Skip to main content
. 2024 Oct 31;26(11):939. doi: 10.3390/e26110939

Table 3.

KNN classification result with Resnet18 backbone. In this experiment, we set the number of neighbors as K=10 and computed the averaged classification accuracy over three runs. Note that the Wasserstein distance with (B=Idout) is equivalent to a total variation.

Similarity Prob Model STL10 CIFAR10 CIFAR100 SVHN
Cosine N/A 75.44 ± 0.21 66.96 ± 0.45 31.63 ± 0.25 74.71 ± 0.31
Softmax 71.25 ± 0.30 63.80 ± 0.48 26.18 ± 0.36 73.06 ± 0.47
SEM 71.34 ± 0.31 61.26 ± 0.42 25.40 ± 0.06 73.41 ± 0.95
AF (DCT) 72.15 ± 0.53 65.52 ± 0.45 24.93 ± 0.24 75.68 ± 0.13
TWD (TV) Softmax 63.42 ± 0.24 59.03 ± 0.58 24.95 ± 0.31 70.87 ± 0.29
SEM 63.72 ± 0.17 55.57 ± 0.35 23.40 ± 0.36 71.69 ± 0.75
AF 63.97 ± 0.05 59.96 ± 0.44 25.29 ± 0.17 73.44 ± 0.35
AF (PE) 71.04 ± 0.37 64.28 ± 0.14 25.71 ± 0.20 75.70 ± 0.42
AF (DCT) 72.75 ± 0.11 67.01 ± 0.03 24.95 ± 0.17 76.98 ± 0.44
Softmax + JD 72.05 ± 0.30 66.61 ± 0.20 26.91 ± 0.19 76.65 ± 0.56
SEM + JD 70.73 ± 0.89 62.75 ± 0.61 24.83 ± 0.27 74.71 ± 0.43
AF + JD 71.74 ± 0.19 66.74 ± 0.20 26.68 ± 0.35 77.10 ± 0.04
AF (PE) + JD 74.10 ± 0.20 66.82 ± 0.36 26.17 ± 0.00 77.55 ± 0.50
AF (DCT) + JD 76.24 ± 0.22 68.62 ± 0.40 25.70 ± 0.14 79.28 ± 0.22
TWD (Clust) Softmax 67.95 ± 0.42 61.59 ± 0.29 23.34 ± 0.26 73.88 ± 0.05
SEM 72.43 ± 0.11 63.63 ± 0.42 21.29 ± 0.28 77.04 ± 0.77
AF 69.09 ± 0.05 62.49 ± 0.45 22.56 ± 0.25 74.31 ± 0.40
AF (PE) 72.08 ± 0.07 64.56 ± 0.31 22.51 ± 0.29 75.98 ± 0.23
AF (DCT) 71.64 ± 0.15 65.51 ± 0.36 21.04 ± 0.10 77.59 ± 0.25
Softmax + JD 73.07 ± 0.13 66.38 ± 0.27 23.97 ± 0.11 76.82 ± 0.50
SEM + JD 75.50 ± 0.15 67.44 ± 0.10 21.90 ± 0.19 78.91 ± 0.30
AF + JD 72.70 ± 0.08 66.12 ± 0.26 23.50 ± 0.21 76.92 ± 0.06
AF (PE) + JD 73.66 ± 0.47 66.58 ± 0.01 22.86 ± 0.02 77.44 ± 0.30
AF (DCT) + JD 73.79 ± 0.12 67.34 ± 0.38 21.96 ± 0.34 78.00 ± 0.60