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Abstract: Prolonged exposure to hypoxic conditions can lead to reduced appetite, stunted growth,
systemic inflammation, and pulmonary hypertension. Previous studies have indicated a correlation
between gut dysbiosis and the development of hypoxia-related hazards. We designed an experiment
to investigate the effect of microbiota on mitigating hypoxic damage. Gut microbiota from high-
altitude-adapted species (Ochotona curzoniae) were transplanted into Sprague Dawley (SD) rats, which
were then housed in a simulated 6000 m altitude environment for 30 days. After the experiment,
we conducted analyses on average daily weight gain (ADG), feed conversion ratio (FCR), mean
pulmonary artery pressure (mPAP), gut flora, and fecal metabolism. The results demonstrated that
the ADG in the transplantation group (2.98 ± 0.17 g) was significantly higher than in the control
groups (2.68 ± 0.19 g and 2.26 ± 0.13 g) (p < 0.05). The FCR was reduced in the transplantation group
(6.30 ± 0.33 g) compared to the control groups (8.20 ± 1.15 g and 8.83 ± 0.45 g) (p < 0.05). The mPAP
was decreased in the transplantation group (38.1 ± 1.13 mmHg) compared to the control groups
(43.4 ± 1.30 mmHg and 43.5 ± 1.22 mmHg) (p < 0.05). Multi-omics analysis revealed that Lach-
nospiraceae, Desulfovibrionaceae, and specific amino acid metabolic pathways play crucial roles
in hypoxia and are associated with both inflammation and nutritional metabolism. This study pro-
poses a novel approach to the treatment of hypoxic pulmonary hypertension and holds potential
significance for improving high-altitude developmental potential.

Keywords: hypoxic pulmonary hypertension; gut microbiota; feed conversion ratio; metabolome;
hypoxic and hypobaric exposure

1. Introduction

The detrimental effects of hypoxia on humans and animals are well documented,
including decreased appetite, stunted growth, metabolic dysregulation, systemic inflamma-
tion, pulmonary hypertension, right ventricular hypertrophy, and heart failure [1–3]. Many
populations and animals residing in high-altitude regions endure the severe consequences
of chronic hypoxia, which significantly hinders the development of these areas [4–6].
Previous research indicates a correlation between gut dysbiosis and the progression of
hypoxic damage. The gut microbiota plays a crucial role in executing essential physiological
functions such as digesting food, harvesting energy, and regulating the immune system.
Additionally, it impacts host ecology and aids in adaptation to extreme environments [7,8].
For example, Lachnospiraceae and Ruminococcaceae produce short-chain fatty acids (SC-
FAs) like butyrate, which help maintain gut health, support energy metabolism, and reduce
inflammation. The genus Blautia has been found to respond rapidly to high-altitude hy-
poxia, helping to maintain intestinal health by reducing inflammation and protecting the
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intestinal barrier. Overall, high-altitude animals typically have a diverse gut microbiota, en-
suring that the gut ecosystem remains stable and functional even under extreme conditions.
Furthermore, the gut microbiota of different species exhibits convergence, with shared
core microbiota playing a significant role in helping these species adapt to high-altitude
environments [9]. The therapeutic targeting of bacterial dysbiosis can be achieved using
probiotics (live strains of selected bacteria) or prebiotics (food components that modulate
the microbiota). The administration of probiotics, prebiotics, and synbiotics has been shown
to significantly attenuate cardiac hypertrophy caused by prolonged hypobaric hypoxia
exposure. These interventions have also been found to ameliorate gut microbiome shifts,
as well as alterations in short-chain fatty acids, bile acids, amino acids, neurotransmitters,
and free fatty acids [10,11]. However, further research is needed to fully understand the
practical applications of prebiotics and probiotics [12,13].

Ochotona curzoniae (Plateau pika), a small mammal endemic to the Qinghai–Tibet
Plateau, is well adapted to the alpine, anoxic, and resource-scarce environment of the
plateau, which ranges from 3000 to 5000 m in altitude [14,15]. They inhabit an open and
complex environment characterized by extreme climate changes, food scarcity, and ex-
posure to a wide array of environmental microorganisms [16]. Research shows that the
composition and function of the gut microbial communities of Ochotona curzoniae are crucial
for their ability to adapt to extreme climate conditions and thrive in this challenging plateau
environment [17–19].

During periods of food scarcity, particularly in winter, Ochotona curzoniae supplements
its diet by consuming yak feces, resulting in increased convergence of the yak and Ochotona
curzoniae microbiota. This behavior aids Ochotona curzoniae in adapting to the high-altitude
environment [20]. Inspired by this, we designed an experiment to transplant gut microbiota
from high-altitude-adapted species (Ochotona curzoniae) to SD rats, establishing a low-
pressure, hypoxia adaptation model. We hypothesized that gut microbiota transplantation
would induce significant influence in the physiological responses of the rats to low-pressure
hypoxia. This study aims to reveal the effects of gut microbiota transplantation from high-
altitude animals on the gut microbiota structure, growth performance, and physiological
metabolism of rats under low-pressure, hypoxic conditions. The findings will provide new
methods and insights for improving hypoxia adaptation and promoting the health of living
beings in high-altitude regions.

2. Materials and Methods
2.1. Animals and Study Design

As seen in Figure 1, a total of 30 SD rats, male, three weeks old, weighing
61 ± 10 g from Beijing Vital River Laboratory Animal Technology Co., Ltd. (Beijing,
China), were raised in homogeneous conditions in Xining, Qinghai (2200 m above sea
level), fed and watered ad libitum under natural conditions. Weight differences were
eliminated at the beginning of the experiments and the rats were randomly assigned to
three groups (10 rats per group), as follows: HAO group = Antibiotics + Transplanted
microbiota of Ochotona curzoniae + Hypoxia; H group =10%PBS + Hypoxia; HA group =
Antibiotics + Hypoxia. HAO was the experimental group, HA and H were the control
groups. All animal procedures were approved by the Institutional Animal Care and Use
Committee of Qinghai University under permission number SL-2021027.
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Figure 1. Schematic overview of the experiment. 
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Figure 2. Fecal microbiota transplantation (FMT) modulates weight gain and alleviates pulmonary 
arterial hypertension. (a) Average daily gain (ADG) of the rats at low altitude (1200 m) after FMT. 
Data are presented as the mean ± standard error of mean (SEM). p-values were determined using 
the t-test. (b) Average daily gain (ADG) of the rats at high altitude (6000 m) after FMT. (c) Feed 
conversion ratio (FCR) of each group. (d) Mean pulmonary arterial pressure (mPAP) in the three 
groups after FMT. 

 

Figure 1. Schematic overview of the experiment.

2.2. Antibiotic Pretreatment

Following the grouping process, antibiotics were administered as a pretreatment
to eliminate the gut microbiome of the rats. The HAO and HA groups were fed an
antibiotic (ABx) cocktail (vancomycin 0.5 g L−1, ampicillin 1 g L−1, neomycin 1 g L−1, and
metronidazole 1 g L−1) for one week before the trial. After this, the HAO and HA groups
were subjected to intragastric gavage with 0.5 mL of ABx once daily for three consecutive
days. The H group received sterile water for one week prior to being given 0.5 mL of
10% PBS daily for three days via gavage. Upon completion of antibiotic pre-treatment, we
promptly collected fecal samples from the H group and ABx group for comparative gut
microbiota analysis [21,22].

2.3. Fecal Microbiota Donor

Five Ochotona curzoniae were live-trapped in Huangyuan, Qinghai Province, at an
altitude of 3500 m. An additional five were trapped after three days. Fresh feces from
plateau zokors were collected daily, dissolved in 10 mL PBS (1:10) per 1 g, vigorously
mixed and homogenized, and centrifuged at 600× g for 15 min, and the supernatant was
immediately administered orally to the rats in the HAO group [21,22].

2.4. Fecal Microbiota Transplantation

After a 24 h antibiotic-free period, the HAO group received 500 µL microbiota suspen-
sion once a day by oral gavage for seven days, and the HA and H groups were gavaged
with 500 µL of 10% PBS once a day for seven days.

2.5. Feeding Experiment

Following the FMT, all rats were fed in situ for two weeks and then transferred to the
hypobaric chamber (DYC-300, Guizhou Feng Lei Oxygen Chamber Co., Ltd., Guizhou,
China) to be maintained for a period of 30 days. The hypobaric chamber simulated the low-
pressure and hypoxic environment at an altitude of 6000 m, with an oxygen concentration
of 9.2%.

We entered the chamber once a day to clean, collect information, and observe. At
the end of the 30-day feeding period, all rats were weighed, measured for mPAP, and
euthanized with urethane.

2.6. Hemodynamic Measurements

After 30 days of exposure to hypoxia, 2 rats died in the HAO and HA groups, and
5 rats died in the H group. Urethane (1.0 g/kg) was then used for intraperitoneal anesthesia
in the rats. Right heart catheterization was performed through the right jugular vein
into the right ventricle and down into the main pulmonary artery to measure mPAP. The
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inserted catheter was positioned correctly using the waveform shown on the biological
function experimental system (BL-420, Tai Meng Technology Co., Ltd., Chengdu, China).

2.7. 16S rRDA Sequencing

Fecal samples were collected when the rats were sacrificed, placed in sterile tubes, and
stored at −80 ◦C immediately. The total genomic DNA was extracted using the CTAB/SDS
method. The V4 region of the 16S rRNA gene was amplified using barcoded primers for
the Illumina platform. The samples were pooled and sequenced with the Illumina NovaSeq
platform (NOVOGENE Company Limited, Beijing, China) and 250 bp paired-end reads
were generated. Using QIIME and UCHIME, sequences were quality-filtered and trimmed.
The operational taxonomic units (OTUs) were chosen based on 97% sequence similarity to
the Silva Database. To identify common and unique OTUs among the groups, we evaluated
the OTUs using abundance metrics, alpha diversity calculations, Venn diagrams, and other
methods. To investigate the differences in community structure among the groups, we
performed PCoA dimensionality reduction. Additionally, we used the linear discriminant
analysis effect size (LEfSe) statistical analysis to examine the significance of differences in
species composition and community structure among the groups.

2.8. Fecal Metabolism

Fecal samples were stored at −80 ◦C and were then sent to NOVOGENE Company
Limited (Beijing, China) for metabolite extraction and liquid chromatography–tandem
mass spectrometry analysis. Metabolites were annotated using the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database, HMDB database, and LIPID Maps Database. A
t-test was applied to calculate the statistical significance. The metabolites with VIP > 1.0,
FC > 1.2 or FC < 0.833 and p-value < 0.05 were considered differential metabolites.

2.9. Statistical Analysis

The data were analyzed using SPSS 26.0 statistical software (IBM Co., New York, NY,
USA) with a one-way analysis of variance (ANOVA) followed by LSD multiple comparison
tests. All groups were compared with each other for every parameter. Values are shown as the
means ± standard deviation. Statistical significance was based on p < 0.05. The correlation ma-
trix was generated using Spearman’s correlation coefficient performed using the OmicStudio
toolsV2.9.1 at https://www.omicstudio.cn/tool/59.3 (accessed on 28 October 2024).

3. Results
3.1. FMT Improves Weight Gain, Feed Conversion Ratio, and Mean Pulmonary Arterial Pressure
in SD Rats

As shown in Figure 2, the ADG of the rats at low altitude (2200 m) was HAO
(6.85 ± 0.21 g) > HA (6.59 ± 0.39 g) > H (6.23 ± 0.23 g). The differences among the groups
were not significant (p > 0.05) (Figure 2a). At high altitude (6000 m), the ADG was HAO
(2.98 ± 0.17 g) > HA (2.68 ± 0.19 g) > H (2.26 ± 0.13 g), with the daily weight gain in the HAO
group being significantly higher than that in the HA and H groups (p < 0.05). The difference
between the HA and H groups was not significant (p > 0.05) (Figure 2b). The FCR in the HAO,
HA, and H groups was 6.30 ± 0.33 g, 8.20 ± 1.15 g, and 8.83 ± 0.45 g, respectively. It was
significantly lower in the HAO group compared to the HA and H groups (p < 0.05), with
no significant differences between the HA and H groups (p > 0.05) (Figure 2c). The mean
pulmonary arterial pressure (mPAP) in the HAO, HA, and H groups was 38.1 ± 1.13 mmHg,
43.5 ± 1.22 mmHg, and 43.4 ± 1.30 mmHg, respectively. The mPAP was significantly lower
in the HAO group compared to the HA and H groups. The differences in mPAP between the
HA and H groups were not significant (Figure 2d).

https://www.omicstudio.cn/tool/59.3
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arterial hypertension. (a) Average daily gain (ADG) of the rats at low altitude (1200 m) after FMT. 
Data are presented as the mean ± standard error of mean (SEM). p-values were determined using 
the t-test. (b) Average daily gain (ADG) of the rats at high altitude (6000 m) after FMT. (c) Feed 
conversion ratio (FCR) of each group. (d) Mean pulmonary arterial pressure (mPAP) in the three 
groups after FMT. 

 

Figure 2. Fecal microbiota transplantation (FMT) modulates weight gain and alleviates pulmonary
arterial hypertension. (a) Average daily gain (ADG) of the rats at low altitude (2200 m) after FMT.
Data are presented as the mean ± standard error of mean (SEM). p-values were determined using
the t-test. (b) Average daily gain (ADG) of the rats at high altitude (6000 m) after FMT. (c) Feed
conversion ratio (FCR) of each group. (d) Mean pulmonary arterial pressure (mPAP) in the three
groups after FMT.

3.2. FMT Contributed to Different Compositions of Gut Microbiota

To elucidate the gut microbial profiles, we conducted 16S rRNA analyses on the
fecal samples. The gut microbial profiles of HAO, HA, and H rats were evaluated using
metataxonomic methods. After binning the sequences into operational taxonomic units
(OTUs, i.e., groups of sequences sharing a minimum of 97% nucleotide identity), a total
of 1562 different OTUs were initially detected across all groups, with 60 of these OTUs
detected exclusively in the HAO group; 81 and 39 of these OTUs were only in the HA or H
group, respectively (Figure 3a). An alpha diversity analysis showed that the Chao1 was
not significantly different between the three groups (p > 0.05), nor was the Shannon index
(Figure 3b,c). Principal coordinate analysis based on unweighted UniFrac distance yielded
dispersed data points on the plots of all groups, implying significant microbial differences
in the guts of all groups (p < 0.05) (Figure 3d).

The relative abundance of species at the phylum level in each group is shown in Figure
S1. The two most abundant species in the three groups were Bacteroidetes and Firmicutes.
At the family level, the predominant bacteria were Muribaculaceae, Bacteroidaceae, and
Lachnospiraceae and Prevotellaceae (Figure 3e). At the genus level, the top 20 genera were
displayed. These were mainly Bacteroides, Prevotella, Christensenellaceae_R-7_group,
Lactobacillus and Ruminococcus, and g_Lachnospiraceae_NK4A136_group (Figure 3f).
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raceae_NK4A136_group were abundant in the HAO group, g_Desulfovbrio, f_Desul-
fovibrionaceae were abundant in the HA group, and f_Prevotellaceae and g_Prevotella_9 
were abundant in the H group. Thus, there were remarkable differences in the microbial 
composition among these groups (Figure 4). 

Figure 3. Comparison of gut microbiome between HAO, HA, and H. (a) Venn diagram for three
groups. (b) α-Diversity of different groups as per Chao1. p-values were determined using the
Wilcoxon test. (c) α-Diversity of different groups as per the Shannon index. p-values were determined
using the Wilcoxon test. (d) PCoA analysis based on the unweighted UniFrac distance was performed
to visually explore the similarity and variations between the samples’ microbial composition. The
percentages in parentheses refer to the proportions of variation explained by each ordination axis.
Average relative abundances of dominant bacterial family level (e) and genus level (f).

Differentially abundant fecal bacterial taxa were further identified using linear discrim-
inant analysis effect size. o_Lachnospirales, f_Lachnospiraceae, and g_Lachnospiraceae_NK
4A136_group were abundant in the HAO group, g_Desulfovbrio, f_Desulfovibrionaceae
were abundant in the HA group, and f_Prevotellaceae and g_Prevotella_9 were abundant
in the H group. Thus, there were remarkable differences in the microbial composition
among these groups (Figure 4).
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3.3. Differential Gut Microbiota Induces Differences in Fecal Metabolites

The gut microbiota plays a crucial role in nutrient digestion and absorption, thereby
impacting metabolism. In this study, we delved into the effects of FMT on the fecal
metabolome using liquid chromatography–tandem mass spectrometry and explored the
correlation between metabolites and the gut microbiota. Notably, HAO exhibited distinct
metabolites compared to those of HA and H. These differences are visually represented
in the partial least squares discriminant analysis plot, illustrating variations in metabolite
composition between HAO and HA, as well as between HAO and H (Figure 5a,b).

We employed the following criteria to identify significantly altered metabolites:
VIP > 1.0, FC > 1.2 or FC < 0.833, and p-value < 0.05. Our analysis revealed 220 and
119 significantly altered metabolites (positive and negative modes) in the HAO vs. HA
and HAO vs. H comparisons, respectively. Among these, 35 and 28 metabolites were
significantly upregulated in HAO vs. HA and HAO vs. H, respectively, while 185 and
91 metabolites were significantly downregulated (Figure 5c,d). The functions of these
metabolites were determined using the KEGG pathway analysis. We analyzed 20 KEGG
enrichment pathways, as shown in Figure S2a,b. The results indicated that, in terms of fecal
metabolism, the pathways of cysteine and methionine metabolism; biosynthesis of amino
acids; aminoacyl-tRNA biosynthesis; glycine, serine, and threonine metabolism; pheny-
lalanine, tyrosine, and tryptophan biosynthesis; C5-branched dibasic acid metabolism;
glucosinolate biosynthesis; protein digestion and absorption; methane metabolism; mi-
crobial metabolism in diverse environments; and mineral absorption were significantly
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different between the HAO and HA groups (p < 0.05) (Figure S2a). Compared to the H
group, the HAO group showed significant differences in methane metabolism, protein
digestion and absorption, sphingolipid metabolism, cysteine and methionine metabolism,
beta-alanine metabolism, C5-branched dibasic acid metabolism, vitamin B6 metabolism,
aminoacyl-tRNA biosynthesis, sphingolipid signaling pathway, and metabolic pathways
(p < 0.05) (Figure S2b). The relative concentrations of fecal metabolites in the HAO, HA, and
H groups were visualized using a heatmap (Figure S3a,b). It showed significant differences
in fecal metabolic expression patterns between the HAO group and the HA and H groups.
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We selected 30 significantly different metabolites, which are listed and clustered
in Figure 6a. The metabolites enriched in the three groups were significantly different.
Metabolites such as agmatine, traumatic acid, LPC 20:1, LPE 18:3, LPC 18:1, and LPC
22:6 are enriched in HAO. L-Serine, DL-O-Tyrosine, L-Tyrosine, tyrosine, methionine, and
L-Histidine are enriched in HA and H, particularly in HA. As shown in Figure 6b, we
conducted Spearman correlation analysis to examine the relationship between fecal mi-
crobes and mPAP, ADG (2200 m), and ADG (6000 m). The results revealed a positive
correlation between mPAP and Muribaculaceae and Desulfovbrionaceae, and a negative
correlation with Lachnospiraceae and Sutterellaceae. Furthermore, we observed a posi-
tive correlation between ADG (6000 m) and Lachnospiraceae, and a negative correlation
with Muribaculaceae. Additionally, ADG (2200 m) exhibited a positive correlation with
Sutterellaceae.
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30 metabolites in HAO vs. HA vs. H groups. (b) Spearman correlation between intestinal microbiota
and mPAP, ADG (2200 m), and ADG (6000 m). Purple denotes a positive correlation; green denotes a
negative correlation. The color intensity is proportional to the strength of the Spearman correlation.
* p ≤ 0.05, ** p ≤ 0.01.

4. Discussion

The importance of the gut microbiota in influencing health and susceptibility to disease
is gaining recognition. Weight gain is a crucial indicator of animal growth and development.
In this study, under prolonged hypoxic conditions, there were significant differences in
weight gain among the rats. The HAO group exhibited superior weight gain and FCR
compared to the other groups, demonstrating that microbiota transplantation improved
the growth and development of rats in hypoxic environments. Additionally, the mPAP
results indicated that the HAO group experienced the least physiological negative impact
and hypoxic damage, further confirming that the restructured gut microbiota helped the
rats better adapt to hypoxic conditions.

Desulfovibrionaceae, a lipopolysaccharide-producing bacterium, has been implicated
in the induction of inflammation and metabolic disorders [23,24], potentially serving as a
significant contributor to pulmonary arterial hypertension. Phospholipid metabolites from
Desulfovibrio within Desulfovibrionaceae have been identified in the intestinal epithelial
CD1d, leading to the proliferation of IL-17A-producing γδ T cells in hypoxic conditions,
exacerbating intestinal injury [25]. Notably, the 16s rRNA analysis revealed the lowest
levels of Desulfovibrionaceae and Desulfovibrionaceae in the HAO group. Conversely,
Lachnospiraceae, known for its production of short-chain fatty acids and conversion of
primary to secondary bile acids, plays a crucial role in host–microbe interactions, providing
a spectrum of beneficial effects for the host in terms of metabolism and immune regulation,
thereby enhancing resistance against intestinal pathogens [26,27]. A reduction in the
abundance of Lachnospiraceae may have adverse health implications due to the loss of
its multifaceted beneficial functions. Notably, it has been associated with altitude-related
cardiac hypertrophy and pulmonary arterial hypertension [13,28]. In addition to these
identified bacteria, numerous unknown species are yet to be characterized, necessitating
further research to elucidate their roles.
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In our experiment, we concentrated on the fecal metabolome to explore the impact of
FMT on gut metabolism. While the specific role of the metabolites we identified in hypoxic
pulmonary hypertension requires further validation, it is evident that FMT enhanced the
metabolic status of the rats, improved their digestive and absorptive capacity, and elevated
their overall health. Intestinal microflora have the capability to synthesize and release
specific metabolites, which exert a crucial role in regulating various physiological functions
in the host. Further investigation into the specific metabolites and their impact on hypoxic
pulmonary hypertension could provide valuable insights into the potential mechanisms
underlying the observed improvements in the rats’ health.

Amino acids constitute a fundamental class of bioactive macromolecules that play
a pivotal role in the construction of biological organisms, serving as essential building
blocks for cells and facilitating tissue repair [29]. The metabolic pathway of amino acids is
a prerequisite for a myriad of other metabolic processes [30]. The analysis of differential
metabolites revealed a substantial presence of amino acid substances in HA and H, in-
cluding L-Serine, DL-O-Tyrosine, L-Tyrosine, Methionine, and L-Histidine. A comparative
analysis of HAO with HA and H further underscored significant disparities in various
amino acid metabolic pathways. Intestinal amino acid metabolism is known to be particu-
larly responsive to environmental stress [31], potentially leading to disruptions in amino
acid metabolism due to exposure to low pressure and hypoxia. Research has demonstrated
the capacity of intestinal microorganisms to influence the host’s intestinal homeostasis,
primarily through metabolic pathways such as amino acid metabolism [32]. Furthermore,
disorders in amino acid metabolism have been associated with increased intestinal perme-
ability and inflammatory reactions [33], while post-fecal bacterial transplantation, HAO,
has been observed to modulate intestinal metabolism, contributing to the maintenance of
intestinal homeostasis and nutritional metabolism to a certain extent. To date, there is a
limited amount of literature on the implications of alterations in the intestinal environment
on the host’s physiological metabolism [34], and this speculation necessitates extensive
experimental validation.

The gut microbiota of rats is susceptible to dysbiosis under hypoxic and hypobaric
exposure [35]. An imbalance in intestinal flora can alter the intestinal permeability of rats,
resulting in fewer mucin-producing goblet cells, shortened villus lengths, and increased
intestinal fibrosis and muscular tissue. For example, a reduction in Lachnospiraceae can
lead to decreased production of SCFAs, which can alter gut epithelial cells and increase
intestinal permeability. An increase in gut permeability allows commensal bacteria to
translocate from the enteric cavity into circulation, promoting the generation of periph-
eral blood bacterial products, which may include endotoxins [36]. Gut dysbiosis can
also lead to the high production of inflammatory substances, exacerbating pulmonary
hypertension. In this study, the results demonstrated a significant correlation between
pulmonary hypertension and the presence of Lachnospiraceae and Desulfovibrionaceae.
Desulfovibrionaceae, producers of lipopolysaccharides, have been linked to inflammation
and metabolic dysregulation. Conversely, Lachnospiraceae, as producers of short-chain
fatty acids, exert influence over the host’s immune functions and inhibit the expression
of various inflammatory cytokines [37,38]. Indeed, an increase in Lachnospiraceae and a
decrease in Desulfovibrionaceae were observed in the HAO group. Additionally, the HAO
group of rats demonstrated the highest feed efficiency, requiring the least amount of feed
per unit of body weight. This indicates that, after gut microbiota modification, not only
was pulmonary arterial pressure reduced, but the rats’ digestive and metabolic capabilities
were also enhanced, leading to improved growth and development.

5. Conclusions

This intervention not only enhanced gut flora, such as increasing Lachnospiraceae
and decreasing Desulfovibrionaceae, but also improved metabolism, including amino acid
metabolism. By altering the microbiota to influence the expression of gut metabolites,
FMT mitigated inflammatory responses and improved digestive metabolism. This resulted
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in enhanced overall health in the rats, promoted their growth and development, and
reduced pulmonary arterial pressure. The modification of the gut microbiota significantly
enhanced the adaptation of rats to hypoxic environments. However, this study is based
on a low-pressure oxygen chamber simulating a high-altitude environment. In reality,
high-altitude environments are more complex, involving low pressure, low oxygen levels,
low temperatures, and strong ultraviolet radiation. Therefore, further research is needed
to determine whether the same effective results can be achieved in practical applications.
This study proposes a novel approach to the treatment of hypoxic pulmonary hypertension
and provides valuable insights into improving hypoxia adaptation in animals.
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