£0.06 6826+051 2421+035 79.91+0.42

6. Conclusions

This study investigates SSL using TWD. We empirically evaluate several benchmark
datasets and find that a simple combination of the softmax function and TWD performs
poorly. To address this, we propose simplicial embedding [10] and ArcFace models [21] as
probability models. Moreover, to mitigate the intricacies of optimizing TWD, we incorpo-
rate an upper bound on the squared 1-Wasserstein distance as a regularization technique.
Overall, the combination of ArcFace and DCT outperforms their cosine similarity coun-
terparts. Finally, we find that the combination of TWD (ClusterTree) and SEM yields
favorable performance.

There are several potential future directions for our work. Firstly, improving rep-
resentation learning for larger classes could involve employing larger models and/or
introducing new regularization techniques. Secondly, integrating the proposed probability
representation into other SSL models such as DINO [8] could enhance our understanding of
model performance across different learning tasks. Lastly, while we have empirically stud-
ied self-supervised learning with Wasserstein distance, the theoretical properties remain
unclear. Therefore, investigating these theoretical properties represents another promising
research direction.
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